Prediction of Aftershocks Distribution Using Self-Organizing Feature Maps (SOFM) and Its Application on the Birjand-Ghaen and Izmit Earthquakes

Mostafa Allamehzadeh ${ }^{1}$ and Mohammad Mokhtari ${ }^{2}$
1. Research Assistant, Department of Seismology, International Institute of Earthquake Engineering and Seismology (IIEES), Tehran, I.R. Iran, email: mallam@iiees.ac.ir
2. Assisstant Professor, Department of Seismology, International Institute of Earthquake Engineering and Seismology (IIEES), Tehran, I.R. Iran, email: mokhtari@iiees.ac.ir

Abstract

Self-Organizing Feature Maps (SOFM) have become powerful intelligent tools in recent years, used widely in pattern recognition and data clustering [5]. This paper has shown that SOFM can be used to predict the concentration and the trend of aftershocks of 1997 Birjand-Ghaen, Iran and 1999 Izmit, Turkey earthquakes. The present experiments using SOFM confirmed the algorithm could be applied for the prediction of local distribution of aftershock region.

Keywords: Self-Organizing Feature Maps; Aftershocks; Prediction; Clustering; Concentration

1. Introduction

Aftershocks are most common immediately after the main shocks. Their average number of occurrences decreases rapidly as time passes, which depends on the geological conditions and the magnitude. The number of aftershocks per day is usually given by the modified Omori formula [8]. Omori [9] studied aftershocks in Japan and developed an empirical formula for the aftershock activity.

The principal properties of the aftershock sequences are described empirically as $[8,13]$

$$
\begin{equation*}
R(t)=\frac{k}{(t+c)^{p}} \tag{1}
\end{equation*}
$$

where $R(t)$ is the rate the occurrence of aftershocks and k, c, and p are constants. Of these three parameters, p is the most important. It measures the exponential decay rate of aftershocks. A larger p represents a faster decay. The aftershock distribution shows the rupture of the main shock, which is an important issue for estimating the risk of future disastrous earthquakes.

In general, the larger the main shock, the longer its aftershocks will be felt. Aftershocks tend to occur near
the main shock, but the exact geographic pattern of the aftershocks varies from earthquake to earthquake. Statistically, aftershocks are not mutually independent in space. In the weeks and months after a strong earthquake, there will be many aftershocks, some strong enough to cause additional damage to structures already weakened due to the main shock.

In the present paper by application of Kohonen's unsupervised Self-Organizing Feature Maps, the possible prediction of the location of aftershock distribution will be described. The SOFM algorithms has been tested on the May 10, 1997 Birjand-Ghaen earthquake, and its stability is also examed on aftershocks August 17, 1999 Izmit earthquake.

2. Self-Organizing Feature Mapping Algorithm

2.1. Principle of the Learning Algorithm

The theory of Self-Organizing Feature Maps is fairly well understood and demonstrated $[1,2]$ and a number of applications of feature maps have also been developed. In the neural network community, the term Self-Organization refers to the ability of some
networks to learn without being given the correct answer for an input pattern. Since there is no desired output given during the learning, the Self-Organizing Feature Mapping (SOFM) algorithm [6] is an unsupervised-learning process. The SOFM defines a mapping from the input data space on to an output layer by the processing units of e.g. 2-D laminar network become sensitive to the specific items of the input space in a topological order of the input items. Kohonen's algorithm creates a vector quantizer by adjusting weights from common input nodes to M output nodes arranged in a two dimensional grid as shown in Figure (1).

Figure 1. Two-dimensional array of output nodes used to form feature maps.

Output nodes are extensively interconnected with many local connections. Weights between input and output nodes are initially set to small random values and an input is presented. The distance between the input and all nodes is computed using
$d_{j}=\sum_{j=0}^{N=1}\left(x_{j}(t)-w_{i j}(t)\right)^{2}$
where d is distance between the input and each output node j at time t and $w_{i j}$ is the weight from input node i to output node j at time t. If output node be substituted with minimum distance, then the new updated weighing becomes
$w_{i j}(t+1)=w_{i j}(t)+\eta(t)\left(x_{i}(t)-w_{i j}(t)\right)$
where $\eta(t)$ is a gain term value $0 \leq \eta \leq 1$ that decreases with time.

The Kohonen layer neurodes, on the other hand, receives not only the entire input pattern into the network, but also numerous inputs from the other neurodes within the layer. Building the Kohonen layer, two steps should be considered. First, to make sure that the weight vectors of the neurodes in the layer are properly initialized. Generally, this means that the
weight vectors point in random directions around the unit circle. Second, the weight vectors and input vectors should be normalized before its use to a constant, fixed length usually one. These two steps are vital to the success of the Kohonen network. Only two-dimensional inputs with the weight vectors to unit length have been used. Each neurode in the Kohonen layer receives the input pattern and computes the scaler product of its weight vector with that input vector, in other words, the relative distance between its weight vector and the input vector. Each neurode has computed how close its weight vector is to the input vector. The neurodes then compete for the privilege of learning. In essence, the neurode with the largest scaler product is declared the winner in the competition. This neurode is the only neurode that will generate an output signal; all others generate 0 . This is a completely new approach to learning before all of the neurodes in the network adjusted their weights on each training iteration. In general, these neurodes are those physically closest to the winning neurode. In a grid like array of neurodes, this neighborhood might comprise the neurodes that are one row or one column away from the winner.

During training, after enough input vectors, weights will specify cluster or vector centers that sample the input space [4]. Therefore the point density function of the vector centers tends to approximate probability density function of the input vectors. An optimal mapping would be the one that matches the probability density function best; i.e., to preserve at least the local structures of the probability function.

In contrast to the most of the other neural models, the "Self-Organizing Map" is concerned with the interaction between "microscopic" local adaptations and the "macroscopic" spatial structure or "topology" of the network. For practical applications, this provides an effective means to match the adaptation behavior of the network for a different region [3, 7].

2.2. Study of the Training Phase

For training the neural network, all of the input vectors are presented, one at a time, to the network. Each input vector is compared to every weight vector associated with every neuron, i.e. the Euclidean distance is computed. The one feature map neuron having the weight vector with the smallest difference to the current input is the winning neuron. The weight of this winning neuron is now updated in the direction of the input vector. This means, if this input
vector is presented to the network for a second time, this neuron is very likely to be the winner again, and thus represent the class (or cluster) for this particular input vector. Clearly, similar input vectors will be associated with the winning neurons that are close together on the map.

The Kohonen network, models the probability distribution function of the input vectors used during training, with many weight vectors clustering in portions of the hypersphere that have relatively many inputs, and few weight vectors in portions of the hypersphere that have relatively few inputs. The Kohonen networks perform this statistical modeling, even in the cases where no closed-form analytic expression can describe the distribution. The Kohonen network can achieve this modeling spontaneously, with no outside tutor. The basic SOFM learning algorithm is to:

1. Choose initial values randomly for all reference vectors.
2. Repeat steps (3), (4), and (5) for discrete time.
3. Perform steps (4) and (5) for each input feature vector.
4. Find the best matching node according to (1).
5. Adjust the feature vectors of all the nodes for each node of the output layer according to

$$
\begin{equation*}
w_{i j}(t+1)=w_{i j}(t)+\eta(t)\left(x_{i}(t)-w_{i j}(t)\right) . \tag{4}
\end{equation*}
$$

Repeat this procedure until convergence, e.g. until the error between the input data and the corresponding neuron representing their class falls below a certain threshold. The vector position maps have been used (latitude and longitude) and arranged as a neat assembly of rows and columns, see Figures $(2-1 \mathrm{a})$ to $(2-1 \mathrm{e})$. In the simulation, 9 rows and 9 columns were used. Then the weight vectors were randomized and a special plot of their positions has been drawn. This plot will have a scaler corresponding to each neurode's weight vector, and a line will be drawn linking the scalers of neurodes that are neighbors in the matrix (only one row or one column away). When we begin to weight, vectors literally organize themselves so this plot maps the distribution function of the input pattern data. Figures (2-2a) to (2-2e) show the vector position map after the end of the training phase for prediction of concentration. The SOFM has very interesting properties for time series modeling. If the input pattern is allowed to be in any unusual pattern or distribution, the Kohonen network will always generate a map of that distribution. These plots look a
little like a topological map of a hilly region. Where many input vectors are clustered, the grid is similarly bunched and crowded. Where only a few input vectors are clustered, the grid is much sparser. In this work, input sample space is latitude and longitude and the discrete output space respectively are $9 * 9$ neurons that receive input from the previous layer and generate output to the next layer or outside world. When the network converges to its final stable state following a successful learning process, it displays three major properties:

1. The SOFM map is a good approximation to the input sample space. This property is important since it provide a concentration of representation of the given input space.
2. The feature map naturally forms a topologically ordered output space such that the spatial location of a neuron in the lattice corresponds to a particular domain in input space.
3. The feature map embodies a statistical law. In other words, the input with more frequent occurrence occupies a larger output domain of the output space. This property helps to make the $S O F M$ an optimum codebook of the given input space.
The straightforward way to take advantage of the above properties for prediction is to create a SOFM from the input vector, since such a feature map provides a faithful topologically organized output of the input vectors.

3. Prediction of Aftershock Distribution Using SOFM

In this section, the $S O F M$ will be tested on two recent earthquakes.

