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In this paper, the purpose is to analyze, from the Bayesian point of view, the
occurrence rate of earthquakes in Ecuador since March 2016 to July 16, 2016. We
implemented the ETAS models, starting with the purely temporal model, then con-
sidering the magnitudes, and later the spatio-temporal models (both isotropic
and anisotropic), and finally the hypo-central model. We introduced the use of
Welzl algorithm to evaluate the log-likelihood of the occurrence rate for spatio-
temporal models. We conducted simulations by extracting values from the a
posteriori distributions of the models parameters, to obtain estimations of the
accumulated number of earthquakes (with magnitude greater than a threshold)
and the behavior of inter-time events. The estimations are validated with the
observed from July 16, 2016 to September 2016.
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ABSTRACT

1. Introduction

Ecuador is located in the so-called Ring of
Fire and shows an intense seismic and volcanic
activity. The subduction of the Nazca plate in the
sea border between Ecuador and Colombia has
caused four mega earthquakes in the last century:
1906 (magnitude 8.8), 1942 (magnitude 7.8), 1958
(magnitude 7.7) and 1979 (magnitude 8.2) [1]. The
Paleogene- Neogene faults of Jama-Quininde and
Esmeraldas define a 200 km long zone, which was
the rupture zone of the 1942 earthquake [1]. This
zone is highly seismic.

The earthquake on April 16, 2016 of magnitude
7.8 [2] (according to the published figures by the
Geophysics Institute of the National Polytechnic
University EPN, the magnitude of this earthquake
was 7.4) caused losses of millions of dollars and more
than 650 deaths. Hence it is important to study the
aftershocks sequence after the big earthquake on
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April 16, 2016 to make predictions.
Predicting earthquakes has been a difficult

problem for researchers for decades. The after-
shocks following an earthquake of great magnitude
usually occurs in swarms where sometimes the
main earthquake can be distinguished and sometimes
not. These aftershocks can in turn cause other a
ftershocks of smaller magnitude. In addition,
earthquakes tend to be correlated both spatially and
temporally. There is also the problem of precursor
earthquakes that are smaller earthquakes that
precede an earthquake of greater magnitude. These
precursor earth-quakes are not part of any ongoing
aftershock sequence and are followed in a short
time by a major earthquake. Aftershock sequences
also contain many small events that are followed
by larger events. Thus it is difficult to distinguish
aftershocks from precursor earthquakes. That is why
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it is usual to eliminate aftershocks from the data
known as declustering.

One of the simplest ways to model the rate of
occurrence of aftershocks is by non-stationary
Poisson processes in time or space. Other models
used in seismic data analysis have been Marked
Point Processes [3] (the marks are the magnitudes
of earthquakes), Homogeneous Markov Renewal
Processes [4] with a Weibull distribution for the
times between earthquakes, model ETAS or
Epidemic-Type Aftershock Sequences [5-6], and
Poisson doubly stochastic processes [7]. BPT or
Brownian Passage Times [8], which is a time-
dependent renewal process, and Probabilistic
Bayesian Networks [9].

This article analyzes the ETAS models, starting
with the purely temporal model then considering
the magnitudes of the aftershocks, and then using
the spatial-temporal model and finally the hypo-
central version to predict the occurrence rate of
earthquakes with magnitude higher than one fixed
threshold M0. We also make estimations of the
models parameters using Bayesian statistics and
HMC (Hamiltonian Markov Chains) through Rstan
(the R interface of the Stan C++ Package).

The empirical law of Omori [10] and the law of
Omori-Utsu (also called Modified Law of Omori) [5]
describe the decreasing frequency of aftershocks
over time after an earthquake:

( ) =
( + )

KN t
t c                                                        (1)

( ) =
( + )p

KN t
t c                                                 (2)

where ( )N t  is the occurrence rate of events, t is
the time since the earthquake and K; c; p are
constants.

The constant c allows us to use the value t = 0 in
the formula and lets us model complex aspects
immediately after the main earthquake. The value of
c is normally less than 0.1 days [11]. In addition,
the occurrence rate of events decreases with the
inverse of the p power of t + c (power law).

Omori's law is usually used to model the de-
pendence of short-term earthquakes. The values of
p that have appeared most in practice are values close
to 1. If we take into account the branching property

of the occurrence of the earthquakes, then the
value of p increases from 1 to about 1.5 [12].

Another empirical law commonly used is the
Gutenberg-Ritcher law, which relates the magnitude
to the frequency of occurrence of earthquakes
with magnitudes greater than M:

10log ( )N M  = a bM≥ −                                        (3)

That is, the number of events of magnitude
greater than a threshold decreases exponentially
with the increase of the magnitude of that threshold
by a power law.

In general, seismicity is modeled with two
components: background seismicity and seismicity
triggered by previous seismic events. These models
are formulated according to the conditional intensity
in the past history ), , |( ,: tt t  x  H y M Hλ  is the
expected number of earthquakes in the unit of time,
space, and magnitude [13].

Marked Point Processes are stochastic models
used to represent a finite number of events located
in time and space [14]. This approach where marks
are the magnitudes of earthquakes is discussed
in [6, 15-16].

An earthquake T is represented by a tuple
), ,( ,i i i ix  y  z M  where , ,i i ix  y  z  are the longi-

tude, latitude and depth respectively (hypo-central
coordinates), ti is the time of occurrence of the
earthquake and iM  is the magnitude of the earth-
quake i on the Richter scale.

The model ETAS [6], models the magnitudes
and the times of the earthquakes and was extended
to the spatio-temporal case by Ogata in 1998 [6].
The ETAS model is a special type of Hawkes
point process, which is sometimes called branching
models or self-excitation models. These models
were called epidemics by Ogata in 1988 since each
earthquake causes aftershocks, and these in turn
produce their own aftershocks.

The simplest ETAS model is the temporal model
with constant background seismicity:

1

:

( )( )
(
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j

p

p
j t

t
t j

K c
t c

H
t

pt
−

<

λ
− +

−
= µ + ∑                          (4)

where µ  is the background intensity that is assumed
to be constant (measured in events / day) and
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is the probability density function of the occurrence
times of the events triggered by previous earth-
quakes in time.

