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In transient analysis against digitized excitations, and specially, practical seismic
analyses, the steps, by which, the strong ground motions are digitized, might be
smaller than those recommended for the accuracy of integration. In these cases, in
order to consider the total excitation information, the integration steps are to be set
as small as the excitation steps. The result is extra computational cost. In the last
decade, techniques are proposed, to provide the capability of time integration
with larger steps, without disregarding the excitations information. Though the
resulting responses are sufficiently accurate, a fundamental question persists. It is
on the loss of accuracy, when we simply omit the inter-integration-step excitations.
This paper is dedicated to this concern, in the area of seismic analysis. The study
is carried out, through theoretical discussions and numerical examples. As the
consequence, omission of inter-integration-step excitations may impair the responses,
the inaccuracies can be significant, and even, halts of analyses are expectable, in
nonlinear analyses. Implementation of techniques for enlargement of integration
steps can lead to more efficient and more reliable analyses.
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ABSTRACT

1. Introduction

Time history analysis and time integration are
of the most powerful tools to study structural
behaviors, specifically when the excitations are
digitized. For seismic analysis of a structural system,
the conventional approach is to discretize the
mathematical model, in space [1-2], analyze the
semi-discretized model against several earthquake
records and put the responses together, according to
a seismic code, e.g. [3-6]. A typical semi-discretized
model is noted below [1, 2, 7]:
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In Eqs. (1), t and endt  imply the time and the
duration of the dynamic behavior; M is the mass
matrix; intf  and )(tf  stand for the vectors of internal
force and excitation; ),(),( t t uu &  and ),(tu&&  denote the
unknown vectors of displacement, velocity, and
acceleration; ,, 00 uu &  and ,

0intf  define the initial
status of the model (see also [7]); and Q represents
some restricting conditions, in nonlinear problems,
e.g. additional constraints in problems involved in
impact or elastic-plastic behavior [8, 9]. In seismic
analyses, a main reason, for considering Q, and
specifically, ,intf  in Eqs. (1), is the hysteretic behav-
ior of many materials, when subjected to severe
excitations [7, 10]. As a versatile approach to
analyze Eqs. (1) [11], time integration starts, with
the selection of time steps or a criterion for adaptive
time stepping [12]; and considering the initial
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conditions, and if needed, applying an starting
procedure [13], proceeds, marching along the time
axis, and computing the responses, for distinct
consecutive time stations [14] (generally, together
with nonlinearity iterations, at the detected
nonlinearities [15]). The versatility originates in the
simplicity of both the approach and the algebraic
formulation; and the price of the versatility is the
inaccuracy and considerable computational cost of
the analyses [14, 16, 17]. Because of the approxi-
mate formulation and the step-by-step nature of the
computation, the analysis cost and the accuracy of
the responses both depend on ,Δt  that is a measure
for uniformly scaling the distances between each
two sequential integration stations [17]. Smaller
values of t Δ  generally lead to more accuracy (in
view of the essentiality of convergence [18, 19])
and more computational cost; see [14, 20, 21].
Accordingly, efforts towards more efficient analyses
is in everyday progress (e.g. [22-24]), and it is
conventional, to assign values to ,Δt  small enough
to provide sufficient accuracy, and not smaller [6,
14, 16, 25]. The related main and broadly accepted
comment is as stated below [6, 17, 25]:


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



≤ tTht      f Δ,

10
,MinΔ                                         (2)

(for nonlinear problems, there are comments
suggesting the replacement of the '10' in the
denominator in the right hand side, with '100' or
even '1000' [6, 26]). In Eq. (2), h stands for the
largest step size guaranteeing numerical stability
and consistency [14], T denotes the smallest
dominating period of vibration (that when divided
by 10, 100, or 1000, implies a measure to control
the  accuracy), and t f Δ  is the step size, by which,
the digitized excitation is recorded [6, 17, 25, 27].
When the last term in Eq. (2) dominates, i.e.
Eq. (2) leads to ,ΔΔ tt     f=  the analyses suffer from
significant computational cost, to consider the
excitation information completely. In order to
implement the comment stated in Eq. (2), the
convention is to simply obtain the step sizes from
(for nonlinear problems after replacing the '10's in
the denominators with '100' or '1000'):

