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ABSTRACT: The Direct Boundary Integral Equation Method (DBIEM)
studies the two-dimensional “in-plane’ steady-state wave propagation
problem in a non-elastic multi-layered region with non-parallel
boundaries. Wave attenuation and dispersion due to the non-elastic soil
behavior are investigated by the generalized Maxwell-Gurevich model
(GMG model). The numerical example solved considers two real geologi-
cal situations for a multi-layered soil media with existence of salt ore
deposits. These situations concern one and the same geological region but
in different periods of its exploitation in 1951 and 1994. There is a change
of the situation during the yvears when the exploitation of the salt ore
deposits has been done. The region is subjected to incident time-harmonic
seismic P-waves. Theoretical amplitude-frequency characteristics at the
free-surface points for elastic and non-elastic cases are obtained and
compared.
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1. Introduction

On the basis of the review of the experimental results one
can see that there are two different kinds of seismic waves
dispersion. One kind of dispersion is due to the non-
elastic soi1l behavior and in this case the damping
coefficient m[rn'f] depends linearly on the frequency.
Then the wavelength A >10-20D, where D is the
imhomogeneity size. The other kind of dispersion is due to
the wave geometrical scattering and it occurs at 3 > D and
() ~ ®°, where @ is the frequency. The experimental
dispersive curve af(w) 1s a line-due to the energy
damping at microstructure state change and non-elastic
deformation, with some fluctuations on it due to the
scattering from inhomogeneities in soil [1]. Figures (1a)
and (1b) show the experimental dispersive curves
a(m), obtained in [ 1] for soil materials. The basic disper-
sion relations: velocity V(w) and attenuation coefficient
o (w), obtained from classical models of Foight, Maxwell
and linear standard body model, do not agree with the
experiment in a vast zone of frequencies. Except for the
classical models, many authors give their contribution to
the creation of physical models of soil. Well-known are the
models of Deriagin [2], Lomnitz [ 3], Futerman [4], Knopoff
15], Isacovich [6], Magnitski and Jarkov [7], Biot and

* Part two of this paper will be published in the next issue of JSEE

Frankel [8, 9]. None of them, however, shows satisfactory

agreement with the experimental results.

The main aims of this paper are:

%«  To present the essence of the GMG model for
describing the physical dispersion of the seismic
waves and its use in modeling of two-dimensional
“in-plane” wave propagation in a multi-layered
non-elastic geological region with complex geom-
etry. The motivation for this is that this model gives
theoretical results for attenuation and dispersion of
seismic waves 1n soil, which are in good agreement
with the experimental data [10].

o To show that the changes in the soil region during
the years of the exploitation process lead to the
change in its dynamic response, i.e. to the change

in the obtained theoretical amplitude-frequency
characteristics.

The paper 1s organized as follows: The description of
the GMG model is presented in section 2 and the two-
dimensional wave equation using the GMG model is
discussed in section 3. The formulation of the problem is
given in section 4. Section S presents BIEM formulation of

the considered problem. Some numerical results are given
in section 6. The conclusion is made in section 7.

L

JSEE: Summer 2000, Vol. 2. No. 3 / 11



P. Dineva and E. Gavrilova

u,[m'1]l
10p
05
f [Hz]
= —

Figure 1a. Experimental dispersive curve a(f), [ =

2'.:1'
i) §
10k
05 F
f [Hz]
- - gme

100 200 300

Figure 1b. Experimental dispersive curve a(f), f/ = 2";[

2. Description of the GMG Model

In the seventies, Gurevich [10] reached to the viewpoint
of Maxwell for solid deformation mechanism in the case of
wave propagation far from the wave source (in the case of
small deformation €y 10°* ~107°). The total deformation
€; 1s a sum of the elastic deformation €
elasto-relaxational deformation €,
damps in time

and the linear
that develops and

€, =€, +E ol (1)
Gurevich [10] adopts Maxwell’s molecular idea about
the character of the elasto-relaxational deformation, see