Assuming that the background intensity is not
constant, but depends only on the longitude and
latitude x; y (but not on the time) we have:

1

:

( )1| ,( ) ( )
( )

j

p

p
j t j

t
t

pt H x K c
t t

 
c

y
−

<

λ
− +

−
= µ + ∑                (6)

where ( ),x  yµ   is now measured invents per day
per unit of longitude and per unit of latitude. It is
generally assumed that ( ) ( ), ,x  y x  u yµ = µ  where
µ  on the right side is a constant.

Considering the magnitudes of earthquakes we
have the model:

( )1

:
( 1| ( ))

( )

j o

j

M Mp

p
j t j

t
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ept K c A
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H
t c

α −−
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λ
− +

−
= µ + ∑           (7)

where oM  is the threshold magnitude that is
chosen arbitrarily as the minimum magnitude that
provides completeness of the catalog of earth-
quakes. Sornette and Werner [17-18] showed that
this threshold quantity is not related to the minimum
magnitude needed to trigger other events, which
is what actually represents in the ETAS model [19].
Besides, it was also shown that a greater oM  causes
the reduction of the parameter α and the ratio of
branching (or number of descendants earthquakes
per father earthquake), that is, more earthquakes
seem to be independent [19].

In addition ( )( ) oM MM Ae α −κ =  is the expected
number of events triggered by an event of mag-
nitude M.

Analogously if we assume that the background
intensity is not constant, but depends on the longi-
tude and latitude x, y we have:
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The event rate in the ETAS models may
explode. Stability depends on the branching ratio
n (expected number of descendants of a parent
event). We have:

max

0
( ) ( )

o

  M

  M
n dt s m t dm

∞
= λ∫ ∫                                    (9)

with ( ) ms m e −β= β  the distribution of magnitudes
by the Gutenberg-Richter law and   the ( )tλ  branch-
ing term in Equation (8).

For the temporal ETAS model with magnitudes
and p > 1 we have:

max

max

( )( )1

( )

1
( 1)( ) 1

o

o

M Mp

M M
Kc en

p e

− β−α −−

−β −

β −
=

− β − α −                     (10)

where  β  is the parameter of the distribution of the
number of earthquakes greater than : ( ) mm s m e −β= β
and  ln10bβ =  (b from Gutenberg-Richter Law).

Assuming maxM = ∞  the previous formula can
be reduced to [18-19]:

1

( 1)( )

pKc  n
p

− β
=

− β − α                                              (11)

So n is infinite if p < 1 or if
If each event induces another event: n = 1 then

the process propagates indefinitely. This justifies
normalizing the functions that appear in the
summation over the preceding events. For example:

0
1

( )
 

p 

K  dt
t c

∞
=

+∫                                              (12)

implies that we need to add 1( )1  

pp c −−  to the
constant K and similarly

max ( ) 1
o

 M m

 M
e dm−ββ =∫                                              (13)

implies we need to add (1 / exp ( )  oM−β −
)maxexp ( )  M−β  to the constant β.

The expected event rate as a function of time
can be calculated as:

0

( ) ( ) ( )  

 

 M
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where now we have ( )( ) . 
om Ms m e −β −= β  Then [19]:
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In the ETAS spatio-temporal model, the con-
ditional intensity of earthquakes is

( )
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where:
- )( ,x  yµ  is the background intensity that is a

function of latitude and longitude (does not
depend on the time).

- ( )( ) oM MM Ae α −κ =  is the expected number of
events triggered by an event of magnitude M.

-
1( )( )

( )
1 p

p

cg t
t c

p −

=
+

−  is the probability density func-

tion of the occurrence times of events triggered
by previous events [20-21].
And the spatial probability density of earth-

quakes may have one of the following forms [22-23]:
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The position-dependent intensity )( ,x  yµ  is
calculated by means of bicubic splines [6],
kernel functions [24-25], grid average [26],
tessellation [27] or by using non-parametric esti-
mation by the Forward Likelihood Predictive
method (FLP) [28] that is implemented in the
ETAS FLP library for R.

In 1998 Ogata proposed a modified version of
the spatio-temporal ETAS model:

:
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and the background intensity µ  is constant. We can
normalize , , , )(t  x  y Mg  as:
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The previous formulas model the spatial
correlation between earthquakes, conditioned on
the magnitude of the main event, through the
Euclidean distance between earthquakes: D =

2 2( ) ( )j jx x y y− + −  (isotropic models); however,,
Ogata himself proposed anisotropic models where
the clusters have elliptic forms.

:
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Where
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and ( , )j jp x x y y= − −  is a row vector, ( , )j jx y
are the coordinates of the earthquake j preceding
the earthquake with epicenter x, y (both in the
same cluster) and Sj j = 1; 2, ... are positive
definite symmetric matrices represent-ing the
normalized covariance matrix of the earthquake
cluster obtained by applying MBC or Magnitude
Based Cluster algorithm.

This method is based on selecting the greatest
magnitude earthquake (with magnitude Mj)
between those that are not in any cluster yet (if
there are two with equal magnitude the oldest
one is chosen) and then the earthquakes of the
cluster associated with the previous selected
earthquake, are those with latitude and longitude

0.5 23.33 10 jM −± ×  km (Utsu spatial distance) from
the latitude and longitude of the selected earthquake
and with a time difference therefrom (towards
the future) of max 0.5 1(100,10 )jM −  days [6]. Then
the process is repeated with earthquakes that are
not yet in any cluster until all earthquakes belong to
a cluster.

Zhuang et al. [29] presented a modification of
the spatio temporal ETAS model that includes the
depths of earthquakes.
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where Z is the thickness of the seismogenic layer
and 

1 1 1

0
( , ) (1 )

 

 

p qB p q t t− −= −∫  is the Beta function.