3.1. The 1997 Birjand-Ghaen Earthquake

On 10 May 1997, a large earthquake ($33.7 N, 59.7 E$, $h=27 \mathrm{~km}, M s=7.1$) occurred in the northeastern part of Iran. The epicenter of the Birjand-Ghaen earthquake is situated in the north of the Sistan collision zone, which separates the central Iranian block on the west from the Afghanistan block on the east. The rupture zone extends 110 km ; striking NNW-SSE, with a dominant strike slip and a minor reverse slip component. In this part, the SOFM is tested for prediction of concentration of these aftershocks. In order to monitor the aftershock occurrence and the faulting mechanism, International Institute of Earthquake Engineering and Seismology (IIEES) had deployed a temporary seismic network of 5 stations in this area for a period of six weeks.

(a)

(b)

(c)

Figure 2. Summary of the actual event (Left) and simulation by self-organizing maps (Right) for the 1997, Birjand-Ghaen earthquake.

(d)

(e)

Figure 2. Continued ...

Figure (2-1a) shows the epicenter map of aftershocks ($M l \geq 2.5$) recorded during this period [14]. We found a clear tendency that aftershocks occur in clusters, which implies strong heterogeneity in both the rupture process and the medium along the fault zone.

The input vector are latitude and longitude of events recorded at IIEES stations.

For the first test of the performance of the SOFM, a small subset of these data were applied. Figure (2-1e) shows the latitude and longitude of first input data. Figure (2-2e), SOFM provides a topologically organized output of the input vectors and predicted four clusters of aftershocks or distribution of earthquake swarms. One of these clusters near 33.5 N , $50 E$ predicted the center of concentration of aftershocks which is correct Identification and three
clusters are Mis-Identification.
For the second and third test of the performance, a larger subset of these data were applied. Figures (2-1c) and (2-1d) show the input vectors (latitude, longitude) of first input data. As shown in Figures (2-2c) and (2-2d), SOFM predicted the center of concentration of aftershocks at $33.5 \mathrm{~N}, 60 \mathrm{E}$, without Mis-Identification.

For the fourth test of the performance, a larger subset than previous data sets were applied. As shown in Figure (2-2b), in addition to prediction of the concentration, the proposed approach can be used for identifying the activation region growing which will occur in future shown in Figure (2-1a). The results will be shown in Figure (2-1a) and Table (1).

Table 1. Performance of the clustering by SOFM.

Sample	Correct Prediction of Concentration	Mis-Identification
First (Small)	1	3
Second (Large)	1	0
Third (Larger)	1	0
Fourth (Larger than Previous)	Predict Activation of Region Growing	0

The input data in this analysis belong to some days of recording, see Figures (2-1a) to (2-1e).

The results of application of $S O F M$ indicate that the proposed approach can be used for clustering of aftershocks and activation region growing [15], (Figures (2-2a) and (2-2b)), boundary detection area and obtaining an initial segmentation. The growing cell structure is another derivative of SOFM for prediction of the trend of aftershocks.

Figures (2-2a) to (2-2e) resemble a topographic map of input patterns and form highly-activated regions in response to input pattern. In the figures, the neurons moved closer to each other and predicted the center of concentration of aftershocks or earthquake swarms. SOFM reflects statistical variation in the aftershocks region, patterns with a high probability of occurrence are mapped on to a shrinked area and higher patterns have better resolution than patterns that have low probability of occurrence. There is a close resemblance between the actual and predicted events. The concentration of these events, both on recorded and predicted events are shown in the above-mentioned figures. The procedure of the application of this methodology is discussed.

For example, Table (2) shows the input vectors

Table 2. Input data (Birjand-Ghaen).

Time	Latitude	Longitude	Magnitude
$16: 26: 57.3$	33.1100 N	59.9940 E	4.2
$06: 11: 57.4$	33.8940 N	59.5601 E	4.1
$11: 42: 21.5$	33.4430 N	59.7886 E	4.3
$18: 02: 50.4$	33.5786 N	59.7836 E	3.3
$14: 14: 16.9$	33.3943 N	59.8476 E	4.5
$12: 48: 22.8$	33.0380 N	59.7836 E	4.3
$17: 19: 17.6$	33.2030 N	60.2683 E	3.1
$18: 08: 49.7$	33.2995 N	60.2200 E	3.1
$18: 59: 05.5$	33.5000 N	59.9166 E	2.8
$21: 07: 37.1$	33.4950 N	59.9183 E	2.7
$21: 11: 00.3$	33.2000 N	60.2950 E	3.1

(latitude and longitude) for Kohonen's Self-Organizing networks and Appendix (II) shows the aftershocks data used in this study.

After several hundreds of iterations, the map of 9*9 output neurons has organized itself. The goal of training a self-organizing map is to separate the input data into several distinct clusters, which can be - in the $2 D$ case- visualized on the 2-dimensional map. Neurons in a $2-D$ layer learn to represent different regions of the input space where input vectors occur. In addition, neighboring neurons learn to respond to similar inputs, thus the layer learns the topology of the presented input space.

After enough input vectors have been presented, in Figures (2-2a) to (2-2e) weights will specify cluster or vector centers that sample the input space such as the probability density function of the input vectors. In addition, the weights will be organized such that topologically close nodes are sensitive to inputs that are physically similar. As an example based on the above discussion, Figures (2-1a) to (2-1d) show the concentration and clustering of aftershocks, wrinkled by neurons of the weight vectors on the map. Figure (2-2a) to (2-2d) present the values of the synaptic weight vectors, plotted as dots in the input space, after 800 iterations. The total number of weights in the neural network is 81 . The performance index of learning rate (Ir) was 0.094 with 800/2000 epochs.

3.2. The Aftershock Region of the 1999 Izmit Earthquake

The final example in Figure (3) shows the summary of actual events (aftershocks of the 1999 Izmit earthquake $[10,11,12]$) in left side of each diagram and simulation estimated by self-organizing feature maps in right side of each diagram.

Five recognition experiments were performed and compared together. In first experiments, each one of data sets were recognized by the nearest neighbor neurons. We had five such cases and obtained similar experiments using these data sets.

When these 2-dimensional input vectors (latitude

(a)

(b)

(c)

Figure 3. Summary of the actual event (Left) and simulation estimates by self-organizing feature maps (Right) for the 1999, Izmit earthquake.

(d)

(e)

Figure 3. Continued ...
and longitude) are presented to the system, it organizes itself and the mapping directly resembles the abstract case which shows the prediction of concentration of aftershocks. In this analysis, clustering can be viewed as a mapping by neurons. The neurons specify clusters that sample the input space such that the point density function of the centers of clusters tend to approximate the probability density function of input patterns.

The data of the Izmit earthquake ($M w=7.2$) 1999, were recorded by IZINET (Izmit Network) permanent network and 10 temporary seismic stations were installed for the period of about 2 months [12]. More than 2000 aftershocks were recorded during this period. In this study, the aftershocks data occurred between 17 August and 10 October 1999 were used with magnitude greater than or equal to 2.5 , see Appendix (I). Figure (3-1e) shows the analysis of the
actual recorded hypocentral distributions in this region. For the first and second test of the performance of the SOFM, a small subset of these data were applied. Figures (3-1a) and (3-1b) show the location (latitude, longitude) of first input data.

As shown in Figures (3-2a) and (3-2b), SOFM provide a topologically organized output of input vectors and predicted five clusters of aftershocks. Two of these clusters $39.5 \mathrm{~N}, 28 \mathrm{~W}$ and $40.5 \mathrm{~N}, 28 \mathrm{~W}$ predicted correct Identification (compared with Figure (3-1e) and three clusters are Mis-Identification.

For the third and Fourth test of the performance, a larger subset than previous data sets were applied. In Figures (3-2c) and (3-2d), the predicted location by SOFM are shown, see also Figure (3-1e).

The results are shown in Table (3). Figures (3-1a) to (3-1e) show the concentration and clustering of

Table 3. Performance of the Clustering by SOFM.

Sample	Correct Prediction of Concentration	Mis-Identification
First (Small Set)	2	3
Second (Large Set)	2	3
Third (Larger than Previous)	2	1
Fourth (Larger than Previous)	2	0

Izmit aftershocks. The values of the synaptic weight vectors which wrinkled by neurons on the maps are shown in Figures (3-2a) to (3-2e).

It is found that a large number of aftershocks occurred as clusters are predicted using the present nonlinear system. As can be seen in Figures (3-2c) and (3-2d), the SOFM has shown satisfactory result for prediction of the clusters of aftershock in this local region, see also Figure (3-1e).

In this experiment, algorithm showed that there is a close resemblance between the actual Figure (3-1e) and predicted events in Figures (3-2a) to (3-2e). According to Kohonen, the exact form of the neighborhood is not important. A rectangular neighborhood is supported for ease of implementation. The width and height of the neighborhood are configurable via two parameters. These parameters are decremented at the end of N epochs to create a shrinking neighborhood during learning (Number of Neuron $=8 * 8$ Train SOFM: 810/2000 epochs with $I r=0.00952786$). Our experiments demonstrated the basic effectiveness and adaptability of the SOFM for prediction of aftershocks distribution. Several significant features in the distribution of the aftershocks can be recognized. Aftershocks occurred mainly in four regions during this period and did not occur along the surface rupture, which is predicted by SOFM.