Figure (2). Under acoustic load the total deformation is
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Figure 2. Gurevich's viewpoint for solid deformation in soil.
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g;<<l and the weakest molecular bonds are destroyed.
Molecules strongly bonded surround the micro-particles,
between which the bound have been destroyed, and
these molecules form an elastic skeleton of the body.
There, phases of stresses and strains coincide and Hook’s
law links stress and strain. Due to the destruction of the
weak bonds in the skeleton from time to time, and to
corresponding reorganization of the skeleton molecules,
there occurs elasto-relaxational strain €,;;, which does not
coincide with the stress phase. The irreversible
deformation does not exist. This model is valid for waves
with small amplitude for isothermal process, macroscopic
homogeneous and isotropic medium. The first members of
the Taylor’s series of the function ©,; = f(g,;) are
considered, 1.e. the elasto-relaxational dcfurmatlun takes
place

O pij = ApOpyj+ 21 €5 Oy = 21801 = X,y (2)
{

Here ?\.‘P and p.;, are structure parameters, characterizing
the elasto-relaxational properties which are called Lame
relaxational coefficients. The value of the relaxational
stress  Op; 1s determined by a traction Gj.such as
€,;= 0, i.e. this traction stops the elaﬂu»relaxahun&l

deformation at a given moment of time ¢, when

Gji = Opjj (3)

Then the following relations can be written

LJ

W 8,0" ( 5,0
_ 9

©=0"+0, KO“=K,0O (4)
i{, 3 =
® :_ZE_:}'

Here K and K:, are the elastic and relaxational volume
module; 1 and Ll;, are the elastic and relaxational shear
module; o; - the Kronecker delta; €;,@ - the total
deformation; E” O™, ;u-_’,-, @ , -the elastic and relaxational
strains ata moment of time 7, when Oj = O,y and € ,,= 0.
In fact, the condition 6; =, is a stability condition.
The difference between materials lies in the path they take
to arrive at the final stability state. This depends on the
behavior of the concrete microstructure, i.e. on the
structural module- K, K ! I, | f P, Ip, T),. Here T} is the
time for transition from some equilibrium state into
another one for one molecule; 7,, is the time for transition
of a group of molecules from some state of equilibrium into
another one; and p is r;luv-‘.ity The quantities
£;»0%¢ ,,, @, become g, , O £, @, by instantaneous
transition act to a stable strun_ture In the case when the
total deformation does not change at this time, so that the
strong bonds in the elastic skeleton are conserved. At

* . ”
each other moment ¢ # 7, when the condition & oy =0is
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not fulfilled
E:’;’ - E;J} + E,ru; and o= @E o @p (5)

Gurevich gives a definition of elasto-relaxational strain
rate as

€ pij (T; ) S 4 (6)

Using Egs. (4, 5 and 6), it is obtained in [10]

I'-:HJ@;:'(T,;) _ F@E" _ 0, (T;:)“ G
Ot _K; K _7‘; (7)
o 8,07
;‘f? Ep:‘f(?}:)_ . _f;( F) -
[, 8,0 2 8,0,(7)
g E!’f_—%,' B EF:':'(TP)_ _J"'“g—p
T, u, L
R H
where ¢ = il e, U= KK‘”. and ?}: 1s a relaxation
R+, K +K,

time- 1t 1s the time necessary for a group of molecules to

pass from a given equilibrium state to another one. Gurevich
generalized Maxwell’s “time of relaxation”. According
to him, it depends on the material structure properties,

microstructure state, temperature and traction applied to
the body

L

e (U Y
E —a:"r“:_,xp[kﬂ o Fﬂ) (8)

Here ¢ i1s a structural constant, depending on the
microstructure state properties; 7, is the time for particle
jump of some equilibrium state to another; k, - Boltzman’s
constant; &, - the absolute temperature; U - the activa-
tion energy, necessary for overcoming of the potential
barrier at transition from some state to another:

et

V€ [V,.9,q.], where v is the volume of one molecule
and v, . 1s the maximum volume of molecule group that
jumps from some state to another. The Gurevich’s point of
view is that ?':, 1s a function of o, and Eq. (7) is
non-linear. However, Gurevich has not determined the
relation 7,(c,), which demands accounting for the
microstructure state change. As a result, his model at this
stage 1s a linear physical equation. Gurevich assumes that
not only one relaxational time occurs in a solid, but that

there exists a spectrum of relaxational times

ot ’ (9)

