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1. Introduction

The aim of this work is to understand the relation between time and place that an
earthquake takes place. In order to answer this question, the Modified Level
Crossing (MLC) technique has been implemented. By studying two earthquakes,
one in Iran and one in California we came to the conclusion that there is a relation
between time and place of an earthquake occurrence. As a matter of fact, this
relation is quite decisive. By performing MLC analysis and comparing the two
regions, we can state that geographical effects play an effective role due to
geophysical differences between Iran and California. Indeed, by comparing the
readings of Iran and California, one could come to understand the geophysical
differences between the two domains. The so-called level crossing analysis has been
used to investigate the spatial and temporal fluctuations of earthquake form time
series. In this paper, we calculated the average frequency of up-crossing for original
and shuftled data of Iran and California earthquakes in spatial and temporal series.
This analysis showed a significant difference between the original data and shuffled
data. By introducing the relative change of the total number of up-crossings for
original data with respect to the so-called shuffled data, R, and calculate the Hurst
exponent, Iran and California earthquakes are compared.

The internal motions of the Earth cause
earthquakes. An earthquake is the result of a sudden
release of energy in the Earth's crust that creates
seismic waves. The question is that whether its
behavior can be easily predicted? When there are
large numbers of variables influencing the system,
the main factors to consider its behavior cannot be
simply tagged. This feature is called the system
complexity. As a result of current and past events,
resultant of all factors is efficacious that ultimately is
observed. Can the study of the history and behavior

of the system be used to achieve (for achieving) a
method to describe and predict the behavior of the
system?

In recent years, a vast majority of researches
have been devoted to the study of seismic data that
contain information about the complex events that
lead to an earthquake [1-5].

We live in a world where random processes
are ubiquitous. Although the random values of a
stochastic process at different times may be inde-
pendent random variables, in most cases they are
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considered to indicate complicated statistical
correlations. Therefore, over the past decade,
several different methods have been introduced to
study the properties of the process. Spatial and
temporal fluctuations of earthquake form time
series. The purpose of the application of statistical
mechanics is to describe the behavior of the time
series that can help to better understanding of the
stochastic processes. After that, this study lies in an
effort to reproduce or predict some experimental
facts with extraction of useful information. An
important question is what the probability of
obtaining or losing a certain level of return at
different time intervals is. For the first time, Jenson
presented the inverse method in turbulence [6],
and Simonsen et al. presented the inverse statistics
to apply on similar financial data to answer the
similar questions [7]. Inverse statistics suggest the
inverting of the structure function equation, and
instead of considering the average moments of
distance between two points, gives the difference
value between these two points. Inverse statistics
method is used for another popular technique called
the level crossing method (LC). In the level crossing
method no scaling feature is explicitly required
[8-14], and this is the main advantage of this
technique for estimating the statistical information
of the series. Level crossing based on stochastic
processes that grasp the scale dependence of time
series.

What is the reason for the formation of level
crossing? This method was developed for the study
of a series of different insight. The memory, non-
Gaussianity and waiting time (length) (an average
time (length) interval that we should wait for an event
to take place again [15-19]) could be measured by
level crossing method. Since the fractional Gaussian
noises are well-known examples, their comparison
with empirical data can be used as a criteria to better
understanding the results obtained from the level
crossing method applied to unknown empirical data.

Here, the total amount that is designated as
N;,, which represents the total number of up-
crossings of a series, reflects how memory plays
role. To better assess the effects of memory,
shuffled counterparts of each underlying time series
were calculated and compared their associated
total number of so-called crossings, N, with that
given by their original time series N to obtain
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the change percentage in the system. The auto-
correlations are destroyed by the shuffling procedure.
Using this method is to answer such questions as:
Will an earthquake have effect on another earth-
quake? Will happening an earthquake in a certain
time have an effect on the time of next ones? Will
happening an earthquake in a place have an effect
on the place of next ones? Are there any relation
between where it happens and when it happens?

2. Level Crossing Analysis

For better understanding, we begin with a
summary of the analysis of LC [9-14]. Consider the
{x(t)} series from time intervals between earthquake
events as n_ represents the number of positive
difference crossings (up-crossings) at the level of
x(t)—X=o in time interval (Figure 1). For all time
intervals, the mean value of n; is equal to N’ (T)
[11]:

N; (1) =(n3(D) (1)

where <,> represent the ensemble average. For a
homogeneous process (constant) the average
up-crossings is in accordance with time interval T.
As a result:

