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ABSTRACT: The Two-dimensional problem of the transient wave
propagation in elastic multi-layered half-space is studied by the Direct
Boundary Integral Equation Method (DBIEM) combined with the finite
difference procedure applied to the time variable. By means of the Wilson-
θ method the equations of motion are transformed into a set of elliptic
partial differential equations, and then, the DBIE-procedure is applied.
The present hybrid formulation employs the fundamental solution depend-
ing neither on the frequency nor on the time variable. This is the main
advantage of the proposed method. The theoretical seismograms in the
time domain are obtained on the free surfaces of two real geological situ-
ations for a multi-layered soil region with existence of salt ore deposits.
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1. Introduction

Transient waves are generated by the body force f(r, t) in
the Navier-Cauchy equation of motion for elastic solids,
or the surface displacement u(r,t), or traction p(r,t) given
as boundary conditions for the corresponding boundary-
value problem. If the time function for these sources is
time-harmonic and the motion is observed long after the
initiation of the source, the wave motion is also harmonic
in time and it is called steady state. Otherwise, the wave
motion is transient. In an infinite medium, the transient
wave field generated by a concentrated force of arbitrary
time function was determined by G. Stokes in 1849. He
constructed the general solution of the inhomogeneous
Navier-Cauchy equation of motion by what is now called
the method of retarded potentials. Next in mathematical
complexity is the problem of transient waves in a half-
space. H. Lamb in 1904 investigated this problem first. The
“half-space” and related problems have since become a
focal point for many studies. Many applications of elasto-
dynamics in seismic mechanics, design of earthquake-
resistant structures, dynamics of structural foundations
as well as basic studies on dynamics of material defects
begin with the model of a half-space. The solution is much
more complicated when additional plane boundaries are
introduced to form a layered half-space. This is a basic
model for theoretical seismograms, which has always been
a subject of intensive study.

The main aims of this paper are:
v To  find the  solution  of  a  two-dimensional  plane-

strain  transient  wave  propagation  problem  for  a
multi - layered  geological  region with complex ge-
ometry on the base of a hybrid usage of both finite
differences scheme of Wilson - θ  method together
with the BIEM.

v To show that the changes in the soil region during
the  years  of  the  exploitation  process  lead  to  the
change in its dynamic response, i.e. to the  change
in the obtained theoretical seismograms.

The propagation of transient elastic waves through
the layered half-space is of considerable interest to
engineers, geologists and seismologists. Lacking any
analytical method to treat such complex problems, resort
has been made to the numerical techniques-finite element
method and boundary integral equation method. Most of
the earlier works on transient wave propagation by BEM
involved transform domain formulations in conjunction
with numerical inversion scheme [8-12], etc. The direct
time-domain formulation of the BIEM is used in [13-16],
etc. Detail analysis for advantages and disadvantages of
BIEM in comparison with other numerical methods is given
in [16]. In this paper a BIEM formulation, different from
the above-cited two formulations, is proposed. By means
of the finite difference method, applied to the time
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variable, the equations of motion are transformed into a
set of elliptic partial differential equations, and then, the
DBIE-procedure is applied at every time step.

The most of the works are devoted to the multi-layered
regions with simple geometry of the boundary between
layers (usually parallel boundaries). To the authors
opinion there is a lack of studies involving real multi-
layered regions with complex geometry of the boundaries
between layers (non-parallel boundaries).

It is given here BIEM formulation, novel numerical
scheme and FORTRAN codes created for solution of a 2D
transient seismic waves propagation problem in a
multi-layered soil region with very complex geometry of
the soil layers and this geological column is a real geologi-
cal region in East Bulgaria.

2.  Formulation of the Problem

2.1. Governing Equations

The mathematical theory of elasticity is formulated in terms
of body force , if  surface force (traction) , iP  stress
tensor , ijσ  strain tensor ij ε  and displacement vector i u
of an elastic body. The isotropic materials are character-
ized by material constants such as the shear module G,
Lame’s constants µλ   ,  and mass density ρ . The linear
theory of elasto-dynamics is embodied in the following
set of governing equations for a body of volume V
enclosed by a surface pu SSS +=
Equation of motion

Vx    uf iijij  ∈=+σ &&,                                                           (1)