Obviously, implementation of the second line in
Eq. (3) implies partial disregard of the excitation.
Several techniques are proposed in the last decade,
directly or indirectly relaxing the probable effects
of the excitation omission [17, 28, 29, 30]. The most
successful technique is seemingly the convergence-
based technique proposed in [17, 31, 32]. This
technique omits the inter-integration-step excitations
(as also addressed in the second line in Eq. (3)), and
redefines the excitations at the integration stations,
according to a convergence-based formulation.
Compared to ordinary integration with excitation
steps, implementation of the convergence-based
technique, prior to the ordinary analysis, leads to
considerably less computational cost, while the
excitation information is completely taken into
account, and the loss of accuracy is acceptable; see
Table (1). Still, the essentiality of any step size
enlargement technique is unclear. To say better,
we need to check whether, simple omission of
inter-integration-step excitations is indeed unreliable
and implementation of step enlargement techniques
is really needed. This is the main concern in this
paper. In more detail, the objective here is to respond
to two questions: (1) whether, simple omission of
inter-integration-step excitations can be considered
reliable, in the sense of leading to sufficiently
accurate responses, and (2) whether, compared to
ordinary time integration, with steps obtained from
the second line in Eq. (3) (considered here as
Technique 1), implementation of the technique
proposed in [17], followed with ordinary analysis
(afterwards addressed as Technique 2) is superior.
In Section 2, the ambiguities are studied in brief.
In Sections 3 and 4, Techniques 1 and 2 are com-
pared numerically. Some complementary discussions
are presented in Section 5, and finally, in  Section 6,
the paper is concluded, with a brief set of the achieve-
ments.

2. Theoretical Discussion

In view of Eqs. (2) and (3), provided we can
assign a positive integer to n, satisfying:
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the two techniques, i.e. Technique 1: simple omission
of inter-integration-step excitations, and Technique 2:
omission of inter-integration-step excitations and
consistently changing the excitations at integration
stations [17], can be implemented, prior to ordinary
time integration analysis, with steps 2, 3, ...n times
larger than those of the excitation; see Figure (1). In
Figure (1),

Table 1. Experiences on the computational cost reduction technique introduced in [17].
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Figure 1. Schematic representation of excitation replacement according to the Techniques 1 and 2.
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where, in consistence with Eqs. (3), t Δ  is obtainable
(for both techniques), from:

end
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and n can be computed using Eq. (4) (the second
relation in Eq. (7) is essential in computerizing
Technique 2). Considering the facilities provided
by seismological instrumentation [25, 27], and the
fact that ground motions are natural phenomena,
the assumptions to be met for implementation of
Technique 2 are (see Figure (2) and [17]):
1. The integration steps, …,2,1Δ =jt j , are equally

sized ( jt  implies the jth integration station),

0ΔΔ 1 >=−=∀ − ttttj jjj                                (8)

2. The excitation steps are equally sized (all sized
)Δtf  and embedded by the integration steps (the

first time station, i.e. ,0t  is a station for both
excitation and integration),

∞<=∈∃ + n
t

tZn
f Δ
Δ

                               (9)

The above assumptions, though are imposed
basically on Technique 2, are mostly valid, also in
implementation of Technique 1, and hence, do not
imply deficiencies for Technique 2. Because of this,
the simplicity of Eqs. (5) and (6), and the fact that,
practically, the computational cost reductions for
linear analyses, associated with either of the two
techniques, equal:

(%)1001
n

nAC
−

≅≤                                         (10)

(for a specific value of n, the computational cost of
Technique 1 is less than Technique 2; the difference
is however trivial, unless in analyses of systems
with few degrees of freedom and for few steps),

the adequacy of the two techniques can be studied,
from the standpoint of accuracy. In nonlinear
analyses the computational cost reductions, when
implementing Techniques 1 and 2, can be different,
from each other, and also from Eq. (10). Accord-
ingly, both accuracy and computational cost are
to be taken into account in the nonlinear studies.

From relations like the convolution or the
Duhamel integral [25], it is obvious that omitting
some parts of the excitations histories would affect
the accuracy of the responses. Nevertheless, since
ordinary time integration analyses (either direct or
along with modal superposition [16, 25]) lead to
approximate responses even for linear problems
[14], the effect of the approximation may cancel
out the effect of the omission in Technique 1, leading
to sufficiently accurate responses. Though this is
hardly the case, throughout the integration interval,
if we consider the nature of time integration, and
specifically the dependence of the computed
response on the history of the excitation [14, 46],
expressed as:

,...2,1

Δ
Δ

Δ
Δ

1

1

0
22

 j                                                      

t
t

t
t

j

k k

kkjj

j

=









+
















=

















∑
=

−−

F
F

LA
u
u

u
A

u
u

u

&&&
&

&&&
&

           (11)

for linear analyses, provided the cancellation of the
two above-mentioned errors occurs at the starting
parts of the integration interval, the response,
obtained after implementing Technique 1, will have
the chance to be sufficiently accurate; see the
second term in Eq. (11). In Eq. (11), A and L
respectively stand for the amplification matrix
and load operator [14], each right subscript implies
the instant under consideration, each top dot denotes
once differentiation with respect to time, and F
represents the excitation vector, theoretically

Figure 2. Typical distribution of excitation and integration stations in implementation of Techniques 1 and 2.