The GMG constitutive equation is obtained in [10] using
Egs. (7)and (9)

ou;, 9, .
— E . —"r .- "r v — . 5
E!;;—Eﬁﬁhﬁp&-,ﬁﬂ—p[Zaxj+1_2v@ € i

i

S = ali*+au-"'—é
jk =R Ty, Ox, pik (10)

where v 1s Poisson coefficient

Ty Iy “-E K’*E
—. — . = p =
1 g = T}JE' f _pTiDE‘
- H %
€

.
Ly = _g_"__d,_g f __%L_._L;
K= [e" P fe"P [6ff_zﬁf;‘]dt+Dia'(§) dé
-R 0 ]
e ¥ i
] —Ldé _GT_&;; GT dE
L= fe Wl p [G(K,)" KD fpr "
—K 0
(Z‘i‘ﬁ]dHD(ﬁ)]di

D;(E) = {Eﬁ ™ égf— - HER [Epff (T;)‘@P(T;)f 3]}

I=tpn

D(E) = {@E— EI;,L‘Q- @, (T;)}

The above Eqgs. (10) and (11) present the generalized
Maxwell-Gurevich model obtained by Gurevich in [10] as

a result of his concept for the molecular nature of the
deformation process. The main advantage of this model

1s that it gives a possibility for connection between the
soil microstructure characteristics and its stress-strain

macro-behaviour. The procedure for the determination of
the GMG model material constants is given in 110].

3. Two-Dimensional Wave Equation Using the
GMG Model

After substituting of the constitutive Egs. (10, 11) 1n the
equation of motion

Cy.i = PUY; (12)
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the wave equation for a solid described by the GMG model
1s obtained. In case of two-dimensional plane-strain state
the next wave equation is valid

8 @21‘:;- 1 00 |
= {m: p[(l-l-”)ﬁx,- s udu,]}+

{

L =St [ 5t 0 FE}E“; — K 681‘ il
j {L _[E:" 5t | 37 dtrds

()

M’
_[ *{b'” j'e” 0 [K ae"’}z’!}d& ={

< Ot p Ox

e (13)
where
ou,, x o’
O=¢g  +¢€, = o, +—=23 Au, = A +ﬁ_uil
0 VW Ox 3y | Ebfz 6}»’
ﬁz M. SEH :
Uy ==t —t=; § - 5
Ay Oy Hip

- -1
n K |- Lo K
el sl

The authors’ aim 1s to obtain the Helmholtz equation
analogue of the two-dimensional GMG wave Eq. (13) 1n
the case of time-harmonic seismic waves. We look for the
solution of Eq. (13) in the form

— 0!
U; =uge (14)

Here o 1sthe frequency, u;,(x, y) is the wave amplitude.
Through substituting Eq. (14) in Eq. (13) and after some
transformations, the Helmholtz equation, analogous in the
case of the GMG model for soil, 1s obtained

) 2
= -{h(.51 > + 5=+ == | =
Ox XCOy OXx

oy
—(ks)zut}x
[/ a 2 | ) ol . 8]
kg 118 #y0 0 u,, g {‘T“}”*Fa““}ﬂ _
k) L ay" 0xdy) ( ax 8y
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The complex wave vectors k, and k, depend on the
physical module of the GMG model

> POSR Sp | J (
kf=k£+m,-,k,+—ﬁ, =S50rp

I

(16)

Here @, is the wave-damping coefficient; Vs , - the
shear or the longitudinal wave velocity. The shear and
longitudinal wave vectors as well as the damping
coefficients depend on the GMG model parameters.

The GMG model shows the linear dependence
a(m) and weak dispersion dependence V¢ (m)as it is at
the experimental results, see Figure (3). It is shown by the
results in [10], that the GMG model gives a good agree-
ment with the experimental results for different types of
the soil material.
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Figure 3. Dispersion curves a(o) and k(») obtained by the
GMG model.

4. Formulation of the Problem

The nature of the ground motion during earthquakes can
be significantly affected by the local site effects, such as
layers. These local conditions can generate large amplifi-
cations and important spatial variations of the ground
shaking. The generalized scattered motion determines the
seismic load of structures in the geological region. The
spatial variation of this ground motion 1s important for the
analysis of structures with large dimensions such as
bridges and dams, for assessing seismic risk, and for
seismic design of important facilities.

The aim of this item is to formulate the steady state
seismic wave propagation problem in a non-elastic soil
multi-layered region using both the generalized GMG model
to describe the non-elastic soil behavior and BIEM as
a tool for solution of such a complex boundary-value
problem.