Physical equations in elastic case

Vx   v-v/2 ijkkijij          ∈εµ+εδµ=σ 2))2(1(                          (2)

here: 
)(2 µ+λ

λ=
 

v

Equation of geometry

( )i jjiij     uu ,,2
1 +=ε                                                                   (3)

The governing equations of the two-dimensional
motion of an isotropic and homogeneous elastic medium
are obtained by Eqs. (1), (2) and (3) and have the form

( ) )(1
,

2
,

22 tf uuCuC C           jjiijsijisp    −ρ−=−++ &&                            (4)

where i, j = x, y, the summation convention applies to
the repeated suffix i, the notation ii    x∂∂= /(.)(.), is
introduced to denote the partial derivatives with respect
to co-ordinates ,  ix  the dot signifies material time
differentiation and ( )[ ] ,/2 2/1 C     p ρµ+λ=  ( ) 2/1/    sC ρµ=
are speeds of the longitudinal P- and shear S- wave,
respectively. The problem is two-dimensional and of plane

strain and ),,,( tyxu   x ),,( tyxu   y  denote the horizontal and
the vertical displacement components respectively.

The initial and boundary conditions are

pijijuii Syx   pn Syx,   utyxu     ∈=σ∈= ),(at,)(at),,(

uiiii Syx,yx,   utyxu  ,utyxu            ∈∈== )()(),,(),,( 0000 &&     (5)

The governing equations (4) together with the bound-
ary and initial conditions (5) present the boundary-value
problem of the transient elasto-dynamics.

2.2. BIE Formulation of the Problem

The considered problem can be solved using the follow-
ing approaches:
v Laplace  or  Fourier  transformation  leading  to  the

next BIE

( ) ( ) ( ) ( ) ( )[ ] Sdu rPprUruc                    

S
iijjijiy  ∫ ωηωη−ωηωη=ω ,~,,,~,,,~ **

                        ( ) ( )∫ ωηωη+
V

jij VdQrU          ,,,*
                                   (6)

Here r and η  are the position vectors of the field and
running points; the constants ij c  depend on the geom-
etry of the boundary at the collocation point r;  *

ijU  and *
ijP

are the fundamental solutions of the displacement and the
traction given in the Appendix; ,~

  iu  i p~  are the correspond-
ing Laplace or Fourier transformations of the displacement
and the traction; jQ  is the sum of the Laplace or Fourier
transformations of jf  and the members, containing the
initial velocity and displacement; the Laplace transforma-
tion variable is ω−=   iS . This method is used by the
authors in [1, 2, 3].

v A hybrid method consists of two stages:
i) Application of  the method  of  finite differences  in

respect to the time variable-then the set of parabolic
partial  differential  equations  is transformed  into a
set of elliptic partial differential equations;

ii) The BIEM is applied at each time step. This hybrid
formulation is used by authors in [4]  in  the  simple
case of an elastic half-space. This approach will be
used in the current paper but in the case of a multi-
layered  geological region with non-parallel bound-
aries of  the layers.  Due to the  fact  that  this  method
is   applied    here  in  a  multi-layered   region   with
complex  geometry,  we  will  describe it  in  the next
section.

3. A   Hybrid   Method   of   Finite  Differences
Method  and  BIEM  for  the  Solution  of  the
Transient Elasto-Dynamic Problem

The application of the Wilson-θ  method [5] to i u& and i u&&

yields
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where t ∆  denotes the time step and θ  is a coefficient,
which secures the stability and the convergence of the
finite difference procedure. This procedure becomes
unconditionally stable for .37.1>θ  After substitution of
Eq. (7) in Eq. (4), the next system of elliptic linear partial
differential equations is obtained at time t t  ∆θ+

( ) ( ) ( )            t tuCt tuC C jji,Sjij,SP   
 ∆∆ θ++θ+− 222

( ) ii Xt tuk      −=θ+− ∆2                                                         (8)
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As it can be seen from Eqs. (8) the last are the same as
the elliptic partial differential equations, obtained after the
application of the Laplace transform with .)(/6 222