2. Stochastic Declustering

We consider events ( , , )j j jt x y  with j = 1,…, N
associated with the probabilities j = 1,…, N and
suppose that each event j is removed with prob-
ability ,jρ  then the remaining events represent a
new point process called thinned process. Now ,jρ
is the probability that event  j is induced by the
preceding events 1

,1

j
j i ji

−

=
ρ = ρ∑  where ,i jρ  is the

probability that event j is induced by event i.
Then the probability that event j is background
event is ,1 .i j− ρ  If we delete the event j with pro-
bability jρ  for all j = 1,…, N we obtain a non-
homogeneous Poisson process associated with the
spatial intensity ( , ).x yµ  This sub process is called
the background process and the com-plementary
process is called the clustering process [24].

The total intensity function is:

1
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and can be estimated using Gaussian kernel esti-
mation
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and jd  is a variable bandwidth for each earthquake j
that is calculated as follows: given a positive integer

pn  between 10 and 100 we find the smallest disk
centered at the epicenter of the event j and with a
radius greater than a certain small value (0.02 de-
grees). The occurrence rate of the cluster and the
background sub processes are calculated by [24, 30]:

1( , ) ( , )
jj d j j

j
x y k x x y y
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T

µ = − =

− ρ − −∑

ϒ
)))

                           (33)

This method is implemented in the R package
ETAS, and is used to estimate the background
seismicity ( , )x yµ  and with these values we can
estimate the other parameters of the ETAS models
using Bayesian statistics and Rstan.

3. Forward Likelihood Predictive FLP

With the FLP method, the background intensity
and the induced intensity of the ETAS model
(branching process) are estimated at the same
time. It is based on successive increments of the
log of the likelihood by adding one event at a time.
Let:

1;log ( ( ); )
t kkH tL z H

+ψλ
)

                                           (34)

be the logarithm of the likelihood with the first k + 1
events using the estimator ; ( )

tkH zψλ
)

 where ψ  are
the parameters. The predictive information of the
first k events on the k + 1 event is:

1

, 1

; ;
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log ( ( ); ) log ( ( ); )
t k t kk k

k k

H t H tL z H L z H
+

+

ψ ψ

δ ψ =

λ − λ
) )          (35)

This is similar to cross validation but only applied
to the events following one specific event.

Therefore ( )
ktHψ  is chosen such that maxi-

mizes
2

1 2
1

, ( ) , 1

k

k k k k
k k

FLP ψ +
=

= δ∑)                                        (36)

with 1 [ / 2]k x=  and 2 1.k n= −  This method is better
than the kernel estimation for spatio-temporal
models [28].
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4. Bayesian Statistics and Hamiltonian Markov
Chains HMC

Most studies of ETAS use point estimates for
the model parameters, which ignores the inherent
uncertainty that arises from estimating these from
historical earthquake catalogs, resulting in mis-
leadingly optimistic forecasts. In contrast, Bayesian
statistics allows parameter uncertainty to be ex-
plicitly represented, and fed into the forecast
distribution [31].

Besides, Bayesian statistics can consider the
uncertainty not only in the model parameters,
conditioned on the available catalogue of events
occurred before the forecasting interval, but also the
uncertainty in the sequence of events that are going
to happen during the forecasting interval as shown
in [32].

Bayesian statistics does not work with only a
single point estimate of a parameter but instead
consider the whole posterior distribution (given the
data), which represents the uncertainty based on
both the observed earthquake catalog and any prior
knowledge we have based on previous studies [31].
The posterior distribution in the ETAS model is
highly complex and does not allow us to find the
mean or the maximum of the posterior for the
parameters analytically. Instead, we can use a Markov
Chain Monte Carlo (MCMC) algorithm [33].
The Metropolis-Hastings algorithm updates one
parameter at a time and uses truncated normal
distributions as proposal distributions for the
evolution of the Markov chains.

The key issues in setting up a prior distribution
are:
- What information is going into the prior distri-

bution and
- The properties of the resulting posterior dis-

tribution.
When there is no previous knowledge, resear-

chers choose non-informative prior distributions
thus allowing each parameter to be estimated from
the data. But, if non-informative prior distributions
were assigned to all the parameters, then the model
would fit the data very closely but with scientifically
unreasonable parameters [34-35]. Thus we prefer
to use weakly informative priors (heavy tailed dis-
tributions), although the prior selection sensitivity is
an important aspect in Bayesian analysis [36].

We used flexible priors of the parameters of the
models. In this case, we used exponential prior
distributions for the positive parameters of ETAS
models. The exponential distribution is one of the
less informative distributions for positive parameters.
MCMC or Monte Carlo Markov Chains is a general
class of methods for extracting values from the
posterior distributions of the parameters [31].

Markov chains stabilize in a state of equilibrium
from any initial state if the chain is irreducible (from
any state we can reach another with probability > 0),
aperiodic (the chain is not trapped in cycles) and re-
current positive (the number of steps to get from one
state to another is finite).

If θ  is the last accepted value of the parameter, a
new value is proposed from a jump dis-tribution
(proposal distribution) (. | .)q  that is * (. | )qθ = θ  and
then we calculate:

* * *

*

( ) ( ) ( | )
( ) ( ) ( | )

L p qr
L p q

θ θ θ θ
=

θ θ θ θ                                       (37)

where L is the likelihood function, p is the a priori
distribution. For the case of the Metropolis algorithm,
the jump distribution is symmetric. Then a value
u is generated from a uniform distribution and if

{1, } u min  r<  we accept the value *θ  and if not, it
is rejected [37].

The Metropolis-Hastings algorithm may not
efficiently explore the parameters space. In fact,
when you do not have conjugate priors, it is hard
to optimize acceptance rates and proposals.

Hamiltonian Monte Carlo, also called Hybrid
Monte Carlo (HMC), is a Markov chain Monte Carlo
(MCMC) method to approximate integrals with
respect to a target probability distribution π  on

.dR  It was originally proposed by Duane et al. [38],
it was later introduced in statistics by Neal [39]
and is now part of the standard toolbox [40], in
part due to favorable scaling properties with respect
to the dimension d [41-42], com- pared to random
walk Metropolis {Hastings. Hamiltonian Monte
Carlo is at the core of the No-U-Turn sampler
(NUTS [43]) used in the software Stan [44].