The propagation of elastic waves through layered
half-space is of considerable interest to engineers,
geologists and seismologists. Lacking any analytical
method to treat such problems, resort has been made to
the numerical techniques-FEM and BIEM. The first
systematic approach to multi-layered media may be traced
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back to Thompson [13]- Haskell [ 14] methods, Gilbert and
Baskus [15] introduced the propagator matrix method,
Fuchs [16] introduced the reflectivity method, Pao and
Gajewski [17] proposed the generalized ray method, Small
and Booker [18] solved a multi-layered system by the
tlexibility matrix method.

Recently the BIEM has been applied to many seismic
wave propagation problems [19-21]. This is because the
radiation condition due to energy dissipation is automati-
cally satisfied and the discretization is performed only on
the boundary of the body. Extensive information on the
BIEM for dynamic problems can be found in review type
works such as the paper of Beskos [22], Dominguez and
Alarkon [23], Kobayashi [24] and the book by Manolis
and Beskos [25].

Most of the works are devoted to the multi-layered
regions with simple geometry of the boundary between
layers (usually parallel boundaries) and concern pure
elastic mechanical soil properties. To the authors opinion
there 1s a lack of studies involving both multi-layered
regions with complex geometry of the boundaries between
layers and with accounting for the non-elastic soil
behavior.

In this paper, the two-dimensional “in-plane” wave
propagation problem in the multi-layered geological
region, shown in Figure (4) is considered. The stress-
strain state 1s a plane strain state. The GMG model,
discussed above, describes the non-elastic soil media. The
equations governing the two-dimensional motion of the
non-elastic media are Eq. (15), where the wave vectors are
different for the different layers.
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Figure 4. The geometry (2D) of the multi-layered geological
region in 1951.

Due to the reason that the problem is axial-symmetric,
it will be taken the half of the geometry. Two real geologi-
cal situations for the multi-layered soil media with
existence of salt ore deposits (see the half of the geometry
i Figures (5) and (6)) are considered. These situations
concern one and the same geological region but in

different periods of its exploitation - in 1951, see Figure (5)
and 1994, see Figure (6). There 1s a change of the situation
during the years when the exploitation of the salt ore
deposits has been done. The main goal is to show that the
changes in the soil region during all these years lead to the
change in its dynamic response, i.e. to the change in the
obtained theoretical seismograms.

The boundary conditions are, see Figures (5) and (6)

(17)

o, n; =0for(x,y) € FJ - free surface

(k) (K)_

u®(x,y) = 4t (x, y); oW n P g k40

o ") for (x, y) on

J i .
the boundaries between the layers; k is the number of the

layer €2,
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Figure 5. A half of the geometry of the geological region in 1951.
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Figure 6. A half of the geometry of the geological region in 1994
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P G, N, +0,.n,

e P =0 and u.(x,y)=0 for (x,y)e JA4,
uf (x,y)=u r.':u:'-:ﬂf —ﬁ”n, for (x,y)e AB,BC, CE, EF,
where e = 2, 22, and 2 forFigure(5)and e = 2,, £2,
and (2 for Figure (6).
Here u,,o, are the displacement and the traction,
beyond the finite multi-layered region ABFJ, obtained by
the sum of both: a) the waves scattered by the boundary
ABFIJ: b) the waves as a result of the interference between
inLidem and reflected waves of the free boundary, see
[11]; u;,0; are the displacement and the traction in
2, _(24 and 2 for Figure (5) and correspondingly in
2,02, and (2 for Figure (6).

So, the governing Eq. (15) and the boundary condi-
tions Eq. (17) formulate the boundary-value problem for
the amplitude of the scattered wave field.

5. BIE Formulation of the Boundary-Value
Problem

We apply the direct BIEM for the considered boundary-
value problem and the next system of BIE is obtained

ciu; (no)= [U(rno) pilr,0)dI
;
O
~ jP v, @) (ry, 0)d I
. (18)
i

where /° isthe boundary of the m-th soil layer (m =1,
2,3,4,5 forFigure (S)andm=1, 2, 3,4, 5, 6, 7 for Figure
(6)): r and 5, denote the pubitiun vectors uf the field and
running point respectively; U/, and F; represent the
displacement and the traction fundamental solutions of
the system, see Appendix at the end of Part Il in the next
1ssue of JSEE; ¢;; are constants and depend only on the
shape of the boundary at the position vector r; u and p
are unknown displacement and traction vectors.