N (T) = ve(T) )

where v, is the average frequency of crossing with
positive slope at the same level of y= x(f)-X=a.
Frequency parameter v, could be deduced from the
underlying probability density functions (PDF) of
y=x(t)-%, and Y =(y(t+At)— y(t)/ At=Ay/ At,
which is named as P=(y, y) [6, 10].
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Figure 1. Schematic of up-crossing for an arbitrary level

x(t)—x=o.
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Within the time interval At, the sample can only
pass with positive slope at the level of x(f)—X=a
provided that it has the x(tf)—X<a property at the
beginning of the interval. Furthermore, there is a
minimum difference at time ¢, if the level x(f)—-X=«a
is to be crossed in interval At depending on the
value of x(t)—Xx at time t. Thus, it would be a
positive crossing of x({)—x=a in the next At,
interval if at time ¢

x(t)—-x<a

Al x(t)— X —[x(t)—X
[x()—X] _ a—[x()—X] 3)
At At
As it was shown, v} can be defined as the
probability density function P(y=a, y’) as follows:

ve= [ Pa.y)ydy @)

where P(a, y) is the joint probability density
function P(y, y) evaluated at y=a.
Besides, let us define the N (q) quantity as:

+o0 q
Niw(@= [ vilo—7] da 5)

where zero moment (with respect to v'') g=0 shows
the total number of crossings with positive slope for
return to earthquake magnitude. The moments g <1
will give information about the frequent events while
moments g>1 are sensitive for the tail of events.
To investigate the effect of correlation and
memory, N, is calculated that represents the total
number of up-crossings in the time series when it is
shuffled. Here, random permutation is used for shuf-
fling the data. The auto-correlations are destroyed
by the shuffling procedure. Hence, by comparing
N, of the original data with that computed for the
shuffled data set, N,, we can obtain the magnitude
of correlations in the time series and this gives useful
information about the time series. By comparing the
3, (after shuffling),
the memory of the time series can be determined.

difference between N, and

Smaller relative difference suggests that the time
series is less correlated (anti-correlated). Under the
influence of shuffling, the total number of crossings
with positive slope N, increases (decreases)
indicating the correlation in the underlying data
(anti-correlation). In order to measure the value of
memory (correlation and anti-correlation) in the
data, the relative changes in the total number of
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up-crossings for original and shuffled data defined
using N, as follows:

R=|Nj, - N,

/Ny (6)

By using the PDF and the correlation function
of the data, a stationary series can be pictured.
Fractional Gaussian noises which are generalizations
of ordinary discrete white Gaussian noise are
characterized by their Hurst exponent. The Hurst
exponent, H, gives a quantitative measure of the
long-term persistence of a signal. In particular, the
exponents 0<H<0.5 and 0.5<H<1 correspond to
negative (anti-correlation) and positive correlation,
respectively, while H=0.5 corresponds to an
uncorrelated Gaussian process [20-28].

3. Application on Earthquake

Iran and California Earthquakes from 1/1/1971 to
08/03/2013 are used in this research [29]. For this
purpose, the statistical correlations of earthquakes in
these two regions have been compared. Earthquakes
with magnitude greater than 4 in Richter magnitude
scale have been selected, and time series and the
spatial series have been established by using time
intervals and physical distances between the
earthquakes, respectively.

Figure (2) shows the crossing with positive slope
related to the obtained date (both original and shuftled
data) for Iran and California earthquakes as can be
estimated by Eq. (4).

The plots reveal the positive correlation of Iran

and California earthquakes over time.
The level crossing for both original and shuffled
data related to Iran and California earthquake have
been depicted in Figure (2). From the figure, the
earthquakes correlation is also evident in this case;
however, the correlation is lower than that related to
Iran earthquakes.

After examining the original and shuftled date for
earthquakes occurred in Iran and California, now we
will lie in an effort to compare earthquakes occurred
in these two regions. Earthquakes in these two
regions with similar area have been investigated at
the same time.

For the original data related to earthquakes
occurred in Iran and California, the crossing with
positive slope has been estimated using Eq. (4),
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Figure 2. Plot of v, for original and shuffled date related to Iran and California earthquakes in time series.

which are plotted in Figure (2). As it can be seen
from the figure, the earthquake with smaller
magnitude in Iran is more probable than California
and the earthquake with large magnitude in
California is more probable than Iran.

The estimated crossing with positive slope from
Eq. (4), the spatial series for the original data related
to earthquakes occurred in Iran and California has
been depicted in Figure (3). It is clear from the figure
that the earthquakes occurred in Iran show a higher
correlation. This means that the earthquakes
affect and stimulate each other. In other word, the
percentage of induced earthquakes in Iran is more
than California.

The final number of crossings with positive slope
have been calculated from Eq. (5) and plotted in
Figure (3).

California| -

14 == =1Iran

log N-tot

q (time)

The slope of the plot for California is higher than
that of Iran. This means that earthquake occurrence
in California is more probable than Iran and in terms
of time, the possibility increases with an increase in
earthquake magnitude. In addition, it is expected to
occur a larger earthquake in California compared
with Iran at far times.

