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The event of Sarpol-e Zahab with magnitude of 7.3 severely struck the border area
of Iran and Iraq in Kermanshah province, leading to catastrophic damages to a
wide region, specially Sarpol-e Zahab city. Doubts arouse whether the damage
distribution all over the city stemed from the seismic ground response or superficial
loose fill material. The issue was explored in this study by especial attention to an
area with high damages in Sarpol-e Zahab, called Fooladi. Since the seismic
bedrock motion was not available, it was first deconvoluted from the recorded
acceleration on the ground surface. Then ground response analysis was conducted
at three different locations in Fooladi area, by applying deconvolved motion. It was
determined that the local site condition was accountable for damage severity
specially in Fooladi area
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ABSTRACT

1. Introduction

It is well established that the earthquake ground
motion in a specific area is affected by three main
factors: the source, the path and local site con-
dition [1]. In general, seismic waves get attenuated
as they travel farther from the source. In some
cases, site amplifications over soil sediments
during strong ground motions cause severe
damages, even though the sources are far from
the influenced areas. The event of Michoacan
that hit Mexico City in 1985 in a distance of 350 Km
was a milestone in geotechnical earthquake en-
gineering to understand the behaviour of sediments
under seismic motion [2].

Accordingly, the local geology and geotechnical
specifications can affect the motion characteristics
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such as domain, frequency and duration of strong
ground motion. It is explicit that during an earth-
quake, not only source and path are components of
surface ground motion intensity and damage level
severity, but also the mechanical specifications of
the underground layers as well as the geometrical
characteristics of the surface (topographic effects)
and site subsurface condition are accountable,
which is known as site effects today.

In November 12, 2017 an earthquake with
magnitude of 7.3 occured in west of Iran and con-
tinued for 30 seconds, leading to catastrophic
damages to Sarpol-e Zahab city, specially Fooladi
area (Figure 1). The largest acceleration caused
by the strong ground motion was recorded at
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Figure 1. Map of Iran and Sarpol-e Zahab, Fooladi area.

Sarpol-e Zahab station (0.69 g in L-component and
0.55 in T-component, Figure 2 [3]) leading to
severe damages to a vast area of the city, specially
Fooladi area and nearby vicinity (Figure 3).
Following a through field investigation right after
the earthquake, Moosavi et al. [4] reported that site
condition is the first influencing factor on damage
distribution all around the city. In the report, it is
mentioned that ground surface at Fooladi and
Shiroodi area was covered with loose fill material,
leading to amplification of the seismic waves. The
site effect, in adition to the weak design and
construction of the buildings in Fooladi area and its
surrounding, exacerbated the destrucion.

Figure 3. Damaged structures in Fooladi area.

Figure 2. components of the Sarpol-e Zahab earthquake reported by the building and housing research center [3].
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After the event, geotechnical and geophysical
survey was conducted on different spots of Sarpol-e
Zahab by some organizations such as the
International Institute of Earthquake Engineering
and Seismology (IIEES), to probe site response
analysis. The city ground was classified into
different zones based on frequency characteristics,
as depicted in Figure (4), which shows the propsed
information on natural frequency of the ground
in the Sarpol-e Zahab city, prepared by Moosavi
et al. [5]. Due to absence of any recorded bedrock
motion of the event and its importance to pursue
additional studies, Moosavi et al. [6] deconvolved
the recorded motion of surface to the seismic
bedrock in order to calculate bedrock motion, to
be applied at the bottom of the soil profiles to
analyze the site response in west of Sarpol-e
Zahab. In another research, Zafarani et al. [7]
employed the main recorded motion of the sur-
face to perform site response analysis. Ashayeri
et al. [8] investigated the effect of shear wave
velocity of the soil deposit in upper 30 m of the
soil (V30) by conducting ambient vibration analysis.
Sharafi and Raeisi [9] conducted site two-dimen-
sional numerical simulation and site response
analysis using non-linear approach to provide
sufficient data for engineers to reconstruct
damaged buildings and future construction.