In the HMC algorithm, the parameter estimates
are treated as physical particles that move on the
surface of the likelihood. The potential energy
is analogous to - logarithm of the likelihood

( ) log( ( ) ( )).U L pθ = − θ θ  The kinetic energy is
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11( )
2

TK r r M r−=  where 1 2( , ,..., )nr r r r=  with n is
the number of components of ,θ  and n nM ×  is a square
matrix that can be the identity but can also be the
correlation of the components of .θ  The Hamil-
tonian of the system is ( ) ( )( , )H r KU rθ +θ =  and
the dynamics of the system is given by:

1d M r
dt

−θ
=                                                         (38)

| ( )dr U
dt

= −∇ θ                                                    (39)

The Euler method for the above system causes
instability and Leapfrog method is used instead
where step lengths ε  and / 2ε  are used for the
evolution of in the first /dr dt  and last step res-
pectively.

The final values of the Leapfrog steps are the
proposed values * *( ), rθ  and are accepted or rejected
similarly to the Metropolis, but now:

* *exp[ ( ) ( )], ,r r rH H θ= −θ                                   (40)

This comes from the definition of the Hamil-
tonian as an energy function. The distribution of
the total potential energy as a function of the
Hamiltonian is:

1( , ) exp( ( )),P r H
Z

rθ = − θ                                     (41)

where Z is a normalization constant. Then [37]:

* *
* *( ) exp[ ( ) ( )]

)
, , ,
,(

Pr r r rH H
P r

θ
θ

θ
= = − θ                 (42)

The advantages of HMC are:
- It can produce high dimensional proposals that

are accepted with high probability without having
to spend time tuning

- Has inbuilt diagnostics to analyze the MCMC
output

- Built in c++ so runs quickly but outputs to R
Although, HMC requires some tuning: the num-

ber and size of the leapfrog steps, but the "No-
UTurn Sampler" or NUTs [44], optimizes these
adaptively.

5. Parameters Estimation

The parameters of the ETAS model are generally
estimated by maximizing the logarithm of the
likelihood, for temporal models:

max

0
log ( ) log ( | ) ( )

 

 

T

j t
j

L t H t dt= λθ λ∑ ∫                    (43)

and for spatio temporal models

max

0

log ( )

log ( | ) ( , , )
 

 

T

j t S
j

L

t H t x y dxdydtλ

θ =

λ∑ ∫ ∫ ∫               (44)

where θ  is the vector of parameters and S is
the region that contains the earthquake data,
which is commonly the rectangle min max [long , long ]×

min maxlat , lat .[ ]
For the models 3 and 6, the logarithms of the

likelihood have respectively the following analytic
forms:

1

1
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For the case of the spatio temporal ETAS
models, the logarithm of the likelihood does not
have a closed analytical form. As mentioned in [45]
the first sum in the logarithm of the likelihood
formula can be easily calculated, but the integral in
general is difficult to approximate. The numerical
approximations of this integral can be computationally
expensive since the function has peaks in three
dimensions and this integral has to be calculated
for each tuple of parameters during the optimization
[45]. Schoenberg mentions that the approximations
of this integral, work poorly with optimization
routines. In [6], the space around each earthquake
is divided into K quadrants and the integral in each
quadrant is calculated; however, this is computa-
tionally costly and the choice of the number K is
problematic [45].

In [45], the author proposed for the spatio-
temporal model the approximation:

0( )
max

1 1

log ( , , , , , )

log ( ( ))

 

 
i

N N
M M

i
i i

L k p c

t T k e α −

= =

µ α ≈

λ − µ −∑ ∑

ϒ

                  (47)
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This approximation assumes that the time
maxT → ∞  and the size of the observed area of the

earthquakes tend to infinity. The approximation is
accurate if for each earthquake, the region of the
aftershocks caused by this earthquake is contained
completely within the observed area [45] and has
the property that for any j and any values of the
parameters of the ETAS model:

0( )

( , , )

( , , )

jM M

j j jIR IR IR

j j jS

Ke

g t t x x y y dtdxdy

g t t x x y y dtdxdy

α − =

− − − ≥

− − −

∫ ∫ ∫
∫ ∫ ∫

             (48)

That is, if certain values of the parameters are
poor, then 0( )

1
jN M M

i
K e α −

=∑  will be larger than
( , , )j j jS

g t t x x y y dtdxdy− − −∫ ∫ ∫  and the optimi-
zation routine will avoid these parameter values [45].

However, this approach is analyzed in [46], and
it is shown that the assumption that t → ∞  is too
crude, which causes the introduction of systematic
biases [46].

Because the earthquakes analyzed in the prov-
inces of Manabi and Esmeraldas are in a reduced
area (compared to the radius of the earth), we can
neglect the curvature of the earth in that area and
find the minimum circle that covers all the earthquakes.
Then we can approximate the double integral of
the log of the likelihood. This paper explores the
possibility of calculating the integral of the spatio-
temporal model of isotropic cluster making the
region S the minimum covering circle containing the
positions of earthquakes. This is done by the Welzl
algorithm [47] and then we can approximate the
integral by polar coordinates centered at the position
of each earthquake with:

0
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1
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1 1
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1 1
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=
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− −  − +    +  
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ϒ

      (49)

where r is the radius of the minimum circle that con-
tains all the earthquakes and r i the greatest distance
between the coordinates of the earthquake i and

the previous earthquakes according to the metric
defined in the cluster to which they belong. (In
general, when we solve the double integral over
the area of earthquakes in polar coordinates centered
at the i earthquake, the distance depends on the
angle .θ  Instead, we approximate the maximum ,ρ

in any direction, as the maximum distance between
the earthquake i and other earthquakes).

In this approximation, it is not assumed that t → ∞
but that the integral with respect to the time goes
from 0 to max .T

Welzl's algorithm is based on the fact that the
minimum covering circle containing the points must
contain at most 3 at its boundary (only two points if
they are on a diameter). This algorithm is random-
ized and incremental and at each step maintains the
minimum covering circle and then adds a point: if the
point is within the current minimum circle, the circle
it is not updated, but if it is outside, then the new
minimum covering circle passes through the new
point. This algorithm has an expected order O(n). In
summary, the algorithm is as follows:
- The points 1 2 1, ,..., ip p p −  are randomized and

let Cj be the minimum covering circle for
1 2, ,..., ( 1)ip p p j i≤ −  with point p at its boundary

- We already have 1jC −′  and we want to add .jp  If
jp  is inside of 1jC −′  then 1 ,j jC C− =  and if it is

outside, then jC  will have in its boundary the
point jp  and the point p.

