Blast Mitigation: Review

Document Type : Review Article

Authors

1 Associate Professor, Civil Engineering Department, Engineering Faculty, Imam Khomeini International University, Qazvin, Iran

2 Ph.D. Candidate, Civil Engineering Department, Engineering Faculty, Imam Khomeini International University, Qazvin, Iran

3 Ph.D. Candidate, School of Environment, College of Engineering, University of Tehran, Tehran, Iran

Abstract

These days, an increase in terrorist attacks and advanced techniques for creating small explosive devices using powerful, high-explosive materials are causing massive building collapses, economic losses, and death. Protecting and mitigating the effects of explosions on structures and the people in them have become important to scientists. In this article, the effect of different parameters on the target structure, such as standoff distance, charge weight, and the use of protection systems have been reviewed. It is not economical to design the main parts of the structure so that they can withstand different hazards, therefore the use of different protection systems and materials such as walls, fences, sacrificial claddings, sandwich panels, and FRP, to mitigate the blast pressure and diffracted waves, and the results of their analysis have been discussed. The role of these protection systems is to absorb high kinetic energy in the form of strain energy through deformation. It is sometimes possible to replace these systems with a new one after failure at a lower cost than structures without a protection system. This paper presents an overview for beginner researchers to study the effects of the explosion on the structures and investigate solutions to reduce these harmful effects and protect the structures, and their inhabitants.