4. Conclusions

Aftershock forecasts assist government, industry, and emergency response teams in deciding when it is safe to demolish, repair, or allow people to use damaged structures. In taking this approach one step further, seismologists are now trying to compute actual probabilistic aftershock hazard maps.

In general, the presented results supports the Kohonen's Self-Organizing Feature Maps (SOFM) methodology for predicting the concentration of aftershocks. This method could also be used to predict concentration of aftershock zone and the trend of aftershocks in future. An additional application of the method could also be used in defining the
overlapping (imprecise boundaries) where there is no clear boundary between the aftershock of two different main events. This discussion of Kohonen learning needs to address the problem of normalization of the weights and input vectors. If the network is needed to predict the clusters, the normalization procedures need to be followed. Proper initialization of the weight vectors is another problem in applying Kohonen networks. Kohonen networks work best when the input vector distribution is closed, therefore, this program functions best for local region.

There are number of advantages to the presented SOFM method. First, SOFM reflects statistical variation in the aftershocks region; patterns with a high probability of occurrence are mapped on to a larger area of the SOFM. Higher density patterns have better resolution than patterns that have low probability of occurrence.

As shown in Figures (2-2a) and (2-2b), SOFM stored a large set of input vectors (location of aftershocks) by finding a small set of prototypes (approximations of the region growing) and units with similar features are placed in proximity on the shrinked networks. It is possible for these networks to literally learn continuously. Thus if the statistical distribution of the input data changes over time, the Kohonen network can automatically adapt to those changes and continually model the current distribution of the input pattern data. The fact that the Kohonen networks will self-organize into the correct statistical model make them without peer for some applications in seismology. In the future, we can determine a station correction for the inaccuracies of the model structure along the travel path and beneath the station by using this algorithm.

References

1. Kohonen, T. (1981). "Automatic Formation of Topological Maps of Patterns in a Self-Organizing System", Proceedings of the $2^{\text {nd }}$ Scandinavian Conference on Image Analysis, Pattern Recognition Society of Finland.
2. Kohonen, T. (1982). "Self-Organized Formation of Topologically Correct Feature Maps", Biological Cybernetics, 43, 59-69.
3. Tarvainen, M. (1999). "Recognizing Explosion Sites with a Self-Organizing Network for Unsupervized Learning", Physics of the Earth and Planetary Interior, 113, 143-154.
4. Dowla, F.U., Taylor, S.R., and Anderson R.W., (1990). "Seismic Discrimination with Artificial Neural Networks: Preliminary Results with Regional Spectral Data", Bull. Seism. Soc. Am., 80, 1910-1933.
5. Allamehzadeh, M. and Farahbod, A.M. (1999). "Seismic Source Identification Using SelfOrganizing Technique", Proc. of $1^{\text {st }}$ Iran-Japan Workshop, Tehran, Iran.
6. Lippmann, R.P. (1989). "Pattern Classification Using Neural Network", IIEEE Commun. Mag., 27(11), 47-64
7. Fedorenko, Yu.V, Husebye, E.S., Heincke, B., and Ruud, B.-O. (1998). "Recognizing Explosion Sites without Seismogram Readings: Neural Network Analysis of Envelope Transformed Multi-Station SP Recordings 3-6 HZ", Geophys. J. Int., 133, F1-F6.
8. Utsu, T. and Seki, A. (1954). "A Relation Between
the Area of Aftershock Region and the Energy of Mainshock", J. Seismol. Soc. Jpn., 7, 233-240.
9. Omori, F. (1894). "On Aftershocks", Repl. Imp. Earthq. Invest. Committee, 2, 103-109.
10. Allen, C.R. (1969). "Active Faulting in Northern Turkey", Contribution Number 1577, Div. Geol. Sci., Calif. Inst. Tech., 32.
11. Ambraseys, N.N. (1970). "Some Characteristic Features of the North Anatolian Fault Zone", Tectonophysics, 9, 143-165.
12. Nakamura, A.A. (2002). "P-Wave Velocity Structure of the Crust and Its Relationship to Occurrence of the 1999 Izmit, Turkey Earthquake and Aftershocks", Bull. Seism. Soc. Am., 92(1), 330-338.
13. Kisslinger, C. and Jones, L. (1991). "Properties of Aftershock Sequence in Southern California", J. Geophys. Res., 96(11), 947-58.
14. Farahbod, A.M., Yamini-Fard, F., and HessamiAzar, Kh.T. (1998). "A Review of Ardekul Earthquake and Its Aftershocks", IIEES Publication, No. 77-98-4.
15. Fritzke, B. (1994). "Growing Cell Structures-H Self-Organizing Network for Unsupervized and Supervized Learning, Neural Network", 7, 11411160.

Appendix I. Aftershocks data of 17 August 1999 of Izmit earthquake in Turkey used in this study.

Date (DD. MM.YY)	Local Time Hour, Min., Sec.)	Lat. (N)	Long. (W)	Dep. (Km)	Mag. (MD)
$17 / 08 / 99$	$18: 06: 26.6$	34.70	32.87	37.0	5.0
$17 / 08 / 99$	$18: 06: 26.7$	34.71	32.87	37.0	5.0
$18 / 08 / 99$	$18: 50: 12.0$	40.23	31.08	31.9	4.0
$21 / 08 / 99$	$21: 41: 55.8$	39.00	39.99	18.7	3.9
$22 / 08 / 99$	$14: 12: 56.4$	39.14	40.10	10.6	4.3
$22 / 08 / 99$	$15: 18: 11.4$	39.11	40.24	14.1	3.9
$22 / 08 / 99$	$20: 40: 01.2$	39.29	26.49	1.0	3.5
$23 / 08 / 99$	$22: 46: 32.0$	39.22	40.13	1.0	3.7
$23 / 08 / 99$	$23: 01: 58.3$	40.57	28.10	14.7	3.4
$24 / 08 / 99$	$10: 41: 02.4$	39.85	26.16	8.9	3.2
$24 / 08 / 99$	$20: 33: 15.1$	39.61	32.62	8.7	4.7
$25 / 08 / 99$	$20: 46: 10.8$	36.48	31.76	31.0	3.8
$26 / 08 / 99$	$08: 37: 57.5$	37.97	30.80	5.4	4.0
$26 / 08 / 99$	$09: 35: 57.2$	38.12	30.58	9.3	3.8
$27 / 08 / 99$	$11: 44: 55.8$	40.33	30.94	12.9	3.3
$28 / 08 / 99$	$16: 50: 50.4$	39.99	39.39	13.7	3.5
$28 / 08 / 99$	$23: 16: 29.5$	35.20	30.62	31.4	4.5
$29 / 08 / 99$	$0: 03: 02.2$	39.37	29.22	10.0	3.2
$29 / 08 / 99$	$04: 15: 14.5$	40.19	28.92	10.0	3.1
$30 / 08 / 99$	$02: 24: 14.9$	39.53	27.78	13.9	3.5
$30 / 08 / 99$	$09: 51: 15.7$	39.31	32.40	2.1	4.1

Date (DD. MM.YY)	Local Time Hour, Min., Sec.)	Lat. (N)	Long. (W)	Dep. (Km)	Mag. (MD)
$31 / 08 / 99$	$09: 50: 14.0$	41.08	29.09	19.4	2.9
$31 / 08 / 99$	$10: 38: 59.5$	40.58	26.92	3.3	3.3
$31 / 08 / 99$	$23: 36: 32.3$	40.69	27.47	1.0	3.0
$01 / 09 / 99$	$03: 59: 46.8$	40.04	39.31	5.6	3.3
$01 / 09 / 99$	$14: 56: 48.0$	41.00	34.38	5.0	3.2
$02 / 09 / 99$	$11: 11: 34.8$	39.56	27.77	16.5	3.3
$03 / 09 / 99$	$10: 04: 43.4$	40.02	29.22	12.1	3.0
$03 / 09 / 99$	$13: 00: 06.7$	38.42	26.66	11.5	3.6
$04 / 09 / 99$	$06: 40: 54.8$	39.40	29.18	16.0	3.3
$04 / 09 / 99$	$22: 55: 53.9$	38.94	27.04	5.5	3.6
$05 / 09 / 99$	$00: 47: 19.4$	38.05	30.76	1.0	3.8
$05 / 09 / 99$	$09: 57: 09.7$	38.49	27.86	81.5	2.9
$05 / 09 / 99$	$11: 32: 01.1$	39.04	40.28	5.4	3.6
$07 / 09 / 99$	$12: 59: 23.5$	40.30	27.48	8.8	3.0
$08 / 09 / 99$	$12: 45: 46.5$	40.63	36.01	3.9	3.4
$08 / 09 / 99$	$15: 20: 46.1$	40.73	33.14	5.0	3.7
$09 / 09 / 99$	$11: 12: 02.7$	40.36	26.08	33.4	4.5
$09 / 09 / 99$	$11: 15: 35.4$	40.39	25.66	18.4	4.9
$09 / 09 / 99$	$16: 04: 46.6$	38.42	28.16	5.4	3.0
$09 / 09 / 99$	$22: 26: 48.7$	39.27	27.98	12.3	3.1
$10 / 09 / 99$	$09: 00: 10.3$	39.36	27.73	1.1	3.1

Appendix I. Continued ...