- We draw the line l through jq p=  and p and the
perpendicular bisector of l, and we can assume
without loss of generality that the line l is
vertical, then we find points lp  and rp  to the left
and right of l respectively, such that the centers of
the circles that pass through , , : ( , , )j l lq p p p C p q p=

and , , : ( , , )j r rp q p p C p q p=  be as far as possible
from l (to the left and right respectively). Then
we choose the circle of smallest radius of the
previous three circles.
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For the anisotropic model, the Euclidean distance
is changed by the metric defined by the standardized
variance covariance matrix jS  where now ir  is
calculated as the maximum distance (according to
the previous metric) and the rest of the previous
earthquakes in the cluster.

For the hypocentral ETAS model, the logarithm
of the likelihood is:

max

0 0

log ( ) log ( , , | )

( , , )
 

 

 

j j j t
j

T Z

S

L t x y H

t x y dzdxdydt

= λθ −

λ

∑

∫ ∫ ∫ ∫
                    (50)

And, in this case, we use the same approximation
proposed for the double integral over S. To be able
to compare the hypocentral model with the pre-
vious models, we use the correction of the logarithm
of the likelihood of the hypocentral model 3log( )dL =

2 )l (o (g ) logdL N Z− [28].
For the case of models 3 and 6 with variable

background seismicity (instead of µ  we have
( , ))x yµ ∗µ  the logarithm of the likelihood is:
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And similarly for the temporal and hypo-central
space models.

The uncertainties of the ETAS model come from
two main sources: the model itself (for example in
the temporal model, only the times of occurrence of
the aftershocks are considered, so the model itself
has uncertainties) and on the other hand, the error
that comes from the approximation of the likeli-
hood or the ETAS models (for example the use of
Weyl algorithm introduces an error).

Employing MCMC and HMC methods we
robustly account for the various sources of noisy
sources of noise in the data.

We obtained estimates of the parameters of the
ETAS models using FLP and compared them with

the estimates obtained using Monte Carlo MCMC
chains [33], in this case, Hamiltonian Monte Chains
HMC which is implemented in the stan language.
Also for the case of the temporal models 3 and 6 we
compared the obtained results with Rstan with
those obtained by the program ETAS.exe of Ogata
available in [49] that minimizes by the method of
Davidon-Fletcher-Powell [48].

6. Preprocessing

To achieve efficiency, a preprocessing was
performed and we do not pass the values of the
times, magnitudes and latitudes of earthquakes
directly to the Rstan library (as is done for the
temporal model in Stackoverow [50-51], because
then, in each iteration, it would be necessary to
calculate for each earthquake, the differences of
time, latitude and longitude, with all the previous
earthquakes (O(N2)). Instead, we sorted the data
by time descending and these differences were
calculated in three arrays of size 1 / 2.( )N N −
Besides, for each earthquake j we know the initial
and final positions where the differences of its time,
latitude and longitude with respect to the previous
earthquakes are:

 ( 1) ( ( 1)) / 2 +1
=   N  (  ( + 1)) / 2

start = N j j j
end j j j

− −∗ ∗
∗

−
−

For the case of the anisotropic cluster model, the
earthquake data of each cluster were adjusted with
four normal bivariate models [6, 22, 52]:
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where 1 1( , )x y  are the latitude and longitude of the
cluster's main earthquake, ( , )x y  are the coordinates
of the centroid of the cluster and the parameters
correspond to [6]:
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and we selected the model with the lowest AIC =
- ( ( )) + 2nln det S k  where S is the variance covariance
matrix of each of the four models and k is the
corresponding number of parameters [6]. For the
case that the number of earthquakes in the cluster
is less than 6, the smaller AIC is selected from the
first two models [6]. Then the selected matrix of
variance covariance is normalized:

( )
2 1

2 1 2

/1
/1

 

 

 
 

σ σ − ρ  
   − ρ σ σ  − ρ

 
                             (65)

In addition, as part of the preprocessing for each
cluster, all the distances from each earthquake to
each of the previous one in the same cluster, for both
the Euclidean distance and the anisotropic metric.

Once we have the parameters of the ETAS mod-
els we can estimate the probability that a given event
is spontaneous or is triggered by others [53, 24]. The
contribution of the spontaneous seismicity rate to the
occurrence of an event i can be taken as the prob-
ability that the event i is spontaneous [54]:

( , )
( )

( , , )
i i

i i i

x yi
t x y

µ
φ =

λ                                                (66)

Similarly the probability that the event j is
produced by the event i is:

( ) ( , ) ( , , )
( , , )

j i j i j i i
ij

i i i

M g t t f x x y y m
t x y

κ − −
ρ =

λ            (67)

We can also obtain the expected number of direct
aftershocks from the earthquake i as ijj

ρ∑ [40].
We can also verify the assumption that the back-

ground seismic intensity ( , )x yµ  is stationary, i.e. it
does not depend on the time calculating for each t:

:
( ) ( )

ii t t
S t i

<
= φ∑   [30].

7. Residual Analysis and Goodness of Fit

Analysis of residuals and goodness of fit of the
models can be done as mentioned in [30], but in this
case we take samples of the posterior distributions
of the parameters instead of just use single values
of them.

We can evaluate the seismic intensity as a
function on the time, magnitude, latitude, longitude
and depth of each earthquake (according to the
corresponding ETAS model) and compare the
accumulated curve obtained from the model with
the observed one. In this case, since we have the
values of the parameters obtained from the posterior
distribution, we can do simulations and for each
tuple of parameters, evaluate in the seismic intensity
formula and then we calculate the median of
these values and the 2.5% and 97.5% percentiles
and 0.975 (95% credibility interval).