In this study, site condition and the influence of
site effects on intensifying the damages in Fooladi
neighborhood were investigated according to the
significance of site response analysis in that
area, following up the previous research of
Moosavi et al. [5] in which they produced the
map of seismic site classification reffering to
surface geophysical exploration and microteremor
measurement.

2. Methodology

Accelerogram of Sarpol-e Zahab earthquake
was recorded by the Building and Housing Research
Center (BHRC) seismograph station on the surface
of the ground [3]. Epicenter of that event was
located on 34.88 northern latitude and 45.84 eastern
longitude. Focal depth of this event was estimated
about 18 km [10].

To conduct the site response analysis, recorded
motion of the surface during the shaking time was
employed to produce bedrock motion by applying
deconvolution scheme. Site response analysis was
perfomed at three locations of the mentioned
region (Figure 5). The representative geotechnical
profiles were defined by taking into account the
data of the geophysical survey by Moosavi et al. [6]
and available geotechnical data of other resources
after the event [11].

Figure 4. Distribution of natural frequency of the soil deposit in Sarpol-e Zahab, zoomed in Fooladi area [5].
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In this study, field observation reports and
aerial photo studies were reviewed and the
geotechnical and geophysical data of the afore-
mentioned area were collected and examined.
Some of examined sites with reliable and available
data were chosen to be represntative profiles of the
region, in subsequent site response.

2.1. Geology of Sarpol-e Zahab

Map of Sarpol-e Zahab reveals that the city is
bound by mountains of Asmari formation at north
and north-east. Furthermore, Alvand river crosses

Figure 5. Location of representative stations preferred for this study.

the city from the north to the west. Rivers flowing
through broad flat valleys have often flooded over
neighboring banks periodically. When this occured,
the stream velocity quickly decreased, and the
gravel and sand particles dropped out in the
vicinity of the bank, surounded by remaining finer
soils. Consequently, the city is covered by various
thicknesses of Quaternary coarse to fine alluvial
(Figures 6 and 7)[2].

2.2. Field Observation

A short period of time after the event, a group of

Figure 6. Geological Map of Sarpol-e Zahab.
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Figure 7. Natural soil trenches and alluvial deposits.

Figure 8. Sections from the superficial layers of the ground and the built structures over the layers.

researchers visited the affected area and took
valuable photos of the whole city. As it is shown
in Figure (3), photos represent devastative effects
of the earthquake in Fooladi area. In previous
researches, it was claimed that buildings were
constructed on loose fill material and consequently
experienced extra amplification compared to
other parts of the city [11]. However, based on
the geological condition of the city and field obser-
vations, building were located on natural alluvial
deposits of fine-grained soil (Figure 8). Although
loose fill material existed in some neighboring
areas around the Fooladi district, taken photos

showed that no building was constructed on those
grounds. The satellite imagery of developing
hisory of the city from 2007 to 2017 illustrated that
the buildings were constructed on agricultural
lands (Figure 9).

2.3. Data Aquisition and Proccessing

IIEES employed seismic refraction method to
provide sufficient data of soil structure in Sarpol-e
Zahab (Figure 10). By using this method, iden-
tification of subsurface layering, estimation of
thickness of layers and determination of bedrock
depth took place [5]. Investigations showed that
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Figure 9. (a) Man-made hill, (b) fill material, (c) Satellite imagery of 2007 and (d) Satellite imagery of 2017.

Figure 10. Geophysical survey operation at prefered stations
for this study.

the thickness of soil deposits increased from the
north to the south and the thickness of alluvium
was less than 30 m except for some areas near the
river. Layering and shear wave velocity in these
stations were modeled according to geophysical
data. The graph of the shear wave velocity
through the depth of each studied point is presented
in Figure (11). Regarded to the contrast between
shear wave velocity of adjacent layers, site ampli-
fication was plausible.