   tk   ∆θ=
That is why the conventional direct BIEM can be applied
to Eqs. (8) at a given time step .  t∆  The fundamental
solutions, given in the Appendix, can be used, but in this
case .   kis =ω−=  The discretization used in the analysis
involves N constant boundary elements and M constant
triangular elements. The points, where the unknown
values are considered, are called “nodes” and they are in
the middle of the element for the so-called “constant”
element. The values of the displacement and the traction
are assumed to be constant over each element and equal
to the value at the mid-element node. For this type of
elements the boundary is always “smooth” as the node is
at the centre of the element. The discretization nodes are
in the middle points of the all N boundary elements over
the free surface and they are in the centres of gravity of
the all M constant triangular elements used for
discretization of the half-space. As a result the next
system of discretized boundary integral equations is
obtained
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where f (t) denotes the time signature of the source,
== yyxx cc 1 for the interior points, == yyxx cc 0.5  for the

points, located at the boundary
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Note, that Eqs. (9a -9c) are evaluated at time , t t ∆θ+
while Eq. (9d) is evaluated at time t. In the above matrices

( )pp
x yxu    00 ,  and ( )pp

y yxu    00 ,  are components of the
unknown displacement, ( )pp

x yxp     00,  and ( )pp
y yxp     00,  are

components of the unknown traction, SS y x ,  are the
co-ordinates of the seismic source, and the notations

() ,/.(.),  Sx x  
S

∂∂=  Sy y  
S

∂∂= /(.)(.),  are introduced to
denote the partial derivatives with respect to Sx  and Sy
respectively.
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Figure 1.  The  (2D)  geometry  of  the  multi-layered  geological
region in 1951.

Figure 2.  The   (2D)  geometry  of  the multi-layered  geological
                 region in 1994.

4. Numerical Realization Algorithm

The numerical procedure for the solution of the transient
elasto-dynamic problem described above is

v Solve the  system  of  Eq. (9)  for  t t ∆θ+= 0   and
obtain  yxyx ppuu

 
,,,  at all collocation points on the

boundary (note that for ).0,0  

k
i t  =α=

v For t t ∆θ+= 0  evaluate yxyx ppuu
 

,,,  and k
y

k
x    αα ,

at all interior collocation points.

v For t t ∆+= 0  by the Wilson-θ  method  calculate
.,,,,,  yxyxyx uuuuuu    

&&&&&&

v For  t t t ∆∆ θ+= solve  the  system of Eq. (9)  and
obtain yxyx ppuu

 
,,,  at all collocation points on the

boundary.

v For t t t ∆∆ θ+= evaluate yxyx ppuu
 

,,,  and k
y

k
x    αα ,

at all interior collocation points.

v For  t t  ∆2=  by  the  Wilson-θ   method  calculate
.,,,,,  yxyxyx uuuuuu    

&&&&&&

v For t t t  ∆∆ θ+= 2  solve the system of Eq. (9) and
obtain yxyx ppuu

 
,,,  at all collocation points on the

boundary.

v For t t t  ∆∆ θ+= 2  evaluate yxyx ppuu
 

,,,  and ,kx α
k
y α  at all interior collocation points.

Based on the above scheme, the evaluation of
responses for t t t  ∆∆ θ+= 3  and subsequent observa-
tion times is straightforward.

5. Numerical Example

Two real geological situations for a multi-layered soil
media with existence of salt ore deposits, in Figures (1)
and (2) are considered. These situations concern one and
the same geological region but in different periods of
its exploitation -in 1951, see Figure (1) and 1994, see Figure
(2). Due to the symmetry the half of the geometry is given

correspondingly in Figures (3) and (4). There is a change
of the situation during the years when the exploitation of
the salt ore deposits has been done. The main goal is to
show that the changes in the soil region during all these
years lead to the change in its dynamic response, i.e.
to the change in the obtained theoretical seismograms. It
is assumed that the region is subjected to the buried
explosive seismic load, which time function is the
parabolic ramp function given in Figure (5)
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Figure 3. A half of the geometry of the geological region in 1951.
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Figure 5. The time function of the dynamic source.

Two-dimensional in-plane transient wave propagation
problem will be solved for the above geological  columns.
The plane strain state is considered. The soil material is
homogeneous, isotropic and elastic. The displacement
vector is with components ),,( tyxu   x and ).,,( tyxu  y 

The initial conditions are

),(),,( 0 yxutyxu    ii =  and ),(),,( 0 yxutyxu    ii && = for   tt 0= (11)

The boundary conditions are, see Figures (3) and (4).