To analyze the differences between the pre-
dictions of the model and the observed data, we
graph the transformed time: ( )tλ  in the x axis, and in
the y axis the observed values.

8. Time between Events

The relationship between inter-event times and
ETAS models was analyzed analytically by Saichev
and Sornette [55]. In [56], it is analyzed the
existence of a universal law of escalation [57] for
the probability density function of the recurrence times
or times between earthquakes (time between two
successive events) .τ

( ) ( )H fτ ≈ λ λτ

where the function ( )f x  has been found practically
the same in different regions and λ  the average rate
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of events observed in the analyzed region [55].
The scaling factor of times between earthquakes

is taken as the inverse of its mean.
The form of the function ( )f x  which is de-

monstrated in [56] is:

( )21( ) 1 ( , )
 

  f x n x n n x xθ − −θ θ −θ = ε + − + ε ∗ϕ ε 

where θ   is the parameter of the Omori-Utsu or
Modified Omori law form, 1( ) / ( ) ,t c c tθ +θ= θ +Φ  is
the average number of de-scendants per earthquake,
and ( ) ( , )P xτ ≈ ϕ ε = 1exp( (1 ) ( /1 ) )n x n xθ −θ− − − ε − θ
is the probability that there are no events in [ , ].t t + τ

9. Data Analysis and Results

The data for this study is available in http://
www.igepn.edu.ec/ultimos-sismos. Table (1) shows
a summary by province and month of the 908

earthquakes that occurred in Ecuador from
March 18, 2016 to July 16, 2016. Out of the 908
earthquakes, 810 had their epicenter closest to the
provinces of Manabi and Esmeraldas. On the other
hand, the cities that had the greatest number of
earthquakes with near epicenters were: Jama 241
earthquakes; Muisne 222 earthquakes; Pedernales
77 earthquakes; Manta 66 earthquakes; Puerto
Lopez 64 earthquakes and Bahia de Caraquez 49
earthquakes.

Table (2) shows the monthly average of the
earthquakes magnitude in the provinces Manabi
and Esmeraldas and the total average considering
both provinces per month. Here we see that the
average magnitude in April (when the 7.4 earth-
quake occurred) is not the greater value because
the number of earthquakes in that month was
larger than in other months, and then an earthquake

Table (1). Earthquake distribution in Ecuador 18/03/2016-16/07/2016.

Table 2. Average monthly magnitude of earthquakes in Manabi and Esmeraldas.

Table 1. Earthquake distribution in Ecuador 18/03/2016-16/07/2016.
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of greater magnitude in May, June or July increase
the month average of that month more than the
corresponding increase in other months.

The average depth of the earthquakes of
Manabi and Esmeraldas was 8.44 km and 8.07 km
respectively.

The Figure (1) on the right shows the position
of the earthquakes with respect to the position of
the nearest tectonic plates.

Figure (2) shows the cumulative number of
earthquakes over time and vertical segments
proportional to their magnitude. It is observed that
the magnitudes have been decreasing after April
16 although there have been earthquakes of mag-
nitude more than 6 degrees Richter. The abrupt
change in the curve of the cumulative number of
events after the earthquake of 7.4 on April 16, 2016
is the characteristic of big events. In Figure (3), we

Figure 1. Earthquake distribution (Google Maps).

Figure 2. Cumulative number of earthquakes and mag-nitude of
events over time.

Figure 3. Average daily rate of earthquakes over time.

Figure 4. Number of events with magnitude greater than or
equal to a given threshold magnitude as a function of that
threshold magnitude.

can see how the average daily earthquake rate has
been decreasing after reaching a daily average rate
of more than 150 earthquakes (immediately after the
earthquake of 16 April).

To verify the Gutenberg-Richter law, we plot in
Figure (4) the number of events with magnitudes
greater than a given threshold magnitude vs the
threshold magnitudes and in Figure (5), we plot the
logarithm in base 10 of the number of events with
magnitude greater than a given threshold magnitude
vs the threshold magnitudes. Then a linear regres-
sion model log( )N a bM= + was fitted and the val-
ues a = 5.064 (sd = 0.039) and b = -0.694(sd = 0.007)
were obtained with a p-value for both values of
2.2e - 16 i.e very significant. The standard residual
error was 0.1041 and the adjusted R2 was 0.9888.
With these values, the b in Gutenberg-Richter's law
is 0.694 and
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Figure 5. Decimal logarithm of the number of events with mag-
nitude greater than or equal to a given threshold magni-tude as a
function of that threshold magnitude.

( )10 1,598. bln   β = =

By adjusting the earthquake catalog in Manabi
and Esmeraldas provinces using the ETAS R
package with 10 iterations, we obtained estimates of
the background seismicity. Figure (6) shows the
distribution of background seismicity in the two
provinces of the Ecuadorian coast. The parameters
of the ETAS model in the ETAS package (Zhuang
ETAS model that is combined with the stochastic

Figure 7. Distribution of magnitudes, latitudes, and longitudes of earthquakes over time.

declustering method) obtained by maximizing
the likelihood were  µ = 1.0227, A = 0.4789, c = 0.0434,
α = 0.6947, p = 1.4058, D = 0.0054, q = 1.7413,
γ = 0.1783, the logarithm of the likelihood ln(L) =
1414.451 and the Akaike Information Criteria
AIC = -2ln(L) + 2k = -2*1414: 451 + 2*8 = -2812.902.

Figure (7) shows the distribution of magnitude of
earthquakes, latitude and longitude in time.

Figure 6. Stochastic declustering result in the ETAS spackage.
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The results of adjusting the Flp or Forward
Likelihood Predictive model using the R package
EtasFlp, are shown in Figures (8) to (13). Figure (8)
shows the background seismic intensity and the
areas within the provinces of Manabi and Esmera-
ldas where it is greater.

Figure (9) shows the seismicity induced or
triggered by previous earthquakes. In graphs of
Figures (16) and (17), we can observe that there
are areas where the standardized residuals (which
have mean 0 and variance 1) between theoretical
and observed, are considerable.