Keywords

Main Subjects


Abada, M., Ibrahim, A., & Jung, S. J. (2021). Improving blast performance of reinforced concrete panels using sacrificial cladding with hybrid-multi cell tubes. Modelling2(1), 149-165.
Abdolzadeh, F., & Izadifard, R. (2015). Comparison between ductile and brittle dissipaters in reduction of explosive loading on structures.
Adrees, A. G., & Hussein, A. (2021). Numerical Assessment of a Sustainable Blast Protection Wall. Diyala Journal of Engineering Sciences14(4).
Al-Rifaie, H., StudziƄski, R., Gajewski, T., Malendowski, M., Sumelka, W., & Sielicki, P. W. (2021). A new blast absorbing sandwich panel with unconnected corrugated layers—numerical study. Energies14(1), 214.
Alsubaei, F. C. F. (2015). Performance of protective perimeter walls subjected to explosions in reducing the blast resultants on buildings. The University of Western Ontario (Canada).
Blanc, L., Schunck, T., & Eckenfels, D. (2021). Sacrificial cladding with brittle materials for blast protection. Materials14(14), 3980.
Carriere, M., Heffernan, P. J., Wight, R. G., & Braimah, A. (2009). Behaviour of steel reinforced polymer (SRP) strengthened RC members under blast load. Canadian Journal of Civil Engineering36(8), 1356-1365.
Chaudhuri, A., Hadjadj, A., Sadot, O., & Ben-Dor, G. (2013). Numerical study of shock-wave mitigation through matrices of solid obstacles. Shock Waves23, 91-101.
Chen, G., Zhang, P., Deng, N., Cai, S., Cheng, Y., & Liu, J. (2022). Paper tube-guided blast response of sandwich panels with auxetic re-entrant and regular hexagonal honeycomb cores – An experimental study. Engineering Structures253, 113790.
Chen, W., & Hao, H. (2013). Numerical study of blast-resistant sandwich panels with rotational friction dampers. International Journal of Structural Stability and Dynamics13(06), 1350014.
Choudhary, N. S., Goel, M. D., & Panchal, S. (2022). Numerical analysis of innovative sacrificial protection system under blast loading. Practice Periodical on Structural Design and Construction27(1), 04021075.
Crawford, E., Malwar, L. J., & Morrill, K. B. (2001). Reinforced concrete column retrofit methods for seismic and blast protection. In Proc. of society of American military engineering symposium on compressive force protection. Charleston, USA.
Crawford, J. E., Malvar, L. J., Wesevich, J. W., Valancius, J., & Reynolds, A. D. (1997). Retrofit of reinforced concrete structures to resist blast effects. Structural Journal94(4), 371-377.
Davidson, J. S., Porter, J. R., Dinan, R. J., Hammons, M. I., & Connell, J. D. (2004). Explosive testing of polymer retrofit masonry walls. Journal of Performance of Constructed Facilities18(2), 100-106.
Elsanadedy, H. M., Almusallam, T. H., Abbas, H. U. S. A. I. N., Al-Salloum, Y. A., & Alsayed, S. H. (2011). Effect of blast loading on CFRP-Retrofitted RC columns-a numerical study. Latin American Journal of Solids and Structures8, 55-81.
Esa, M. S., Amin, M. S., & Hassan, A. H. (2020). Study of blast wave mitigation barriers using steel angles with various short/long arrangements. Int. J. Struct. Civ. Eng. Res9(4), 283-288.
Esa, M., Amin, M. S., & Hassan, A. (2021). Relative performance of novel blast wave mitigation system to conventional system based on mitigation percent criteria. Defence Technology17(3), 912-922.
Fazelipour, M., & Tavakoli Zadeh, M. (2011). Investigation of the effect of CFRP sheet arrangement on the reinforcement of concrete walls against explosion load. In the Sixth National Congress of Civil Engineering.
Gu, Z. P., Wu, X. Q., Li, Q. M., Yin, Q. Y., & Huang, C. G. (2020). Dynamic compressive behaviour of sandwich panels with lattice truss core filled by shear thickening fluid. International Journal of Impact Engineering143, 103616.
Guruprasad, S., & Mukherjee, A. (2000). Layered sacrificial claddings under blast loading Part I—analytical studies. International Journal of Impact Engineering24(9), 957-973.
Hadjadj, A., & Sadot, O. (2013). Shock and blast waves mitigation. Shock Waves, 23(1), 1-4.
Hao, Y., Hao, H., Shi, Y., Wang, Z., & Zong, R. (2017). Field testing of fence type blast wall for blast load mitigation. International Journal of Structural Stability and Dynamics17(09), 1750099.
Hassan, A., Amin, M. S., & Esa, M. (2019). Performance of different arrangements of rows of blast wave barriers based on mitigation percent criteria. In: Collaborative Conference on Materials Science and Technology (CCMST).
Hongrui, C. A. O., Zhigang, Z. H. A. N. G., Peng, C. H. E. N., & Zhuo, C. H. E. N. (2021, February). Performance and Application of Rapid Assembling Anti-blast Wall. In IOP Conference Series: Earth and Environmental Science (Vol. 638, No. 1, p. 012121). IOP Publishing.
Hussein, A., Heyliger, P., & Mahmoud, H. (2020). Structural performance of a wood-sand-wood wall for blast protection. Engineering Structures219, 110954.
Izadifard, R. A., & Nazarinejad, A. (2017). Application of Energy-Absorbing Layers to Blast Load Mitigation on RC Slabs. Journal OF Energetic Materials11(4), 32.
Izadifard, R., & Beygi, H. (2010). Retrofitting Current Masonry Walls Against Explosion by Applying Steel Mesh and Shot Crete. M.Sc. Thesis, Malek Ashtar University.
Izadifard, R., & Mehrabi, S. (2009). Increasing the Strength of Reinforced Concrete Slabs against Explosion by Applying Composite Materials. M.Sc. Thesis, Malek Ashtar University.