Date (DD. MM.YY)	Local Time (Hour, Min., Sec.)	Lat. (N)	Long. (W)	Dep. (Km)	Mag. (MD)
10/09/99	16:24:26.7	39.81	30.73	13.4	3.0
10/09/99	18:26:52.1	39.32	27.89	9.0	3.6
10/09/99	20:08:04.1	37.02	27.39	1.0	3.5
11/09/99	02:57:25.1	39.52	27.92	9.3	3.5
11/09/99	15:39:8.0	37.68	28.74	5.0	2.9
13/09/99	16:18:35.4	39.29	27.86	9.4	3.0
13/09/99	18:59:02.0	39.16	29.32	6.8	3.0
13/09/99	21:07:01.4	38.35	28.15	6.9	3.1
13/09/99	07:19:44.2	37.12	27.63	1.0	3.0
14/09/99	12:55:05.2	39.47	39.53	1.0	3.7
14/09/99	21:55:35.6	38.70	27.44	5.0	3.0
15/09/99	09:12:53.4	39.33	27.89	5.1	3.0
15/09/99	12:07:22.2	38.26	29.67	1.0	3.2
16/09/99	08:03:41.1	39.24	27.74	7.7	3.1
16/09/99	08:39:33.8	39.24	27.78	10.5	3.5
16/09/99	11:20:11.2	39.32	27.96	5.6	3.4
16/09/99	12:25:20.7	39.03	26.53	1.0	3.7
16/09/99	16:10:15.3	39.29	27.90	5.5	3.1
17/09/99	0:51:27.4	39.43	38.57	9.7	3.6
17/09/99	12:19:14.2	39.95	26.74	1.0	3.3
19/09/99	18:50:36.5	38.84	27.86	26.9	3.5
19/09/99	19:11:53.2	37.18	29.07	5.0	3.5
19/09/99	21:36:33.4	39.02	27.64	5.0	3.1
19/09/99	22:39:01.2	38.51	27.32	5.0	3.1
20/09/99	08:01:10.7	36.12	31.36	26.8	3.6
20/09/99	19:07:44.2	39.31	27.87	12.4	3.7
20/09/99	21:44:34.0	39.40	39.77	9.9	3.6
20/09/99	23:36:39.0	40.70	27.57	7.0	3.5
21/09/99	00:28:00.0	40.69	27.58	16.4	5.0
21/09/99	00:44:31.8	40.70	27.59	7.8	3.7
21/09/99	01:16:40.6	40.71	27.59	5.9	3.2
21/09/99	02:40:08.1	40.72	27.60	7.2	3.4
21/09/99	04:09:15.8	40.71	27.56	15.8	3.5
21/09/99	07:34:33.2	40.70	27.57	6.3	2.8
21/09/99	08:33:50.7	39.32	27.80	10.4	3.0
21/09/99	09:10:07.9	39.35	27.85	26.7	3.2
21/09/99	112056.2	39.52	29.11	5.0	2.7
21/09/99	13:12:58.3	39.39	29.10	8.2	2.8
21/09/99	15:46:20.3	40.70	27.57	7.5	3.3
21/09/99	16:54:12.6	37.26	28.52	6.7	3.3
21/09/99	17:02:41.0	40.71	27.57	6.8	2.7
21/09/99	19:10:46.4	40.68	27.55	11.0	2.5
21/09/99	17:14:02.1	40.71	27.57	6.2	2.9
21/09/99	19:47:23.0	40.86	27.96	10.9	2.8
21/09/99	23:34:12.0	40.72	27.59	6.9	3.1
22/09/99	10:42:37.2	39.29	27.89	5.1	2.9
22/09/99	11:29:18.5	40.67	27.61	3.6	2.8
22/09/99	15:28:13.0	40.72	27.57	5.4	2.8
22/09/99	2:33:33.2	39.63	29.01	8.8	3.1
23/09/99	02:02:18.5	40.62	27.82	9.0	3.2
23/09/99	10:37:47.5	38.06	36.83	10.0	3.3
23/09/99	12:54:42.7	38.46	26.63	13.4	3.6
23/09/99	17:58:28.3	38.37	28.18	11.6	3.2
24/09/99	11:13:07.3	39.60	29.81	12.0	2.7
24/09/99	13:01:46.5	40.75	27.54	5.5	2.5
24/09/99	21:28:18.5	40.74	27.54	6.3	3.1

Date (DD. MM.YY)	Local Time (Hour, Min., Sec.)	Lat. (N)	Long. (W)	Dep. (Km)	Mag. (MD)
24/09/99	22:08:04.7	37.51	38.53	16.2	4.5
25/09/99	01:59:26.9	37.42	36.22	5.0	3.8
25/09/99	23:17:48.1	38.62	39.13	28.0	3.5
26/09/99	00:10:22.1	37.69	27.28	13.4	3.6
26/09/99	10:19:32.5	39.04	29.91	5.0	3.2
26/09/99	09:38:38.7	39.02	27.92	9.0	4.1
26/09/99	10:46:39.5	39.09	27.83	1.0	2.9
26/09/99	22:18:01.0	39.84	39.36	1.3	3.4
26/09/99	23:15:19.0	38.99	27.91	5.0	2.9
27/09/99	00:05:25.4	39.20	27.48	5.0	3.0
27/09/99	00:31:37.1	39.45	29.10	11.1	2.7
27/09/99	04:30:42.3	39.19	27.29	5.5	2.9
27/09/99	05:30:31.0	39.17	26.95	6.6	2.9
27/09/99	06:45:31.0	39.15	26.97	5.4	3.0
27/09/99	07:02:02.5	39.12	26.90	19.5	3.5
27/09/99	09:19:36.1	39.42	27.94	11.3	2.9
27/09/99	16:21:40.1	40.71	27.56	5.2	3.0
27/09/99	22:58:30.1	37.03	35.53	32.8	3.5
28/09/99	02:47:42.6	39.10	27.19	27.7	3.3
28/09/99	02:56:53.2	39.00	27.78	1.0	3.5
28/09/99	23:31:51.0	40.53	38.80	4.1	3.4
29/09/99	04:37:09.0	39.05	27.81	5.3	3.0
29/09/99	11:21:38.1	39.55	29.61	6.1	2.7
29/09/99	13:54:34.9	39.94	27.80	1.0	2.5
29/09/99	19:46:33.2	39.09	28.83	9.3	3.7
30/09/99	17:08:19.7	39.00	26.42	5.0	3.2
30/09/99	21:39:42.3	38.72	27.47	3.7	3.0
02/10/99	14:28:50.5	40.76	27.51	14.6	3.4
03/10/99	02:31:13.8	40.01	28.09	8.1	2.6
03/10/99	02:18:12.8	38.26	33.10	1.0	3.9
03/10/99	03:16:23.3	39.64	28.79	8.4	2.7
03/10/99	06:55:30.8	39.65	38.14	1.0	3.8
03/10/99	18:48:52.0	36.42	30.59	23.5	3.9
03/10/99	20:56:36.8	39.67	38.19	17.6	3.3
04/10/99	00:43:51.0	40.67	27.51	5.3	2.9
04/10/99	15:52:28.0	41.02	30.32	5.0	3.0
04/10/99	17:19:48.1	39.01	27.96	9.6	3.6
05/10/99	03:53:26.9	36.80	28.14	23.6	5.2
05/10/99	04:04:56.4	36.94	28.07	11.4	4.2
05/10/99	09:59:54.1	40.72	27.60	8.0	2.8
05/10/99	20:20:56.6	37.79	29.16	19.5	3.1
06/10/99	09:59:03.4	40.72	27.60	6.0	3.1
06/10/99	10:28:47.0	39.22	27.78	10.5	2.9
06/10/99	11:40:45.5	39.33	27.72	5.6	2.8
06/10/99	17:05:22.8	40.68	27.56	12.1	2.7
07/10/99	03:55:14.4	40.71	27.59	6.0	3.2
07/10/99	11:27:56.6	39.29	27.65	8.5	2.8
07/10/99	23:52:32.1	39.08	27.74	3.8	3.3
08/10/99	11:20:50.0	39.99	27.90	8.6	3.1
09/10/99	21:30:01.2	38.69	32.17	1.0	3.2
09/10/99	22:02:11.7	40.30	30.83	9.0	2.9
09/10/99	23:40:34.9	39.11	27.81	2.8	2.9
10/10/99	08:11:02.9	39.14	29.42	7.8	2.9
10/10/99	13:20:43.7	39.80	28.08	1.0	2.6
10/10/99	15:35:24.2	40.51	27.74	1.0	2.7

Appendix II. Aftershocks data of 10 May, 1997 Birjand-Ghaen earthquake in Iran used in this study.