We used non-parametric models such as FLP
but we preferred Bayesian statistics and HMC
because it gave us the parameter posterior distri-

Figure 8. Background seismic intensity.

Figure 9. Triggered seismic Intensity.

Figure 11. Total seismic intensity..

Figure 12. Cluster associated with the earthquake of   magni-
tude 7.4, April 2016 (1).

Figure 10. Total seismic intensity with observed points.

butions. With these posterior distributions, we
carried out simulations to obtain 95% credibility
intervals.
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ETAS models have a finite number of parameters
and each with a precise meaning; therefore, we think
we can take the limit as the number of parameters
goes to infinity.

Figures (14) and (15) show the anisotropic
distribution of earthquakes. This is done by adjusting
the four bivariate models to the 810 earthquakes
with epicenters near Manabi and Esmeraldas and
choosing the lowest AIC and then the axes of the
ellipse are the Eigen vectors of the normalized
variance-covariance matrix.

The normalized variance covariance matrix for
the 804 earthquake cluster related to the main
earthquake of April 16 (magnitude 7.4) is:

1.469 0.696
0.696 0.709

− 
 − 

                                                (68)

Figure 13. Cluster associated with the earthquake of magni-
tude 7.4, April 2016 (2).

Figure 14. Estimated bivariate kernel.

Figure 15. Chains evolution for anisotropic ETAS model with
constant background seismicity.

and corresponds to the fourth model of the adjusted
bivariate models.

The results of the parameter estimates of the
models using the HMC algorithm in Rstan are
shown in Tables (3) to (11). For all parameters of
the ETAS models (which must be positive),
a weakly a priori exponential distributions were
used.

For p and q, a value close to and greater than 1:
1.000005 was used as their minimum value. For the
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initial value of mu in the temporal and hypo-central
space models, 20.25 ( max )mu N t pi r= ∗ ∗ ∗  [6, 16]
where N is the number of events, tmax is the
maximum time of the events (in days), measured

Table 3. Results Rstan temporal model without magnitudes and constant background seismicity (100 iterations, 4 chains).

Table 4. Results Rstan temporal model without magnitudes and variable background seismicity (100 iterations, 4 chains).

Table 5. Results Rstan temporal model with magnitudes and constant background seismicity (100 iterations, 4 chains).

Table 6. Results Rstan temporal model with magnitudes and variable background seismicity (100 iterations, 4 chains).

Table 7. Results Rstan spatio temporal model with isotropic clusters and constant background seismicity (100 iterations, 4 chains).

from the oldest event, and r is the radius of the
minimum covering circle of earthquakes with the
epicenter close to the provinces of Manabi and
Esmeraldas, R = 1.70479.
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Table 11. Results Rstan hypocentral model with anisotropic clusters and variable background seismicity (100 iterations, 4 chains).

Table 10. Results Rstan hypocentral model with anisotropic clusters and constant background seismicity (100 iterations, 4 chains).

Table 9. Results Rstan spatio temporal model with anisotropic clusters and variable background seismicity (100 iterations, 4 chains).

Table 8. Results Rstan spatio temporal model with anisotropic clusters and constant background seismicity (100 iterations,
4 chains).
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For the other parameters, the initial values used
were as follows:
k = 0.3, p = 1.3, c = 0.01, d = 0.01, q = 1.7, alpha = 1.005,
gamma = 0.9, eta = 0.7.

In all cases, we use four chains with 100
iterations for each one. Tables (3) to (11) show
the Rhat which is a way to measure the convergence
of the chains: when it is close to 1 indicates
convergence.

Figures (15) to (18) show the evolution of the
chains for the anisotropic ETAS model with
con-  stant background seismicity.

From the following tables we observe that the
models with variable background seismicity have a
value of the constant considerably lower than the
models with constant background seismicity. This
is because for the variable background seismicity,
multi-plied by the sum of the values of over the

Figure 17. Correlation of parameter values in the chains for anisotropic ETAS model with constant background seismicity.

Figure 16. A posteriori parameter distributions for anisotropic ETAS model with constant background seismicity.
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event points must be approximately equal to for the
constant background seismicity.

As shown in Table (12), the model that best fits
the data is the anisotropic hypocentral model with
constant background seismicity. We can also observe
that in our case, the models with variable seismicity
do not provide better fits than the analogous models
with constant background seismicity, although the
methods of stochastic and Flp disaggregation
showed that the background seismicity is not
constant.

The possible cause of this is that the area is
small (the radius of the minimum covering circle
is 1.70479 degrees) which makes that the variable
background seismicity can be replaced by a con-
stant background seismicity (although in the case

Figure 18. Correlation of parameter values in the chains for
anisotropic etas model with constant background seismicity.

Table 12. ETAS models comparison.

of models with constant background seismicity,
the values of the other parameters may be biased).

However, the model fit better the data when
we consider the metric defined by the variance
covariance matrix, to measure the distances between
the epicenters of the earthquakes (the anisotropic
model) and also consider the depths of the earth-
quakes. We have that the logarithm of the likelihood
equivalent in two dimensions to the hypocentral
model with constant background seismicity is:

( )
2 3( ) ( )

709.462 789 log 30 1974.083
ln ln ln( )d dL L N Z

  −

=

+ ∗

=

=

−
                 (69)

Figure (17) shows the estimated bivariate density
of earthquakes in Ecuador using the kde library of R.

= 2 1974.083 + 2  9 = 3930.165AIC − ∗ ∗ −                 (70)

(There were 789 earthquakes in the cluster
associated with the earthquake of magnitude 7.4 on
April 16 with valid depth values) and similarly for
the hypocentral model with variable background
seismicity (in this case we had N = 777 available
background seismicity values).

Using the values obtained from the posterior
distributions of the parameters of the best fit
model: anisotropic hypocentral with constant back-
ground seismicity, we can neglect the values of the
first half of the evolution of the chains and perform
simulations by extracting values (from the second
half) of the parameters and estimate the probability
that an earthquake is induced (not caused by back-
ground seismicity). Figure (19) shows the probability
of being an induced earthquake as a function of
time and in red the events with probability greater
than 0.95 of being an induced event. We can observe
that the events on April 16 have a high probability of
not being provoked by the background seismicity.