Reports of geotechnical investigations, which
were carried out in five areas of Sarpol-e Zahab
including Fooladi area were available [11]. The
reports contained field and laboratory testings in

Figure 11. Seismic refraction profiles at prefered stations for
this study.
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order to identify the subsurface layers of boreholes
up to 30 m deep. Figure (12) presents the distribution
of geotechnical boreholes and Figure (13) shows the
section of these boreholes. In this research, we
combined our geophysical data with available

Figure 12. Location of Geotechnic.

Figure 15. Field observations a year after the event.

Figure 13. Data of geotechnical survey in one of the study
areas.

Figure 14. Section of representative profiles.

geotechnical data at the same place, and produced
reliable representatives seismic geotechnical
profiles at three preferd locations for this study
(Figure 14). Representative profiles mostly contain
clay at top elevations and sand at deeper layers.
This layering is consistant with field observations
by Moosavi et al. within a year after the event
(Figure 15) [5-6].
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Figure 16. Modulus reduction and damping ratio curves used
for clay layers in this study.

Figure 17. Modulus reduction and damping ratio curves used
for sand layers in this study.

Based on the above-mentioned data on layering
of the representative profiles, clay model proposed
by Vucetic and Dobry [12] in 1991 was assigned
to top layers, and Seed and Idris [13] modulos
reduction curves for sand was also assigned to
bottom layers. Curves of modulus reduction and
damping ratio variation with shear strain related
to the above-mentioned models are presented
in Figures (16) and (17), respectively.

2.4. Define Seismic Bedrock

Different criteria are proposed to define seismic
bedrock [14]. In geotechnical seismic hazard
analyses, proposed by Ishihara and Ansal [15], a
medium with shear wave velocity ranging from
600 m/s to 1000 m/s is considered as seismic
bedrock. In this study, we followed regultions of
the Iranian code of practice for seismic-resistant
design of buildings (Standard No. 2800), and con-
sidered sublayer with shear wave velocity more
than 750 m/s as engineering bedrock [16]. Con-
sequently, the lowest layer of the geotechnical

profiles with 1185 m/s shear wave velocity and
unit weight of 21 kN/m3 was supposed to be the
seismic bedrock.

2.5. Computation Bedrock Motion of Sarpol-e
Zahab City

Since the Sarpol-e Zahab time history accelera-
tion was recorded on top of the soil deposits,
deconvolving recorded surface motions was
necessary to attain bedrock motion. Deconvolution
via frequency domain analysis is an effective
approach for applying the input motion at any point
in the soil column [17]. This method is similar to
equivalent linear frequency domain with difference
of the input motion location that is on top of the
ground [18]. To cross check the results, two
different codes, i.e., DeepSoil and SeisGRASP,
were utilized to perform deconvolution analyses.
SeisGRASP is a site response analysis code based
on SHAKE computations [18] and is developed
in MATLAB with user friendly graphical inter-
faces [19]. The input motions can be specified
using acceleration time history. SeisGRASP is
programmed to evaluate soil response with a given
input motion at any desirable depth. It also  has
some features to process time series. Results of
the SeisGRASP are verified by Deepsoil [20-21].
Figure (18) show the Response spectra of the
bedrock motion extracted from the SeisGRASP
and that of the Deepsoil, by deconvolution of the
surface ground motion. As obvious in these
figures, results by different codes coincide with
each other, which approve reliability of the
SeisGRASP.

2.6. Site Response Analyses

After preparation of the representative
geotechnical profiles and the bedrock input
motions, next step was to perform site response
analyses. The site was modeled as a one-dimen-
sional system of horizental and hemogeneous
soil layers. Site response analysis was carried out
for both L-component and T-component of the
calculated bedrock motion at the bottom of each
profile as an input motion, by utilizing SeisGRASP
in frequency domain, benefiting from equivalent
linear method.
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Figure 20. Acceleration response spectrum of the T-component of the surface ground motion at Station No. 1.

Figure 19. Acceleration response spectrum of the L-component of the surface ground motion at Station No. 1.

Figure 18. PSA Spectrum of the components of the bedrock motion.