The boundary integral Eq. (18) together with the
boundary conditions describe the boundary-value
problem to be solved by the direct BIEM.

The boundary discretization i1s made according to the
following rules: the length of the elements i1s ¢ < A /10,
where A_ 1s the length of the SV-wave. The displacement
and traction at arbitrary points between the nodes are
expressed in terms of the nodal values uf, p using finite
element shape functions

3 3
u(€) = Z N‘;(E_,)uf;, P(&) = Z N_;(‘;;)Pﬁ
/ !
The following parabolic elements are used

., = S5

An intrinsic co-ordinate £ is designed for each triplet
of nodal points, taking values -1, 0, +1 at the first, middle

_EE-D o
Ni_‘vz N, =1-
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and third nodes respectively. Let (x”,y”) be the field

point; (x/,y/) and (x¥, y7) are the first and third puints

of the corresponding BE and r,, = x/~x",r,, = y/-y”
ra=x3=x",r,3=yi=y”. The required coordinates of

the Gaussian quadrature are used for quadratic BE- 7 (£) =
a2 +§L1(r_3 -r“) with Jacobean J = 1. There are the

2 h ' 1 2
ne:{t types of integrals in the BIEs - j E; (E)N(E)JdE and
-1

I (~':3)1“~’]rr )JdE. When the distance between the field

pmnt and the running point r is not zero, the integrals are
solved by the Gauss 32- point quadrature scheme.
According to the asymptotic behavior of the functions
!—'3;:, UI; (see Appendix), near r = 0 the integrals of the
second type have no singularities but the integrals of the
first type have singularities leading to CPV integrals. The
kernels of the integrals of the first type have singularities

like O(—}EJ for £ —+1, that leads to the CPV integrals,

the kernels of the integrals of the second type have
singularities like O(In(/+&) for £ — %1, which leads to
non-singular integrals. The analytical treatment of the
singular integrals concerns the next two cases with
respect to the position of the field point

1) The field point coincides with the middle point of
the BE.

Then the next integrals are used for the solution of the
integrals of the first and second type

1
(f1.1) [R(E)dE, where R(£) is a rational function of &,
-1

which denominator has no roots in [-1, 1]

|
(f1.2) [Ln|E-dR(E)dE, where ae[-1,1]and BE) isa
-1

polynomial of degree /

P
(f1.3) ,[ /&) d§= where p e[-1, 1]and B() isa polyno-

mial of degree /

The integrals of the type (f1.1) are regular and they are
calculated as integrals of rational functions. The integrals
of the type (f1.2) are with a weak singularity and they are
represented as a sum of the integrals of the type T Lnk

0,(E)dE, where Q, =g E"+...+q, is a pulyngmial.
Then it 1s clear that

J+1

J.LHQQ,,,(Q)dE_, L:mj'LnE_,Qm(g)dg 30

5 J+1
(Lna—-—l )
Jj+1

The integrals of the type (f1.3) are singular and lead to the
sum of integrals of the type
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(f1.1) and of integrals of the CPV type

IAE-'— L:mjj— j—é— Ln

e—0 _

b

b+1§:

The solution of the integrals of the first type leads to the
solution of the integrals of the types (f1.1) and (f1.3), while
the integrals of the second type lead to the solution of the
integrals of the types (f1.1)and (f1.2).

u)  The field point coincides with an odd nodal point.

Then the next integrals are used for the solution of the
integrals of both types

l
£2.1) JRE)E, where R(E) is a rational function of £,
-1

which denominator has no roots in [-1, 1]

1 1
(22) [LnE+1)RE)E, [Ln(1-E)B(E)dE, where B(x)
-1 -1

1s a polynomial of degree /
These two types integrals are solved as the integrals of
the types (f1.1) and (f1.2)

(£2.3) IP(E")dE., Ig(é)dis where B(£),Q(E) are poly-

nomials of degree /

5 ,’_s—l

z,=z; 1s an odd nodal point used as a field point,
s, s-1 are the numbers of the both neighboring BE. The
odd points are used as allocation points for continuous
shape function, so it is fulfilled Q,(1)= A(1). We change
the variables and add the integrals over /' and 7,
and the result is a CPV integral. Then the integral of the
type (f2.3) can be expressed by the integrals of the type
(£1.3)

rom, 1AM, RIUP
I " d“{ _L n

where
; ~2.0
§(n) = “1[ O,m) nel |
(P(n) nel0,2]

Note that the condition Q(1)=
1S continuous at the point 0.