It is convenient to represent the motion in the half-space
as a superposition of the “free-field” motion and the waves
scattered from the multi-layered geological column. The
“free-field” motion consists of the plane incident wave
and the reflected waves of the free boundary. The solution
of the problem for transient elastic waves in a half-space
without any layer due to the buried explosive load of type
(10) is given and compared with other solutions in [4].

The boundary conditions (12) prescribe tractions on
the part of the boundary pS  and displacements on the
complementary part .,,            upupBu SS SS S S φ== IU  They
are:
v On  the  surface  of  the   half-space,  at   y = 0  (the

boundary FJ) all tractions have to be zero

               xpi 0)0,( =                                                              (12a)

v Due to the symmetry it is considered a  half  of  the
geometry  and  for  (x, y) ∈JA   the  next  boundary

conditions are satisfied

           0),( =yxP  y  and 0),( =yxu  x                               (12b)

v The  influence  of   the  geological   column  on  the
motion of the half-space has to vanish at sufficiently
large distances, or Sommerfield boundary conditions
have to be satisfied at infinity.

v On the boundary between two soil  layers i Ω  and

1+i Ω  inside  the  geological column the  next conti-
nuity conditions have to be satisfied

1

),(),(
+

=
ii S

i
S

i      yxuyxu
ΩΩ

                                      (12c)

and the motion must be such  that  all  the  dynamic
forces  acting  onto  the  boundary  are in  dynamic
equilibrium

           
1

),(),(
+

=
ii S

i
S

i      yxpyxp
ΩΩ

                                     (12d)

v On  the boundary between  the  geological  column
and  the half-space  the  next  boundary  conditions
have to be satisfied

                   

e

fieldfree
i

e
i yxuyxu ),(),( −=                              (12e)

for (x ,y) ∈ AB, BC, CE, EF, 541 ,,        e ΩΩΩ=  for Figure (3)
and 871 ,,        e ΩΩΩ=  for Figure 4. The displacement field

),( yxu   
field-free

i  is obtained after the solution of the prob-
lem for transient elastic waves in a half-space without any
layer due to the buried explosive load of type (10).

The governing Eqs. (4), the initial conditions (11) and
the boundary conditions (12) represent the considered
boundary-value problem. The problem is solved following
the numerical procedure described in detail in section 4.

Following the above-described numerical procedure,
overcoming of weak and strong singularities in the
obtained integrals and after satisfaction of the given bound-
ary conditions, an algebraic complex system according to
the unknowns is obtained.

The regular integrals are computed numerically employ-

ing the Gaussian quadrature scheme. The kernels of the

type kij   dP
k 

Γ
Γ
∫ *  have singularities like ,1  

c
O 




ξ±  for

]1,1[ +−∈  c   that leads to the CPV integrals. The kernels of

the type kij   dU
k 

Γ
Γ
∫ *

 have singularities like ))((            cnlO ξ± for

,]1,1[    c +−∈  which leads to non-singular integrals. The

singular integrals are solved analytically based on the
asymptotic expansion for a small argument of the Bessel
function. In all corner points, where the Helder continuity
conditions are not satisfied, it is applied the Lachat and
Watson concept [7] that ,n pn p    

s
jij

s
u

s
jij

s
u   σ==σ= −− 11

 for

Figure 4. A half of the geometry of the geological region in 1994.
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two different boundary elements 1−sΓ  and ,sΓ  which
formed the corner.

6. Numerical Results

In this item the numerical results obtained after the
solution of the boundary-value problem, formulated in
section 5, using the numerical scheme which is described
in section 4 based on the Direct Boundary Integral
Equation Method combined with the finite difference
procedure applied to the time variable are given. The
advantages of this novel BIEM formulation are discussed
in the above items.

The geometrical characteristics of the geological
regions, presented in Figures (1) and (3) and Figures (2)
and (4) are given in Tables (1) and (2). The mechanical
properties of these geological columns are shown in Tables
(1) and (2), see part I of the paper.

The depth of the applied dynamical load is 4500m and
its location is (0.0, 4500m). The epicentre distance of the
receiver is x = 1400m. The time step at the realization of
the numerical algorithm is 0.001s and the value of the

Table 1. Geometrical parameters of the geological column N1.

Table 2.  Geometrical parameters of the geological column N2.