JSEE / Vol. 17, No. 1, 2015 47

 On the Essentiality of Techniques to Enlarge Integration Steps in Transient Analysis Against Digitized Excitations

slightly different from the earthquake induced
excitation f. Nevertheless, being dependent on the
system, the excitation, and the integration method,
appropriate cancellation of the two errors cannot be
guaranteed; therefore, Technique 1 is unreliable.
Regarding Technique 2, the technique and its
formulation are based on convergence and the
second order of accuracy of broadly accepted and
conventional time integration methods [14, 16, 47],
and there is no omission of excitation information
in implementation of Technique 2 [17, 32].
Considering these, the past experiences on
Technique 2, reported in Table (1), and meanwhile
the fact that, based on the definition of error [48], i.e.

eE UU −=                                                    (12)

convergence is a main essentiality of approximate
computations [18, 19], Technique 2 seems as an
adequate alterative for reducing the computational
costs. Still, it is reasonable to study the performance
further, especially, compared to Technique 1.

The above discussion on reliability has not
taken into account nonlinearities, see Eqs. (7), (10),
and (11). Nevertheless, considering the complexities
of nonlinear analyses (different stress/strain descrip-
tions, updating the status, nonlinearity iterations,
etc.) [2, 15, 16], it is reasonable to extend the
discussion to nonlinear analyses and do not rely on
the accuracies, when implementing Technique 1 in
nonlinear analyses. Furthermore, considering non-
linear behaviours as sets of finite or infinite linear
behaviours [49], we can expect the better perform-
ance of Technique 2 compared to Technique 1, even
in nonlinear analyses.

3. Numerical Study

As the first example, consider the simple struc-
tural model below:
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where, gu&&  stands for the ground acceleration,
introduced in detail, in Figure (3), and g (in
Figure (3)) is the constant of gravity. The exact
displacement history is as displayed in Figure (4).
The approximate response is computed by the

Figure 3. The excitation in the analysis of Eq. (13).

Figure 4. The exact response of Eq. (13).

average acceleration method [50], once ordinarily,
considering ,ΔΔ t t f=  and then again, after imple-
menting Techniques 1 and 2, and considering

,ΔΔ tnt f=  where:

25,5,2=n                                                       (14)

(Equation (4) recommends n =  14 (as an upper
estimate for n, considering the total integration
interval); however, in view of the changes of
T throughout the integration interval, and the
purpose of this study, several values are assigned
to n.  The results are reported in Figures (5)
and (6). Apparently, compared to the responses
obtained, after implementing Technique 1, the
responses, obtained, after implementing Technique 2,
are closer to the responses computed ordinarily.
The study is repeated for other responses, and
also in analyses against other strong motions and
other time integration methods, and, conceptually,
similar results are observed, not reported here for
the sake of brevity.

As the second example, attention is paid to the
structural system, introduced, in Table (2) and
Figure (7). The Houbolt time integration method
[13, 51, 52] is considered as the analysis tool. Once
again, taking into account Eq. (14) leads to the
comparison of Techniques 1 and 2, reported in
Figure (8), as a clear evidence for the superiority
of Technique 2 to Technique 1 (Eq. (4) recommends
n = 3).
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Figure 5. Displacement history in analysis of Eq. (13) by the average acceleration method.

Figure 6. Frequency content of the displacement in analysis of Eq. (13) by the average acceleration method.

Table 2. Complementary information for the structural system introduced in Figure (7).



JSEE / Vol. 17, No. 1, 2015 49

 On the Essentiality of Techniques to Enlarge Integration Steps in Transient Analysis Against Digitized Excitations

Figure 7. Structural system in the second example.

Figure 8. Mid-height displacement history for the system
introduced in Figure (7) and Table (2) obtained
from Houbolt time integration.

And, as the third example, the structural system
defined in Figure (7) and Table (2) is changed to a
nonlinear system, by considering a shorter neigh-
boring shear frame, with properties identical to
Floors 3-6 of the shear frame in Figure (7a) (see
Figure (9)). To consider two severity of nonlinear
behavior, the study is carried out twice, for the two
excitations displayed in Figures (3) and (7b) (the
non-linear beavior is automatically guaranteed
when considering the excitation in Figure (7b)).
The impacts are all considered elastic (i.e. the
restitution factors equal one), and the e in Figure (9)
equals 0.2 m. Numerical tests revealing the actual
nonlinear behaviours (carried out in view of the
super-position principle) are not reported here for
the sake of brevity. The exact responses are as
typically displayed in Figure (10). Accordingly
(and in comparison with Figure (8a)), Figure (10)
reveals  that, while the first excitation has caused
considerable nonlinearity, the nonlinearity induced
by the second excitation is of small significance.
Four separate sets of analyses, similar to those in
the previous example, are carried out, considering
the two excitations in Figures (3) and (7b) (as ground
accelerations), and the average acceleration and
Houbolt methods, for time integration. In view of
Figure (10) and Eq. (4) (when considering "100"
instead of "10"), n = 2 is an appropriate selection
in implementation of Techniques 1 and 2. Fractional
time stepping [53-55] is implemented for nonlinearity
iterations, and the effects of nonlinear analysis are

Figure 9. A nonlinear version of the structural system intro-
duced in Figure (7) and Table (2).
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Figure 10. Exact mid-height displacement history for the taller building in Figure (9).