Date	Time	Lat.	Long.	Dep.	Mag.
12/5/1997	26:57.3	33.1100 N	59.9940 E	10	4.2
13/5/1997	11:57.4	33.8940 N	59.5601 E	10	4.1
13/5/1997	42:21.5	33.4430 N	59.7886 E	10	4.3
13/5/1997	02:50.4	33.5786 N	59.7836 E	18.3	3.3
14/5/1997	14:16.9	33.3943 N	59.8476 E	10	4.5
15/5/1997	48:22.8	33.0380 N	59.7836 E	10	4.3
15/5/1997	19:17.6	33.2030 N	60.2683 E	14.4	3.1
15/5/1997	08:49.7	33.2995 N	60.2200 E	15.7	3.1
15/5/1997	59:05.5	33.5000 N	59.9166 E	15.1	2.8
15/5/1997	07:34.1	33.4950 N	59.9183 E	15.3	2.7
15/5/1997	11:00.3	33.2000 N	60.2950 E	2	3.1
15/5/1997	53:24.5	33.2493 N	59.9698 E	3	2.3
15/5/1997	03:25.9	33.5433 N	59.9750 E	17.2	2.1
15/5/1997	16:29.1	33.2912 N	59.9422 E	12.3	2
15/5/1997	39:16.0	33.0616 N	59.7833 E	6	3.3
15/5/1997	47:47.6	33.7125 N	59.8570 E	12.1	2.1
15/5/1997	52:01.2	33.2860 N	59.9222 E	6	2.2
15/5/1997	59:20.9	33.6916 N	59.9250 E	6	2.2
15/5/1997	13:42.0	33.3118 N	59.9947 E	15.8	2.3
16/5/1997	07:10.5	33.6516 N	59.8650 E	6	2.5
16/5/1997	11:01.0	33.5658 N	59.8333 E	5.4	2.1
16/5/1997	18:36.8	33.4283 N	60.0316 E	6	2.5
16/5/1997	54:05.9	33.6116 N	59.9833 E	4.5	2.6
16/5/1997	27:40.7	33.9083 N	59.9633 E	23.4	2.1
16/5/1997	50:42.4	33.3000 N	60.1400 E	22.7	3.3
16/5/1997	03:30.2	33.4333 N	59.9650 E	29.1	2.9
16/5/1997	23:23.3	33.2150 N	60.1316 E	25.2	2.4
16/5/1997	12:17.7	33.6066 N	59.8283 E	8.8	3.3
16/5/1997	27:31.5	33.5133 N	59.9866 E	16.5	3.5
16/5/1997	54:33.8	33.8300 N	59.9256E	1.4	3.1
16/5/1997	12:26.7	33.4883 N	59.9783 E	10.3	3.5
16/5/1997	07:14.0	33.4433 N	60.0100 E	10	3.5
16/5/1997	52:49.6	33.4400 N	60.0316 E	0.8	3.6
16/5/1997	00:22.4	33.4250 N	59.9633 E	10.5	3.5
16/5/1997	27:19.9	33.4150 N	59.9733 E	10.9	3.6
16/5/1997	57:29.8	33.7933 N	59.9250 E	10.8	3.7
16/5/1997	38:38.4	33.3583 N	59.9950 E	0.2	3.6
16/5/1997	33:07.6	33.4816 N	60.0100 E	10.9	3.4
16/5/1997	59:55.0	33.1333 N	60.4000 E	29.5	3.8
16/5/1997	31:46.2	33.4918 N	59.9250 E	0.1	3.6
16/5/1997	06:51.1	33.9283 N	59.8233 E	13.8	3.5
16/5/1997	18:02.3	33.5683 N	59.7833 E	18.3	3.4
16/5/1997	29:07.8	33.1983 N	60.2100 E	15.8	3.7
17/5/1997	11:21.6	33.4916 N	59.9816 E	6.1	3.4
17/5/1997	24:59.8	33.4916 N	59.9250 E	10.7	3.5
17/5/1997	59:24.7	33.5050 N	59.9716 E	0.8	3.6
17/5/1997	07:43.6	33.4966 N	59.9533 E	0.2	3.4
17/5/1997	47:01.7	33.5531 N	60.1233 E	10.7	3.8
17/5/1997	33:30.2	33.0833 N	59.9866 E	0.6	3.7
17/5/1997	03:10.4	33.4900 N	59.9650 E	10.8	3.1
17/5/1997	07:30.7	33.5300 N	59.9633 E	0.7	2.9
17/5/1997	09:41.2	33.6090 N	59.9416 E	10.4	3
17/5/1997	45:08.0	33.74 .2 N	59.8950 E	10.2	3.3
17/5/1997	03:36.2	33.6880 N	59.9683 E	0.2	3.1
17/5/1997	45:42.9	33.4045 N	60.0133 E	0.9	3.6
17/5/1997	33:59.4	33.4433 N	59.9966 E	10.2	3.5
17/5/1997	53:24.4	33.3500 N	60.0150 E	1.1	3.7
17/5/1997	59:13.6	33.7850 N	59.8983E	10.9	3.2

Date	Time	Lat.	Long.	Dep.	Mag.
17/5/1997	13:07.5	33.4333 N	60.0583 E	20.3	3.4
17/5/1997	30:44.7	33.9550 N	60.0416 E	0.6	3.5
17/5/1997	45:10.0	33.5066 N	59.9066 E	10	3.3
17/5/1997	15:30.8	33.5266 N	59.9950 E	0.1	2.7
17/5/1997	39:24.3	33.3750 N	59.9983 E	10.3	3.8
17/5/1997	54:56.0	33.3316 N	60.0883 E	16	3.4
17/5/1997	56:28.5	33.3183 N	60.2683 E	10.7	3.7
17/5/1997	40:40.0	33.6916 N	59.9033 E	0.8	3.1
17/5/1997	47:23.1	33.5283 N	59.9800 E	11.8	2.8
18/5/1997	27:16.2	33.5066 N	59.9800 E	0.4	3
18/5/1997	55:01.9	33.4933 N	59.9750 E	1	3.3
18/5/1997	15:58.6	32.9416 N	59.9533 E	19.7	3.6
18/5/1997	35:22.9	33.5016 N	59.9950 E	0.4	2.8
18/5/1997	20:49.8	33.5283 N	59.9683 E	0.1	2.3
18/5/1997	07:28.3	33.4966 N	59.9866 E	0.9	2.8
18/5/1997	36:45.6	33.0516 N	59.8883 E	0.3	3.7
18/5/1997	44:38.1	33.4300 N	59.9683 E	1	2.6
18/5/1997	23:19.6	33.4416 N	59.9800 E	1.2	2.8
18/5/1997	26:58.5	33.8333 N	59.9600 E	10	3
18/5/1997	52:22.6	33.4933 N	59.9783 E	0.5	2.8
18/5/1997	07:38.6	33.6916 N	59.8633 E	0.2	3.6
18/5/1997	08:01.9	33.5233 N	59.9866 E	10.2	2.9
18/5/1997	09:31.9	33.9183 N	59.9850 E	10.9	3.4
18/5/1997	41:19.1	33.6650 N	59.8766 E	10	2.5
18/5/1997	57:55.7	32.9613 N	60.3083 E	10	3.8
18/5/1997	45:01.7	33.6916 N	59.9500 E	0.8	3.1
18/5/1997	19:11.3	33.3366 N	60.0483 E	30.7	3.4
18/5/1997	52:31.5	33.6183 N	59.9766 E	0.9	2.2
18/5/1997	06:05.1	33.5150 N	59.9866 E	10.8	3
18/5/1997	41:15.9	33.5716 N	59.9850 E	8.6	3
18/5/1997	54:35.0	33.4966 N	59.9950 E	10.1	3
18/5/1997	05:24.6	33.4916 N	60.0066 E	11.9	3.5
18/5/1997	48:16.2	33.5416 N	59.9250 E	2	3
19/5/1997	08:24.9	33.8100 N	59.9250 E	13.2	2.7
19/5/1997	29:29.7	33.6916 N	59.8833 E	0.6	3.5
19/5/1997	20:18.7	33.4533 N	59.9883 E	0.2	2.9
19/5/1997	09:49.9	33.3816 N	59.9650 E	0.4	3.1
19/5/1997	08:10.5	33.1600 N	59.8816 E	0.1	3
19/5/1997	44:53.6	33.3716 N	59.9866 E	41.1	3.4
19/5/1997	14:12.9	32.8750 N	59.7833 E	12	3.5
19/5/1997	26:33.5	33.8483 N	60.0100 E	19.6	3.7
19/5/1997	15:45.0	33.8366 N	59.9716 E	11.2	3
19/5/1997	56:01.6	33.5866 N	59.9950 E	0.4	3
19/5/1997	13:23.1	33.3600 N	60.0166 E	14.7	3.3
19/5/1997	42:23.3	33.6916 N	59.9250 E	4.7	2.6
19/5/1997	55:10.5	33.6916 N	59.9250 E	7.2	3
19/5/1997	15:01.2	33.7333 N	59.8866 E	19.7	3.3
19/5/1997	16:01.5	33.9300 N	59.9883 E	21.1	3.4
19/5/1997	42:43.4	33.5000 N	59.9616 E	6.8	3
19/5/1997	57:38.4	33.5233 N	59.9950 E	7.6	3.4
19/5/1997	15:43.6	33.6050 N	59.8200 E	3.6	2.8
19/5/1997	20:48.3	33.7583 N	59.8933 E	19.2	3.1
20/5/1997	04:03.1	33.4666 N	59.9966 E	3.2	3.1
20/5/1997	15:05.5	33.4700 N	59.9866 E	4.1	3.1
20/5/1997	18:08.6	33.6133 N	59.9150 E	8.9	2.5
20/5/1997	24:54.8	33.5116 N	59.9666 E	5.4	2.7
20/5/1997	05:32.7	33.5050 N	60.0000 E	15.1	2.6

Appendix II. Continued ...