3. Results and Discusions
Figures (19) to (24) represent the pseudo

acceleration (PSA) response spectra of the ground
surface time histories at each geotechnical profile.
In Standard No. 2800 [16], seismic regions are
devided into four catagories of risk, i.e., with very

low, low, high and very high risk of seismicity.
Sarpol-e Zahab was deemed to be of high seismicity,
but not predicted to be very intensive [6]. A short
period of time after Sarpol-e Zahab earthquake,
The United Nations Institute for Training and
Research (UNITAR) provided a map for damage
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distribution of Sarpol-e Zahab [22]. This map
represents the concentration of damages in some
areas of the city, including Fooladi area (Figure 25).
As it is illustrated in Table (1), the PGA of the
site response analyses reached high values up to
0.82 g. Fooladi area was mostly covered with short,

Figure 23. Acceleration response spectrum of the L-component of the surface ground motion at Station No. 3.

Figure 22. Acceleration response spectrum of the T-component of the surface ground motion at Station No. 2.

Figure 21. Acceleration response spectrum of the L-component of the surface ground motion at Station No. 2..

Table 1. Calculated PGA at each station by site response
analyses.
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Figure 24. Acceleration response spectrum of the T-component of the surface ground motion at Station No. 3.

Figure 25. UNITAR map of damage distribution [17].

1 to 2-storey buildings in eastern part and its
western part by the name of Shiroodi or Maskan-e
Mehr was covered with taller buildings, most of
which were the subject of the reported damages in
the field (Figure 3). Station No. 1 was located in
littoral zone and confirmed there were superficial
deposits. PSA spectra represented decreasing
value of  periods for maximum PSA of station No. 2
to No. 3 from 0.6 s to 0.15 s. Generally, natural
period of buildings can be approximately estimated
by a simple formula of T = 0.1 N in which N is the
number of stories, so the natural period increases
0.1 s for each story [23]. Regarded to field
observation in Shiroodi area 4 to 7-story buildings

with 0.4 s to 0.7 s natural periods were severely
damaged and in Fooladi area the height of
devastated structures declined to 1 to 2-story
buildings with 0.1 s to 0.2 s natural periods for
which the natural periods of damaged buildings
corresponded the PSA spectra results. This
resonance of the site and the structures declares
the accordance between the damage severity of
intensified spots in UNITAR map and the cal-
culated PGA of each station, with evidences
observed in the field after the event (Figure 26).
It should be noticed that tall building with more
than 3 stories were not affected by the earthquake
in Fooladi area (Figure 27). Although fill material
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existed in some areas of the region, it was lack of
appropriate seismic geotechnical survey and site
effect investigation that led to vulnaribility of the
area and caused destructive damages.

4. Conclusions

In this research, the effect of local site condition
on damage concentration in Fooladi area of
Sarpol-e Zahab city was probed. For this purpose,
all taken photos of the devastated area and geo-
physical and geotechnical data were examined
precisely. Bedrock motion was calculated by
deconvolution of the recorded surface ground
acceleration. Site response analyses were conducted
subsequently, by employing frequency domain
equivalent linear approach to investigate the
response of the soil deposit. According to the
results of the analyses, peak ground acceleration

and response spectra of the surface ground motion
were evaluated. Comparison of PGA values and
response spectra for each location with UNITAR
damage distribution map, illustrated a proper
consistency. The conformity of collected data and
performed analysis lowered the impact of fill
material as the main factor, though it is not neg-
ligible. In conclusion, observed evidence indicates
that Fooladi region is located on soft soil deposit of
sediments and the effect of local site condition over
that particular area is confirmed. Short buildings
with 2-3 stories are vulnerable to seismic hazards.
Lack of geotechnical information of aforemen-
tioned region before construction led to dire
consequences. Adequate geotechnical study is
required in order to provide safe and reliable
rehabilitation, reconstruction of affected areas or
even the future expansion of Sarpol-e Zahab city.

Figure 26. Consistency of field observation with UNITAR map.

Figure 27. Buildings in eastern part of Fooladi area that survived the earthquake with minor damage.
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