P(-1) provides that S(n)

(2.4) Ifﬁ)xﬂ(é)dé- f%@xb(é)d&

5
where
0 Ee[-1,a]
3{,,@):"%] te(a ] for —-1<a <l
(1 £ e[-1,b]
X;:.(i):"ko E e bl for —=1<b <]

The integrals of the type (f2.4) are regular and they are
sum of integrals of the type (f2.1). The solution of the
integrals of the first type leads to the solution of integrals
of the types (f2.1) and (£2.3), while the solution of the
integrals of the second type leads to the solution of
integrals of the types (£2.1) and (£2.2).

After the boundary discretization the system of
integral equations is written at the discrete points, which
are the nodal points of BE. An algebraic system according
to the unknowns of the mixed boundary-value problem is
obtamed after the boundary condition satisfaction and
solution of the singular and non-singular integrals.

6. Numerical Results

The physical properties of the geological region are given
in Tables (1) and (2). The damping coefficients are
o, =0.05 for €2,,02,,62; and o, =0.001 for the rest
layers; @, = 0.03 for £2,,£2,, 2, and &, =0.005 for the
rest layers. The relaxation times for all layers are taken
from [10]: 7, = 0.2.10 and 7,, = 100s. The incidence
wave angle according to axis Oy is 0", The geometrical
parameters of the regions are given in Table (3). The

theoretical seismograms of the horizontal i:—"*’ and vertical
0

: displacements for soil column N1 at point (1000, 0.0)

arg shown in Figures (7) and (8) in both elastic and

non-elastic cases. The thenretmal seismograms of the

horizontal Uy and vertical

column N2 at point (1000, 0.0) are shown correspondingly
in Figures (9) and (10) in both elastic and non-elastic cases.
Here u, is the amplitude of the incident wave. It is seen
that the pure elastic case gives an unrealistic picture of the
physical processes since when the frequency increases,
the amplitude of the corresponding harmonics does not
decrease. In the case of the Gurevich model the results are
more realistic, since when the frequency increases the
amplitudes of the corresponding harmonics damp, i.e. the

real dynamic soil system acts as a low-frequency filter.
One can see that in the case of the geological situation,
shown in Figure (6), the amplitude-frequency characteris-
tics are rather different from those for the geological
situation, shown in Figure (5).

—- displacements for soil

7. Conclusion

[n this paper the theoretical seismograms obtained for a

region with complex geometry and physics involve both
kinds of seismic waves dispersion:

o Dispersion, due to the non-elastic soil behavior that
18 accounted for by the GMG model

**  Dispersion, due to the wave geometrical scattering
that 1s accounted for by the solution of the bound-

ary-value problem by the direct boundary integral
equation method.

The experimental results for the seismic wave

L
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dispersion as well as the numerical results obtained for the
seismic wave propagation on the base of the boundary
integral equation method together with the GMG model
prove the validity and advisability for the use of this model
In seismic wave propagation problems. This model has

in itself a possibility for connection and transition
between the macro stress-strain processes and the
microstructure state of the soil material. One can see
that the change of the geological situation during the
years when the exploitation of the salt ore deposits leads

Table 1. Physical constants of the geological column N1.