Date	Time	Lat.	Long.	Dep.	Mag.
20/5/1997	38:57.9	33.7400 N	60.0916E	6.2	2.9
20/5/1997	01:48.2	33.8150 N	59.8900 E	12.7	3.3
20/5/1997	48:16.2	33.5033 N	59.9833 E	8.9	2.9
21/5/1997	30:03.8	33.6250 N	59.8850 E	9.6	2.7
21/5/1997	41:54.1	33.6416 N	59.9250 E	4	3
21/5/1997	51:43.9	33.6916 N	59.8866E	5.7	2.8
21/5/1997	14:27.4	33.7050 N	60.0166 E	5	3.1
21/5/1997	06:48.0	33.5050 N	59.9583E	8.6	2.7
21/5/1997	21:55.3	33.3133 N	59.9733 E	40.7	3.6
21/5/1997	35:47.1	33.4966 N	59.9783 E	8.8	2.8
21/5/1997	23:51.7	33.6916 N	59.9250 E	13.7	3.3
21/5/1997	04:54.5	33.6616 N	59.9466E	6.3	2.5
21/5/1997	19:41.2	33.6783 N	59.9450 E	5.5	2.9
21/5/1997	15:31.6	33.3066 N	60.0683 E	15.8	3.5
21/5/1997	37:17.1	33.5116 N	59.9650 E	16.4	2.5
21/5/1997	56:50.6	33.3100 N	60.2666E	15.9	3.9
21/5/1997	56:52.4	33.5050 N	59.9866 E	8.6	3
21/5/1997	53:01.7	33.6883 N	60.0233 E	11.8	4
21/5/1997	51:20.4	32.9150 N	59.7833E	15.2	3.7
22/5/1997	01:17.3	33.2900 N	59.9500 E	32.6	3.4
22/5/1997	41:08.7	33.0516 N	59.8883E	46.3	3.8
22/5/1997	44:08.6	33.0766 N	59.7833 E	6.9	3.9
22/5/1997	02:28.1	33.3583 N	60.0700 E	26.3	3.8
22/5/1997	33:36.7	33.3016 N	59.9533E	42	3.6
23/5/1997	24:10.1	33.4283 N	60.0866E	36.7	4
23/5/1997	30:26.0	33.6464 N	59.8750 E	7.1	3.5
23/5/1997	43:22.3	33.4900 N	59.9850 E	8.5	3
23/5/1997	14:03.4	33.5066 N	59.9833 E	16.6	3.2
23/5/1997	08:11.9	33.7750 N	59.9216 E	44.3	3.1
23/5/1997	13:18.5	33.7316 N	59.8800 E	19.6	3.3
23/5/1997	29:21.1	33.8566 N	59.9466 E	21.4	3.1
23/5/1997	58:05.4	33.4816 N	59.9716 E	9.1	3
23/5/1997	38:21.1	33.4800 N	59.9733 E	14.3	3.1
23/5/1997	00:11.2	33.4900 N	59.9750 E	8.9	3.5
23/5/1997	14:32.4	33.2533 N	60.1883 E	19.2	3.7
23/5/1997	45:05.1	33.3650 N	60.0450 E	22.1	3.9
23/5/1997	15:05.9	33.4883 N	59.9783 E	9.4	2.8
23/5/1997	46:29.6	33.2483 N	60.1000 E	13.5	3.6
24/5/1997	15:14.9	33.8600 N	59.9450 E	21.5	3.5
24/5/1997	28:46.1	33.8083 N	60.1366E	10.7	4
24/5/1997	23:48.4	33.5333 N	60.0150 E	7.1	3.1
24/5/1997	39:33.8	33.7133 N	59.9100 E	14.5	2.6
24/5/1997	41:45.1	33.4233 N	59.9733 E	14.7	3.4
24/5/1997	50:09.3	33.8383 N	60.1633 E	14.8	3.5
24/5/1997	19:32.3	33.4300 N	60.0233 E	19.5	2.8
24/5/1997	37:39.2	33.7300 N	60.0716 E	6.3	3
24/5/1997	55:05.8	33.7413 N	59.9256 E	9.7	3.1
24/5/1997	25:18.2	33.6516 N	59.9250 E	5.1	3
24/5/1997	48:26.3	33.6650 N	60.0066E	5.4	2.9
24/5/1997	13:18.5	33.6916 N	59.9000 E	21.7	2.9
24/5/1997	44:25.7	33.5466 N	59.7150 E	22.8	3.3
24/5/1997	24:36.4	33.4250 N	60.0983 E	15.6	3.7
24/5/1997	36:39.8	33.8515 N	59.9256 E	5	3.6
24/5/1997	24:38.4	33.2916 N	60.0350 E	12.9	3.4
24/5/1997	23:16.4	33.3550 N	60.4016 E	23.4	3.8
24/5/1997	52:58.6	32.9716 N	60.3100 E	33	3.9
24/5/1997	25:56.8	33.7300 N	59.8583 E	21.9	2.8
24/5/1997	29:53.8	33.5083 N	59.9600 E	9	3.5

Date	Time	Lat.	Long.	Dep.	Mag.
24/5/1997	28:06.7	33.5400 N	59.9650 E	8.3	2.9
24/5/1997	33:42.5	33.3150 N	60.2816 E	14.8	3.6
25/5/1997	44:44.2	33.6917 N	60.0307 E	3.1	3
25/5/1997	33:37.0	33.3097 N	59.9630 E	30.4	3.7
25/5/1997	24:00.2	33.3652 N	59.9617 E	23.7	3.2
25/5/1997	58:37.5	33.4865 N	59.9787 E	10.2	3.1
25/5/1997	13:23.4	33.3480 N	59.9740 E	10.5	3.5
25/5/1997	45:31.9	33.4668 N	59.9458 E	16	2.8
25/5/1997	58:51.7	33.3788 N	59.9256 E	0.1	3.3
25/5/1997	07:43.1	33.2412 N	60.1975 E	17.4	4.2
25/5/1997	11:10.0	33.6617 N	60.0490 E	2.9	2.5
25/5/1997	46:52.2	32.7668 N	60.0395 E	15.2	3.1
25/5/1997	57:56.9	33.6358 N	59.8857E	10	3
25/5/1997	16:24.1	33.4693 N	59.9855 E	13.2	3.2
25/5/1997	29:37.6	33.6936 N	59.8436E	21.4	3.5
25/5/1997	56:01.8	33.6917 N	59.8955 E	8.6	3.1
26/5/1997	06:23.2	33.3552 N	59.9422 E	19.1	3.4
26/5/1997	43:20.9	33.3542 N	60.1543 E	28.3	3.7
26/5/1997	54:23.4	33.5140 N	59.9732 E	9.5	2.9
26/5/1997	16:58.5	33.8575 N	59.8903 E	5.8	2.8
26/5/1997	36:23.3	33.4176 N	59.9853 E	10	3.5
26/5/1997	49:05.6	33.4335 N	60.0258 E	20.1	3
26/5/1997	59:09.9	33.6612 N	59.9257 E	8.6	3.1
26/5/1997	16:46.7	33.4880 N	59.9777 E	9.6	3.2
26/5/1997	25:46.8	33.5740 N	60.0395 E	6.7	3.2
26/5/1997	00:24.8	33.6917 N	59.8910 E	9.8	2.7
26/5/1997	48:07.1	33.6517 N	59.8308 E	10	3.9
26/5/1997	50:11.7	33.4330 N	60.0047 E	18.5	3.2
26/5/1997	24:29.7	33.0588 N	60.0662 E	26.3	3.9
26/5/1997	24:24.4	33.4670 N	59.9917 E	12.8	3.4
26/5/1997	57:25.0	33.3487 N	60.0912 E	23	3.9
26/5/1997	16:19.9	33.7846 N	59.9298 E	17.2	3.4
26/5/1997	28:42.5	33.2745 N	60.0063 E	25.3	3.3
26/5/1997	47:02.9	33.6022 N	59.9257 E	2.3	3.1
27/5/1997	37:33.9	33.4977 N	59.9843 E	13.3	3
27/5/1997	01:55.1	33.5117 N	59.9665 E	8.5	2.9
27/5/1997	02:51.0	33.4885 N	59.9635E	14.1	2.5
27/5/1997	10:22.7	33.4928 N	59.9768 E	9.8	2.8
27/5/1997	45:28.2	33.4527 N	59.8202 E	12.6	2.7
27/5/1997	07:46.2	33.2855 N	59.9515 E	28.9	3.4
27/5/1997	06:19.0	33.4918 N	59.9987 E	14.6	3.5
27/5/1997	37:07.1	33.2000 N	60.0890 E	23.5	4
27/5/1997	25:23.2	33.7310 N	59.8737 E	5.1	3.2
27/5/1997	55:49.2	33.2420 N	60.0705 E	22.6	3.9
27/5/1997	19:44.7	33.5242 N	59.9815 E	8.9	3.3
27/5/1997	24:28.8	33.6088 N	59.9282 E	4.8	2.6
27/5/1997	45:37.9	33.8133 N	59.9257 E	14.9	3.4
27/5/1997	54:34.9	33.2280 N	60.0763 E	18.9	3.7
28/5/1997	04:59.2	33.5237 N	60.0025 E	11.8	3.1
28/5/1997	45:42.4	33.5682 N	59.9752 E	3.9	2.8
28/5/1997	15:10.5	33.3722 N	60.0408 E	19.7	3.5
28/5/1997	10:00.0	33.7418 N	59.8925 E	16.4	3.3
28/5/1997	30:14.7	33.4813 N	59.9670 E	14.7	3.1
28/5/1997	57:18.4	33.4237 N	59.9947 E	7.5	3.7
29/5/1997	39:15.5	33.2553 N	60.1322 E	22.1	3.6
29/5/1997	16:48.2	33.4250 N	59.9963 E	15.2	3.1
29/5/1997	47:43.9	33.3010 N	59.8220 E	10	3.1
29/5/1997	53:25.3	33.5668 N	60.0230 E	10.9	2.6

Appendix II. Continued ...