Figure 6a.  Theoretical seismogram for the horizontal displace-
ment in column N1.

B oundary L eng th  [m ]

AB 3400

BC 1000

CE 2000

EF 1000

FI 3000

IJ 400

JK 1000

KL 500

LA 2500

B oun dary L eng th  [m ]

A B 34 00

B C 10 00

C E 20 00

E F 10 00

FI 30 00

IJ 40 0

JK 50 0

K L 50 0

L Q 35 0

Q S 15 0

SW 20 0

WA 23 00 Figure 6b . Theoretical  seismogram  for  the  vertical  displace-
ment in column N1.

parameter θ  is 1.4.
The theoretical seismograms in the time domain for the

horizontal x u  and vertical y u  components of displace-
ment at the receiver, located at the free surface of the
layered half-space at distance x = 1400m, are obtained.
They are perturbed by a buried explosive seismic source
(that is a line source of dilatation acting at Sx =(0.0,4500)).
The time function of the source ,tf   )(  see Eq. (10) is
assumed to be parabolic ramp function which half-rise
time ∆  is taken as ∆ =0.1s.

Figures (6a)-(6b) show the horizontal and vertical
component of displacement in the time domain at a point
(1400,0.0), when the boundary-value problem is solved for
the geological region given in Figure (1).

The theoretical seismograms in the time domain for the
horizontal and vertical displacements obtained at a point
(1400,0.0) when the boundary-value problem is solved for
the geological region given in Figure (2) are shown in
Figures (7a)-(7b).

One can see that the transient dynamic responses of
one and the same real geological region - a multi-layered
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Figure 7a.  Theoretical seismogram for the horizontal displace-
ment in column N2.

Figure 7b.  Theoretical  seismogram  for  the  vertical  displace-
ment in column N2.

soil media with existence of salt ore deposits, obtained at
different exploitation periods (in 1951 and in 1994) are
different. The change of the geological situation during
the years due to the exploitation process in the salt ore
deposits leads to the different transient responses obtained
at the application of a buried dynamic transient load.

7. Conclusion

An application of the novel two-dimensional formulation
of the direct boundary integral equation method proposed
in [4] has been applied here for multi-layered geological
columns with complex geometry. This application concerns
two real geological situations for multi-layered soil
media with existence of salt ore deposits. Figures (1) and
(2) show one and the same geological region but in
different periods of time. One can see that the change of
the geological situation during the years when the

exploitation of the salt ore deposits has been done leads
to the change of the transient wave picture due to the
buried dynamic load. The time records of the surface
responses are computed by the proposed in [4] novel
formulation of DBIEM for the real geological situations
and different wave fields are obtained. These results show
that the changes in the soil region lead to the change in its
dynamic response, i.e. to the change in the obtained
theoretical seismograms. All this assures us that the
exploitation process leads to the changes in the geologi-
cal situation of the region, respectively to the changes of
the soil response during eventual earthquake.

Finally we would like to underline once again that the
present hybrid formulation, combined the finite
difference procedure with the direct boundary integral
equation method employs the fundamental solution
depending neither on the frequency nor on the time
variable. This is a serious advantage of the proposed
method. This work shows that the method proposed here
works well even in the cases of multi-layered geological
regions with complex geometry.*
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Appendix

The function ( )ω,y,xy,x,U  kj 00
*  is the fundamental solution

of the system of Eq. (15) in Part I of this paper and
the function ( ,xy,x,P

 
 kj 0

*  )ω,y0  is the corresponding
traction

( ) [ ]jkkj
qpqp

kj rr,y-y,x-xU   
  

 ,,
*

2
1 χ−ψδµπ=ω

( ) ( )

 +∂

∂δ


 χ−∂
ψ∂

π=ω jkkj
qpqp

kj nr
n
r 

rr
,y-y,x-xP  

 

 
 

 

 

 
 ,

*

2
1

( )} { 




 −−∂
∂

∂
χ∂

π−∂
∂−χ− 22

2
122 2

2

,,,,,
S

P
jkjkkj

V
V

n
rrr

rn
rrrnr

r  

 
  

 

 
  

 
 

 

 
    





 χ−∂

χ∂−∂
ψ∂× kj nr

rrr
  

 

 

 

 

,

where ),( pp yx  and ),( qq yx  are the field point and the
running point respectively
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