JSEE / Vol. 22, No. 4, 202020

Fausto Fabian Crespo Fernandez and Carlos Jimenez Mosquera

Figure 19. Probability of being a spontaneous earthquake.

close to extinction.
Figure (22) shows the confidence intervals (or

credibility in this case since we use Bayesian
approach) of the most probable father earthquake
of each earthquake. On the x axis, we have the
indexes of earthquakes in the catalog, from the
most recent to the oldest, i.e. from 07/16/2017 to
the oldest recorded earthquake available in the
month of March, and the vertical segments are
the credibility intervals of the index of the most
probable father earthquake. For this, we performed
simulations of the parameters, and for each tuple
we calculate for each event j (index on x-axis), the
probability that it will be induced by the event

: ( ),iji i jρ >  then the one with the highest proba-
bility was chosen and the median and the quantiles
for the i index were calculated for all tuples of
simulated parameters. The green horizontal line
corresponds to the magnitude 7.4 earthquake index
of April 16. As can be seen, there are credibility
intervals that are only formed by the median (the

Figure 20. Probability of being background earthquake.

Equally after 80 days since 04/13/2016, there are
still events with a high probability of being induced
by previous earthquakes, especially due to the
earth-quake of magnitude 7.4 on April 16.

Figure (20) shows the probability of being a
background earthquake as a function of time, and in
red the events with probability greater than 0.95 of
being a background seismic event. It is noted that
very few events after April 16, 2016 have a high
probability of being triggered by background
seismicity although such events exist.

Figure (21) shows the induced seismicity rate
versus time after the date of the last event used to
adjust the models: 07/16/2016, this is achieved by
performing simulations of the anisotropic hypo-
central model with constant background seismicity,
and evaluating for each tuple of parameters the
seismicity rate function at the times of the events
from 16/07/2016 to 11/09/2016 and then taking the
median by all the tuples of parameters. It is observed
that the induced rate has been decreasing and is

Figure 22. Indexes earthquakes more likely predecessors
(fathers).

Figure 21. Induced seismic rate.
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blue points), that is, these events are induced by
the April 16 earthquake with probability 95%.

To demonstrate the advantages of the Bayesian
approach to the frequentist approach, Table (13)
shows the earthquakes most likely to be father
earthquakes of the greatest number of earthquakes,
taking the values of the medians of the posterior
distributions of the parameters obtained by Rstan.
Table (14) shows the earthquakes most likely to be
triggered by the earthquake of magnitude 7.4 of
April 16 by means of a frequentist approach.

However, using a Bayesian approach, we can do
simulations of the parameter values and for each
tuple of values calculate the probability of being
an earthquake induced by the magnitude 7.4 of
April 16. With this we can see that out of the 16
earthquakes that the frequentist approach report as
direct children, only five of them have a probability
greater than 0.95 of being direct descendants of the
earthquake of magnitude 7.4 of April 16. These are
shown in Table (15).

The following figures show the residual analysis

Table 14. Earthquakes most likely to be triggered by earthquake of magnitude 7.4 of April 16 (frecuentist approach).

Table 13. Earthquakes with more than three direct aftershocks (descendants).
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Table 15. Earthquakes with probability greater than 95% of being triggered by earthquake of magnitude 7.4 of April 16 (Bayesian
approach).

of the models and the prediction of the accumu-
lated number of events, evaluated at the times of
the earthquakes. This is achieved through 1000
simulations of the posterior distributions of the
parameters. The green vertical lines represent the
first month after July 16, 2016 which is the date of
the last event that was used for the estimation.
As we can see the temporal models with constant
and variable bottom seismicity do not differ much.

Figure 24. Residuals for ETAS temporal temporal ETAS model
with constant background seismicity.

Figure 23. Acumulated number of events for temporal ETAS
model with constant background seismicity.

Using the model ETAS considering the mag-
nitudes we can perform simulations of the
parameters and with this we can calculate the
average number of descendants earthquakes by
father earthquake n and with this we can estimate
by the formula of Saichev-Sornette, the distribution
of the logarithm of the times between events
(scaled by the inverse of the average time between
earthquakes) (Figures 23-34).

Figure 25. Acumulated number of events for temporal ETAS
model with variable background seismicity.

Figure 26. Residuals for temporal ETAS model with variable
background seismicity.
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Figure 27. Acumulated number of events for temporal ETAS
model with constant background seismicity vs variable back-
ground seismicity.

Figure 28. Residuals for temporal ETAS model with constant
background seismicity vs variable background seismicity.

Figure 29. Acumulated number of events for temporal
ETAS with magnitudes model and constant background
seismicity.

Figure 30. Residuals for temporal ETAS with magnitudes
model and constant background seismicity.

Figure (27) shows the estimates with 1000
simulations and the credibility intervals at 95% of
the model prediction vs. the observed. The credi-
bility interval is not shown in Figure (28) to better
distinguish the graphs.

It can be observed that the fit is acceptable
although there are considerable differences between
the model and the observed.

10. Conclusions

Bayesian analysis is a useful tool for parameters
estimation by maximizing the logarithm of the like-
lihood. Instead of point estimates, Bayesian analysis
provides a posteriori probability distributions for the

parameters, allow in simulations (through extrac-
tions). But, Bayesian analysis can be sensitive on
the prior distribution selection and further research
is needed to assess the effect of the prior distri-
bution selection on the a posteriori distribution for
each ETAS parameter.

The study of seismicity is a complex problem
because of the number of factors to consider,
fortunately there are flexible models that allow the
incorporation of different aspects such as ETAS
models.

We introduce the use of the Welzl Algorithm to
evaluate the double integral in the log likelihood
formula. This is feasible since the size of the
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Figure 31. Acumulated number of events for spatio temporal
anisotropic ETAS model and variable background seismicity.

analyzed area is small compared to the earth
radius.

The preprocessing was crucial to reduce the
number of operations of the evolution of the HMC
algorithm.

The topic of times between events is a subject
that requires more advanced studies to elucidate
the validity of a universal law that is independent of
the region analyzed.
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