The final number of crossings with positive slope
estimated from Eq. (5) in the spatial series have been
calculated and plotted in Figure (4) for earthquakes
in Iran and California.

The slope of the plot is almost identical for Iran
and California. This means that earthquake occur-
rences in California have a similar behavior in terms
of spatial position.

The relative changes between Iran and Califor-
nia earthquakes for time series of q between 0 and 3

California

14 ———-iran

log N-tot

q (time)

Figure 3. Plot of N;;t for Iran and California earthquakes in time series. ¢ is a dimensionless parameter.
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Figure 4. Comparing of ‘N:,, - me‘ / N}, for Iran and California earthquakes. Temporal (Left panel) and spatial (Right panel). g

is a dimensionless parameter, Ylabel is not suitable

have been calculated using Eq. (6), plotted in
Figure (4).

The plot suggests that Iran is more active and
sensitive in smaller earthquakes, but when earth-
quakes go larger than a limit, California shows
more activity. In other words, the memory of Iran is
higher than California for small earthquakes.

The crossing values for original and shuffled data
as well as the relative differences of the time series
for earthquakes in California and Iran have been
presented in Table (1). The relative difference
between original and shuffled data for earthquakes
in California is more than Iran. This means that after
an event in California we must wait longer for the
next event.

The relative difference in time series for Califor-
nia earthquakes is more than Iran. In other words,
earthquakes in California have a better memory in
terms of time compared to Iran, i.e., the waiting time
for occurrence of next earthquake in California is
longer than that in Iran.

Figure (4) displays the relative changes between
earthquakes occurred in Iran and California calcu-
lated using Eq. (6) for the spatial series of q between
0 and 3.

Table 1. The value of N, (q=0), N}, (q=0) and Hurst expo-
nent for Iran and California earthquakes in temporal

series.
N, Ny NG-No[/NooH
Iran 0.0405 0.0859 1.1232 0.82 +0,04
California 0.0456  0.2149 3.7169 0.79 +0,04
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The plot suggests that California is more active
and sensitive than Iran whether in small or large
earthquakes.

Table (2) presents the values of crossing with
positive slope for original and shuffled data as well
as the relative differences of spatial series of g=0
for earthquakes in Iran and California.

Table 2. The value of N (g=0), N,,(q=0) and Hurst expo-
nent for Iran and California earthquakes in spatial

series.
N, N, ING-NGl/NLom
Iran 4.0054  5.0091 0.2506 0.66 +0,04
California 0.9536  0.9387 0.0156 0.68 +0,04

The relative difference in the spatial series
related to Iran earthquakes is more than California,
i.e., there is a higher (more) spatial correlation be-
tween Iran earthquakes. In other words, after earth-
quake occurrence, the fault energy is evacuated and
the expectance that this fault or their neighbor ones
lead to an earthquake is reduced.

Spatial-time distribution for Iran and California
earthquakes is depicted in Figure (5).

Then the crossing of the graph at different radii
has been calculated for the two regions and plotted
in Figure (6).

In this plot, it is shown that the crossing with
positive slope in the spatial with time distribution is in
Iran probability of an earthquake in near time and
place is more than California. This result could be
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Figure 5. Spatial-time frequency plot for Iran and California
earthquakes.
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Figure 6. Plot of N, for Iran and California earthquakes in

spatial-time distribution.

due to the differences of the faults in two regions.
There are a large number of short length faults in
Iran, but there are a few of large length faults in
California (the length of the San Andreas Fault is
about 1,300 km). Therefore, with occurrence of an
earthquake in California, the earth energy is
released and no other fault will cause an earth-
quake. Hence, it takes more time for the next
earthquake to gather energy, or the earthquake take
places in more distant places.

4. Conclusion

In this paper, the concept of level crossing
analysis has been applied to Iran and California
earthquakes. In level crossing method, no scaling
feature is explicitly required and this is the main
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advantage of this method in estimating the statistical
information of the series. Level crossing is based on
stochastic processes that grasp the scale dependence
of the time series. It is shown that the level crossing
is able to detect the memory of series. This method
with no required scaling feature is a powerful method
in characterizing the time series. Considering all of
the above discussions and results, we notice that Iran
and California earthquakes are correlated over time
and location. However, in California, the temporal
correlation of earthquakes is lower than that of Iran.
Most of California earthquakes are strike-slip, but
most of the Iran earthquakes are trust. Thus, when
an earthquake is occurred in California, the earth
energy is released and the rest of the fault discharged
stress; however, the fault behave independently
in Iran. In other words, the percentage of induced
earthquakes in Iran is more than California.
Moreover, in Iran, the probability of an earthquake in
near time or place or near time and place is more, but
in California, the probability of an earthquake in far
time and place or far time and place is more.
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