| I

Number of Material Density LLame Poisson Shear Wave Shear | Wave Long.
Range 1.*“8 / rn3J Constant Constant Module Velocity Velocity
I '_N / mEJ _l \_N / m:J [m /5] | [m /5]
{2, Salt 2,23.10¢ (0,783.10" (0,33 0,4026.10! 13436 206068.7
- -|- $ * b
0. Salt 2,23.10° 0,8611.10" 0,33 0,4425.10° 1408.,6 2798
- |
Q. Salt 2,2.10° 0,9246.10" 0,35 0,3974.10! 1344 2798
: g : '
2, vy 2,2.10° 0,75.10" 0,3 0,5.10' 1507,55 2820,4
0. v 2,610 | 0,2607.10" 0,3 0,175.10" | 259437 4847
5 rock L '
Table 2. Physical constants of the geological column N2.
Number of Material Density Lame Poisson Shear Wave Shear | Wave Long.
Range Lkg I nf] Constant Constant Module Velocity Velocity
LN / mr:_‘ LN / m:J im/s| Im /5]
2, Salt 2,23.10° 0,7808.10% (0,33 0.4026.10" 1343.64 266885
2, Salt 2,21.10° 0,76625.10" 0,33 (0,3945.10" 1336,06 2652,79
€2, Salt 2,23.10° 0,86112.10' 0,33 0,4425.10'" 1408,65 2798,24
L2, Salt 2,20.10° 0,8246.10" 0,33 0,4248.10" 1389.57 2758,62
€2 Salt 1,68.10° 0,4232.10" 0,33 0,2186.10" 140,69 2263.06
19} Salt 22100 | 09247.10" 0,33 0,3974.10" 1344 279569
S d
2, et 2.2.10° 0,75.101 0,3 0,5.10 1507.55 2820,4
Rock
Surround . |
(2, Rock 2,6.10° 0,2607.10" 0,3 0,175.10" 2594 37 4847
L
0 U1 40
124 ; A
Elastic 30 l
8 Elastic
20
4 :
10 L
Non-Elastic | Non-Elastic
: A :
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Figure 7. Amplitude-frequency characteristic of the horizontal ~ Figure 8. Amplitude-frequency characteristic of the vertical

component of the displacement Y+ for the region in
Figure 5. “o
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component of the displacement -ii-f‘_ for the region in
Figure 6 in the elastic case. :



Seismic Wave Propagation in a Multi-Layered Geological Region

Table 3. Geological parameters of the geclogical column N1.

Boundary LLength
AB 3400
BC 1000
CE 2000
EF 1000
Fl 3000
1 400
JK 1000
KL 500
LA 2500
o A
tol 24
20 - \
16 -
12
_..-rE!EEtJC
B o
S PN IR SR PR P e
0 100 200 300 400 500

Figure 9a. Amplitude-frequency characteristic of the horizontal
component of the displacement %-L for the region in
0
Figure 6 in the elastic case.
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Figure 9b. Amplitude-frequency characteristic of the horizontal

component of the displacement — for the region in
Figure 6 in the non-elastic case. \
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Figure 10. Amplitude-frequency characieri;stic of the vertical
component of the displacement ;i— for the region in
Figure 6 in the elastic and non-elastic cases.

to the change of the time-harmonic wave picture. The
amplitude-frequency characteristics of the surface
responses are computed for real geological situations and
different wave fields are obtained. These results show that
the changes in the soil region lead to the change in 1ts
dynamic response, i.e. to the change in the obtained
theoretical amplitude-frequency characteristics. All this
assures us that the exploitation process leads to the
changes in the geological situation of the region, and
respectively to the changes of the soil response during
eventual earthquake. Part of these results 1s reported on
the Post-SMiRT 14 International Seminar, Pisa, Italy [12].
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Appendix

The function UL-(x,y,xﬂ,yﬂ,m) 1s the fundamental
solution of the system (15) in Part I and the function
! ,:,(x V,X0, Yo, ®) is the corresponding traction

U;j(xp - x4, yF -yq,ﬂ)) [qlﬁkj Xrir ]

{(ﬁ L](‘Sk;an""ﬂ”) 2%(?&@ Zrkrl,{z:)}

bt 0840 0 OF [ TP ox _X
2::{23;» £ 5 [Vz 2}[6:- or rj’if”*}

where (rp, yp) and (1”,}:"") are the field point and the

running point respectively

f'J r

*rq 0+r1q U,.ﬂ = —I(®

..-"

sr) Vi s
- L1 Y A L
X KZ(P;] % "Z[V]

1 sr) Vo r | Sr] #1 Sr |
w=~K(—)-—LK +—K(, +—L K| 3L
2|: 2 I"; Vp Z[V J} 2 0 I’s V; 0 ‘[/p

The function K, (z) = —%a‘n(z‘)’"HE’(fz) for z=-12 or
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1)

z==3 1s represented with the modified Bessel ( _)m | Eﬁi T ﬂ‘i . By
functions of second type. P = 2nr Ve 1 _6’4 - (1 . Vﬁ)m ?:j_ on BB}
Th.e asymptotic representations of the functions Uy; and where
Py forr -0 are
i 2 2
(v3)" ~ AL *
and
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