Date	Time	Lat.	Long.	Dep.	Mag.
29/5/1997	15:23.6	33.7675 N	59.9180 E	26.5	3.4
29/5/1997	48:56.4	32.9547 N	60.0212 E	32	3.9
30/5/1997	11:22.0	32.9908 N	60.0098 E	35.6	3.9
30/5/1997	36:51.6	33.7510 N	59.8920 E	7.6	3.4
30/5/1997	24:03.2	32.9775 N	59.8867 E	53.2	3.7
30/5/1997	29:43.1	33.4176 N	60.0440 E	10	3.5
30/5/1997	49:59.3	33.3168 N	60.0315 E	29	3.5
30/5/1997	22:54.1	33.3718 N	60.0442 E	20.9	3.8
30/5/1997	48:37.9	33.5090 N	59.9978 E	6.8	2.7
30/5/1997	00:39.7	33.2788 N	60.1407 E	21.2	3.3
30/5/1997	09:47.7	33.4925 N	59.9647 E	8.4	3.3
30/5/1997	23:17.5	32.8287 N	59.9745 E	25.6	4.3
30/5/1997	42:10.7	33.5255 N	59.9353 E	14.7	2.4
30/5/1997	44:08.7	33.6267 N	59.8970 E	10	2.6
30/5/1997	07:44.4	33.6698 N	60.0655 E	1.7	2.9
30/5/1997	27:43.9	33.4533 N	60.0243 E	12.6	3.2
30/5/1997	43:08.5	33.5338 N	59.9888 E	11.7	2.8
30/5/1997	10:25.4	33.0540 N	59.9998 E	11	2.6
30/5/1997	23:20.4	33.4908 N	59.9695 E	15.4	3.2
31/5/1997	28:16.0	33.2073 N	59.6070 E	43.5	3.7
31/5/1997	53:30.4	33.4176 N	59.7836 E	10	3.8
1/6/1997	50:28.2	33.7513 N	59.6006E	0.1	3.6
1/6/1997	36:55.7	33.6500 N	59.8770 E	7.1	2.6
1/6/1997	31:31.3	33.3318 N	59.9590 E	27.7	3.3
1/6/1997	35:32.2	33.5040 N	59.9712 E	13.5	3.2
1/6/1997	16:36.3	33.5035 N	59.9773 E	6.6	2.9
1/6/1997	38:51.4	33.4953 N	59.9515 E	9.7	3
6/1/1997	01:52.0	33.7232 N	59.8808 E	18.3	3.2
2/6/1997	01:38.7	33.7238 N	59.8898 E	16.4	3.4
2/6/1997	17:16.1	33.7738 N	59.9068 E	27.2	3
2/6/1997	53:12.9	33.1050 N	60.1867 E	26.5	3.7
2/6/1997	16:02.1	33.4112 N	59.9948 E	19.7	3.5
3/6/1997	26:49.2	33.6917 N	59.8570 E	10	2.8
3/6/1997	35:16.0	33.5328 N	59.9745 E	11.8	2.9
3/6/1997	30:25.4	33.4242 N	60.0275 E	18.8	3.4
3/6/1997	38:46.7	33.4945 N	59.9817 E	8.9	3.8
3/6/1997	32:43.7	33.4176 N	59.9881 E	0.2	3.9
3/6/1997	19:56.3	33.2297 N	60.0585 E	26.7	3.1
4/6/1997	31:44.2	33.4958 N	59.9528 E	7.9	3.1
4/6/1997	59:33.7	33.4707 N	59.9652E	15.6	3
4/6/1997	04:42.2	33.2137 N	60.1767 E	35.2	4
4/6/1997	23:45.4	33.6917 N	59.9257 E	5.1	3.1
4/6/1997	19:48.6	33.5298 N	59.9697 E	5	2.7
4/6/1997	25:56.5	33.5198 N	59.9425 E	6.4	3.2
4/6/1997	33:28.3	33.4983 N	60.0205 E	24.9	3
4/6/1997	38:57.7	33.6683 N	59.8840 E	8.6	2.8
4/6/1997	09:33.4	33.6990 N	60.0267 E	5.8	3.1
4/6/1997	35:30.9	33.3905 N	60.1287 E	19.4	3.4
6/6/1997	58:53.2	34.0098 N	60.1082 E	9	3.8
6/6/1997	57:06.3	32.7973 N	59.9882E	10	3.8
7/6/1997	09:12.9	33.2943 N	60.0948 E	25.1	3.7
7/6/1997	07:48.6	33.5908 N	59.8392 E	3.2	2.5
7/6/1997	50:31.0	32.9987 N	60.0760 E	27.6	3.8
7/6/1997	03:59.8	33.4965 N	59.9720 E	8.5	3.3
7/6/1997	34:14.2	33.7930 N	59.9698 E	19.8	3.3
8/6/1997	34:17.5	33.6917 N	59.9257 E	5.1	2.9
8/6/1997	51:01.3	33.1432 N	60.1022E	30.7	3.8
8/6/1997	19:08.7	33.6488 N	59.9997 E	9.2	2.8
8/6/1997	50:32.0	33.4987 N	59.9828 E	10.4	3

Date	Time	Lat.	Long.	Dep.	Mag.
8/6/1997	10:11.9	33.5972 N	59.8925 E	7.3	2.3
8/6/1997	30:00.0	33.6917 N	59.9257 E	5.1	2.6
8/6/1997	46:23.5	33.4967 N	59.9717 E	13.4	3.3
9/6/1997	42:44.2	33.5313 N	60.0367 E	5.2	3.7
9/6/1997	04:34.3	33.2600 N	60.0003 E	56.8	3.3
9/6/1997	36:41.0	33.4176 N	60.0343 E	0.1	3.3
9/6/1997	42:01.2	33.4015 N	60.0428 E	15	3.1
9/6/1997	44:50.7	33.5110 N	59.9947 E	8.3	2.7
9/6/1997	33:14.6	33.2620 N	60.0737 E	24.1	3.5
9/6/1997	01:08.8	33.5377 N	59.9775E	12.8	3.3
9/6/1997	54:43.7	33.3018 N	60.0403 E	21.7	3.4
9/6/1997	00:28.8	33.4005 N	59.9947 E	8	3.6
9/6/1997	09:41.0	33.8277 N	60.2207 E	6.5	3.3
9/6/1997	14:44.9	33.4838 N	59.9647 E	8.1	3.3
9/6/1997	57:14.8	33.4893 N	59.9987 E	9.7	2.8
10/6/1997	00:38.7	33.2668 N	60.0517 E	24.8	3.7
10/6/1997	21:51.6	33.4962 N	59.9790 E	9.2	3.1
10/6/1997	32:52.9	33.7001 N	59.9915 E	10	3.8
10/6/1997	33:59.7	33.6845 N	59.9912 E	4.5	2.6
10/6/1997	51:14.7	33.3877 N	60.0938 E	19.9	3.5
11/6/1997	04:54.6	33.3445 N	60.1315 E	18.9	3.3
11/6/1997	47:25.4	33.4298 N	59.8395E	13.7	3.2
11/6/1997	31:50.8	33.6917 N	60.0305 E	4.1	2.8
11/6/1997	49:49.5	33.7306 N	60.0183 E	0.3	2.9
11/6/1997	37:22.7	33.1905 N	60.2547 E	31.2	3.8
11/6/1997	20:07.6	33.4450 N	60.0483 E	16.1	3.4
11/6/1997	03:20.2	33.5067 N	59.9700 E	13.2	2.9
11/6/1997	03:51.2	33.9333 N	60.0083 E	12.7	2.9
12/6/1997	02:59.6	33.3067 N	60.2133 E	37	3.8
12/6/1997	08:54.4	33.6917 N	59.9250 E	10	3.2
12/6/1997	33:10.0	33.6917 N	59.9250 E	16.1	3.3
12/6/1997	21:26.5	33.1100 N	60.2167 E	47.6	3.6
12/6/1997	34:48.3	33.5068 N	60.0171 E	0.1	3
12/6/1997	18:47.4	33.4750 N	59.9483 E	18.9	2.4
12/6/1997	47:00.5	33.5000 N	59.9850 E	15.9	2.7
13/6/1997	01:59.9	33.7833 N	59.8750 E	25.2	3.7
13/6/1997	21:25.0	33.6917 N	59.9250 E	13.9	2.8
13/6/1997	57:17.7	33.3967 N	60.1117 E	35	3.8
13/6/1997	03:50.6	33.1667 N	60.2367 E	10	3.4
13/6/1997	32:25.9	33.4133 N	60.0608 E	27.7	3.3
13/6/1997	29:29.9	33.8883 N	59.9250 E	32.3	3.2
13/6/1997	10:28.5	33.5233 N	59.9950 E	11.8	3.1
14/6/1997	31:33.1	33.5150 N	59.9717 E	8.4	3.1
14/6/1997	58:05.3	33.8083 N	59.9217 E	24.2	3.4
14/6/1997	51:19.2	33.5967 N	59.8250 E	4.6	2.9
15/6/1997	04:09.5	33.6516 N	60.0027 E	10	2.9
15/6/1997	20:55.9	33.4917 N	60.0067 E	8.8	3
15/6/1997	54:48.1	33.0283 N	60.0583 E	27.8	3.6
15/6/1997	19:07.3	33.6233 N	59.9200 E	5.4	2.8
16/6/1997	33:33.3	33.0417 N	59.9950 E	5.1	3.9
16/6/1997	00:04.5	33.1956 N	60.0005 E	10	4.8
16/6/1997	35:48.9	33.4933 N	59.9417 E	7.3	2.7
16/6/1997	01:13.6	33.6917 N	60.0417 E	6.1	2.8
16/6/1997	34:51.2	33.4417 N	59.9950 E	9.9	3.2
16/6/1997	44:44.0	33.4483 N	60.0542 E	11.9	3.5
16/6/1997	25:18.0	33.4642 N	60.0330 E	11.4	2.9
16/6/1997	11:28.9	33.4083 N	60.0283 E	19.1	3.1
16/6/1997	47:17.1	33.4733 N	60.0283 E	10.2	3
16/6/1997	51:53.4	33.3400 N	60.0650 E	27.6	3.6