Izadifard, R., & Qolipur, R. (2011). Investigation of Flexural Behavior of Reinforced Concrete Beams Retrofitted by FRP against Explosive Loading (Full-Scale Tests). M.Sc. Thesis, Malek Ashtar University.
Ji, L., Wang, P., Cai, Y., Shang, W., & Zu, X. (2022). Blast resistance of 240 mm building wall coated with polyurea elastomer. Materials15(3), 850.
Keenan, W. A., & Wager, P. C. (1992). Mitigation of confined explosion effects by placing water in proximity of explosives. In 25th DoD explosives safety seminar (pp. 18-20).
Keys, R. A., & Clubley, S. K. (2017). Experimental analysis of debris distribution of masonry panels subjected to long duration blast loading. Engineering Structures130, 229-241.
Kostopoulos, V., Kalimeris, G. D., & Giannaros, E. (2022). Blast protection of steel reinforced concrete structures using composite foam-core sacrificial cladding. Composites Science and Technology230, 109330.
Li, J., Ning, J. G., Zhao, H., Hao, L., & Wang, C. (2015). Numerical investigation on the propagation mechanism of steady cellular detonations in curved channels. Chinese Physics Letters32(4), 048202.
Li, J., Ren, H., & Ning, J. (2013). Numerical application of additive Runge-Kutta methods on detonation interaction with pipe bends. International Journal of Hydrogen Energy38(21), 9016-9027.
Li, S., Li, X., Wang, Z., Wu, G., Lu, G., & Zhao, L. (2017). Sandwich panels with layered graded aluminum honeycomb cores under blast loading. Composite Structures173, 242-254.
MANUAL, K. U. S. (2007). LS-DYNA keyword User’s manual. LSTC Co., Livermore, CA.
Matsagar, V. A. (2016). Comparative performance of composite sandwich panels and non-composite panels under blast loading. Materials and Structures49, 611-629.
Palanivelu, S., Van Paepegem, W., Degrieck, J., Reymen, B., Ndambi, J. M., Vantomme, J., ... & Van Hemelrijck, D. (2011). Close-range blast loading on empty recyclable metal beverage cans for use in sacrificial cladding structure. Engineering Structures33(6), 1966-1987.
Peyman, S., & Ebrahimzade, A. (2020). Numerical Investigation of the Effect of Geometry on the Energy Absorption Rate of Sandwich Panels under Blast Loading. Journal of Advanced Defense Science & Technology11(4), 347-355.
Raman, S. N., Ngo, T., Mendis, P., & Pham, T. (2012). Elastomeric polymers for retrofitting of reinforced concrete structures against the explosive effects of blast. Advances in Materials Science and Engineering2012.
Rolfe, E., Quinn, R., Sancho, A., Kaboglu, C., Johnson, A., Liu, H., ... & Arora, H. (2018). Blast resilience of composite sandwich panels with hybrid glass-fibre and carbon-fibre skins. Multiscale and Multidisciplinary Modeling, Experiments and Design1, 197-210.
Sandhu, I. S., Sharma, A., Singh, M. K., Kumari, R., Alegaonkar, P. S., & Saroha, D. R. (2017). Study of blast wave pressure modification through rubber foam. Procedia engineering173, 570-576.
Silva, P. F., & Lu, B. (2007). Improving the blast resistance capacity of RC slabs with innovative composite materials. Composites Part B: Engineering38(5-6), 523-534.
Taha, A. K., Gao, Z., Huang, D., & Zahran, M. S. (2019). Numerical investigation of a new structural configuration of a concrete barrier wall under the effect of blast loads. International Journal of Advanced Structural Engineering11, 19-34.
Vo, N. H., Pham, T. M., Hao, H., Bi, K., Chen, W., & San Ha, N. (2022). Blast resistant enhancement of meta-panels using multiple types of resonators. International Journal of Mechanical Sciences215, 106965.
Wang, C., Xu, B., & Yuen, S. C. K. (2019). Numerical analysis of cladding sandwich panels with tubular cores subjected to uniform blast load. International Journal of Impact Engineering133, 103345.
Wei, X., & Stewart, M. G. (2010). Model validation and parametric study on the blast response of unreinforced brick masonry walls. International Journal of Impact Engineering37(11), 1150-1159.
Xiao, W., Andrae, M., & Gebbeken, N. (2019). Experimental and numerical investigations on the shock wave attenuation performance of blast walls with a canopy on top. International Journal of Impact Engineering131, 123-139.
Yuan, X., Zhou, J., Lin, Z., & Cai, X. (2017). Numerical study of detonation diffraction through 90-degree curved channels to expansion area. International Journal of Hydrogen Energy42(10), 7045-7059.
Yungwirth, C. J., Radford, D. D., Aronson, M., & Wadley, H. N. (2008). Experiment assessment of the ballistic response of composite pyramidal lattice truss structures. Composites Part B: Engineering39(3), 556-569.
Yusof, M. A., Rosdi, R. N., Nor, N. M., Ismail, A., Yahya, M. A., & Peng, N. C. (2014). Simulation of reinforced concrete blast wall subjected to air blast loading. Journal of Asian Scientific Research4(9), 522-533.
Zhang, L., Chen, L., Fang, Q., & Zhang, Y. D. (2016). Mitigation of blast loadings on structures by an anti-blast plastic water wall. Journal of Central South University23(2), 461-469.
Zhou, J., Guan, Z. W., & Cantwell, W. J. (2013). The impact response of graded foam sandwich structures. Composite Structures97, 370-377.
Zong, R., Hao, H., & Shi, Y. (2017). Development of a new fence type blast wall for blast protection: Numerical analysis. International Journal of Structural Stability and Dynamics17(06), 1750066.