Appendix II. Continued ...

Date	Time	Lat.	Long.	Dep.	Mag.
$16 / 6 / 1997$	$46: 32.9$	33.4417 N	60.0583 E	13.2	3.5
$17 / 6 / 1997$	$43: 44.9$	33.4933 N	60.0033 E	7	2.8
$17 / 6 / 1997$	$29: 34.3$	33.3333 N	60.0792 E	19.4	3.6
$17 / 6 / 1997$	$03: 43.5$	33.5167 N	59.9983 E	5.3	3
$17 / 6 / 1997$	$58: 12.9$	33.7083 N	60.0767 E	1.5	2.9
$17 / 6 / 1997$	$14: 43.0$	33.3150 N	60.1600 E	13.5	3.5
$17 / 6 / 1997$	$46: 53.2$	33.6517 N	59.8800 E	7.7	2.9
$18 / 6 / 1997$	$00: 15.4$	33.3533 N	60.0283 E	24.7	3.4
$18 / 6 / 1997$	$10: 11.2$	33.8183 N	59.7517 E	8.3	2.8
$18 / 6 / 1997$	$04: 28.2$	33.3483 N	60.0800 E	25.1	3.6
$18 / 6 / 1997$	$57: 30.2$	33.5367 N	59.9800 E	15.1	2.8
$19 / 6 / 1997$	$45: 13.9$	33.4300 N	60.1067 E	14.5	3.4
$19 / 6 / 1997$	$14: 10.6$	33.5150 N	60.0317 E	6.8	2.9
$19 / 6 / 1997$	$23: 22.5$	33.4383 N	60.0783 E	16.3	3.3
$20 / 6 / 1997$	$32: 56.2$	33.4650 N	60.0417 E	5.1	3.3
$20 / 6 / 1997$	$54: 46.0$	33.4900 N	59.9717 E	7.6	3.1
$20 / 6 / 1997$	$57: 52.7$	33.4183 N	59.9233 E	5.1	4.9
$20 / 6 / 1997$	$25: 15.8$	33.3576 N	59.9267 E	10	4.3
$20 / 6 / 1997$	$34: 27.1$	33.3055 N	59.9969 E	5.2	4.2
$20 / 6 / 1997$	$30: 52.9$	33.6916 N	59.9256 E	11.1	4.1
$20 / 6 / 1997$	$26: 35.8$	33.3382 N	60.0987 E	15.8	3.8
$21 / 6 / 1997$	$45: 25.9$	33.3117 N	60.0810 E	20.2	4.3
$21 / 6 / 1997$	$50: 26.2$	33.3100 N	60.1017 E	21.6	3.6
$21 / 6 / 1997$	$33: 37.8$	33.7050 N	59.9650 E	1.3	3.2
$21 / 6 / 1997$	$21: 20.4$	33.6050 N	59.8650 E	6.3	4.4
$22 / 6 / 1997$	$46: 34.4$	33.5900 N	59.8450 E	2.6	2.6
$22 / 6 / 1997$	$14: 25.1$	33.4917 N	60.1217 E	10.7	3.1
$22 / 6 / 1997$	$40: 56.9$	33.6933 N	59.8800 E	27.3	3.1
$22 / 6 / 1997$	$50: 18.1$	33.7283 N	59.9017 E	16.1	3.5
$22 / 6 / 1997$	$52: 53.7$	33.3592 N	60.1083 E	25.7	4.5
$22 / 6 / 1997$	$11: 19.7$	33.2900 N	60.0550 E	12.8	3.7
$25 / 6 / 1997$	$14: 33.46 .1$	33.5017 N	59.69575 N	59.9350 E	24.5

Date	Time	Lat.	Long.	Dep.	Mag.
26/6/1997	49:53.4	33.6683 N	59.6695E	28.2	3.4
26/6/1997	59:17.8	33.6523 N	59.7536E	5.3	3.6
26/6/1997	46:09.8	33.6514 N	60.0815 E	10	4.1
26/6/1997	06:16.2	33.5236 N	60.0646 E	0.3	3.8
26/6/1997	39:31.4	33.4828 N	59.9963 E	6.9	2.8
26/6/1997	55:29.9	33.6617 N	59.7536 E	22.4	3.7
26/6/1997	55:22.9	33.6516 N	60.1416 E	10	3.4
26/6/1997	12:36.6	33.6517 N	59.8467 E	5.2	2.8
26/6/1997	00:39.6	33.4715 N	60.0091 E	23.5	3.3
26/6/1997	13:31.9	33.4333 N	60.0085 E	0.1	3.9
26/6/1997	59:47.4	34.0506 N	60.0293 E	0.1	3.6
26/6/1997	47:51.1	33.8100 N	60.1267 E	35.9	3.4
26/6/1997	55:45.7	33.8627 N	59.9122 E	39.9	3.7
26/6/1997	26:26.7	33.6516 N	59.7536 E	10	3.6
26/6/1997	43:49.8	33.9550 N	59.8022E	18.7	3.6
26/6/1997	08:16.3	33.9783 N	59.7745 E	13.5	3.5
26/6/1997	47:36.3	33.8870 N	60.0103 E	5.1	3.1
27/6/1997	10:15.8	33.4733 N	59.9788 E	9.1	3.3
27/6/1997	04:52.5	33.8397 N	59.9913 E	38.8	3.6
27/6/1997	11:42.8	33.4050 N	60.0516 E	9.8	3.6
27/6/1997	10:28.7	33.2583 N	60.1192 E	25.3	3.6
27/6/1997	19:38.3	33.6916 N	60.0596 E	10	3.3
27/6/1997	38:49.8	33.4836 N	59.8988 E	0.1	3.6
27/6/1997	18:58.3	33.6918 N	60.0583 E	10	3.4
28/6/1997	57:05.0	33.4825 N	60.0060 E	13.8	2.6
28/6/1997	07:07.2	33.8100 N	60.0428 E	33	3.5
28/6/1997	01:06.4	33.4905 N	60.0008 E	10.9	3.4
28/6/1997	11:52.1	33.7870 N	60.1177 E	40.9	3.8
28/6/1997	13:42.0	33.6695 N	60.0805 E	1.2	2.9
29/6/1997	14:52.9	33.6916 N	59.9256E	17.9	3.6
29/6/1997	55:16.2	33.2860 N	60.0725 E	22.9	3.5
30/6/1997	14:50.2	33.3750 N	60.0433 E	13.6	3.3
30/6/1997	07:12.6	33.6517 N	59.8033 E	12.4	3.6
30/6/1997	22:02.4	33.6915 N	60.0604 E	10	3.5
30/6/1997	17:42.6	33.5391 N	59.8711 E	0.1	3.6
30/6/1997	16:30.0	33.2368 N	60.1205 E	18.2	3.4
30/6/1997	57:51.3	33.6517 N	59.8415 E	0.1	2.9
30/6/1997	58:42.1	33.7180 N	59.8932 E	0.6	2.5
30/6/1997	17:26.2	33.5898 N	60.0046 E	0.1	3
1/7/1997	24:40.1	33.3050 N	60.0732 E	20.5	3.9
1/7/1997	35:42.2	33.5173 N	59.9256 E	8	3
1/7/1997	12:03.2	33.6917 N	60.0642 E	10	2.8
1/7/1997	31:56.3	33.3970 N	60.0987 E	8.3	3.4
2/7/1997	24:25.2	33.6415 N	60.0335 E	6	2.7
2/7/1997	31:52.0	33.8238 N	60.0065 E	36.2	3.3
2/7/1997	22:23.2	33.4900 N	59.9947 E	8.1	2.8
3/7/1997	06:46.0	33.9661 N	60.0501 E	0.3	3.4
3/7/1997	05:26.1	33.5843 N	60.4790 E	5.1	3.8
4/7/1997	08:28.8	33.4353 N	59.9946E	5.2	3.6
4/7/1997	32:20.0	33.6517 N	59.8035E	10	3.7