Figure 11. Mid-height displacement history for the taller building in Figure (9), considering n = 2.

Table 3. Number of integration steps in arriving at the responses reported in Figure (11).

minimized, by assigning very small values to the
non-linearity tolerances and continuing the non-
linearity iterations the most possible [15, 38,
49]. The results of the comparison between
Techniques 1 and 2 are reported in Figure (11) and
Table (3). Similar to Figures (5), (6), and (8), in
Figure (11), compared to the responses obtained
from Technique 1, the responses obtained from
Technique 2 are closer to the responses obtained
from ordinary analysis (specifically apparent in

Figure (11c)). This, together with the fact that the
com-putational costs corresponding to the two
techniques, reported in Table (3), are close, implies
the superiority of Technique 2 [17] to Technique 1.

4. Real Examples

4.1. Introduction

In the previous sections, we could show that
simple omission of inter-integration-step excitations
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(Technique 1) is not reliable, and Technique 2 [17]
can be a better alternative. In order to examine this
claim in real engineering problems, and make a
practical idea about the unreliability and the
amount of the probable inaccuracies, in this section,
attention is paid to the sloshing phenomenon in
water tanks [56, 57]. Four models are taken into
consideration; two experimental- and two real-sized;
see Figures (12) and (13). In the analysis of the
fluid, for the water level, the space discretization
is carried out, by finite volume hexahedron
elements, in an Eulerian formulation [2, 16], and
the time integration is carried out with the back-
ward Euler method [58]. The nonlinearities are
modelled with the volume fraction method (based
on two phases of air and water in each finite
volume), considering the nonlinearity tolerance
equal to 10-5 [15, 57]. As apparent in Figures (12)
and (13), the models possess two horizontal axes
of symmetry. Furthermore, in Figures (12a) and (12b),
the lengths parallel to the baffles do not influence

the behaviours and the analyses, provided being
more than a minimum to maintain the possibility of
sloshing; and the earthquake records are implemented
in the direction of the axes of symmetry perpendi-
cular to the baffles in Figure (12) and along  the
lengthier axes of symmetry in Figure (13).
Accordingly, the analyses are carried out two
dimensional, with 16120, 16890, 39878, and 47244
elements, respectively, corresponding to Figures (12a),
(12b), (13a), and (13b).

4.2. Experimental Sized Models

In view of the explanations, presented in
Section 4.1, and the importance of baffles in
controlling earthquake-induced sloshing in water
tanks [56, 59], the systems in Figures (12a) and (12b)
are taken into account in this section. The tanks in
Figures (12a) and (12b) are respectively with one
and two baffles. Techniques 1 and 2 are implemented,
in the analyses, considering n = 3, 4, 9, 15. (The
value of n recommended by Eq. (4), after replacing

Figure 12. Experimental sized models involved in sloshing.



JSEE / Vol. 17, No. 1, 201552

Aram Soroushian, Pegah Farshadmanesh, and Soheil Azad

Figure 13. Real sized models involved in sloshing.

Figure 14. Responses histories computed for the model in Figure (12a).

the "10" with "100", is eleven.) The results are
reported in Figures (14) and (15). Apparently,
Technique 1 is not reliable and  Technique 2 leads
to more accurate responses. Specifically, it is worth
noting that, as displayed in Figures (14 c), (14 d),

and (15 d), in implementation of Technique 1, the
analyses can be halted, because of the failure of
nonlinearity iterations, while, implementation of
Technique 2 can lead to sufficiently accurate
responses.
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Figure 16. Responses histories computed for the model in Figure (13a).

Figure 15. Responses histories computed for the model in Figure  (12b).

4.3. Real Sized Models
4.3.1. The Model in Figure (13a)

The study presented in Section 4.2 is repeated,
for the models in Figure (13a), considering:

30,15,5,2=n                                                   (15)

The results reported in Figure (16) reveal the better
accuracy provided by Technique 2.

4.3.2. The Model in Figure (13b)

In this section, the study reported in Sections 4.2

and 4.3.1 is repeated for the model in Figure (13b),
considering:

200,120,50=n                                                 (16)

The resulting time histories are displayed in
Figure (17), all in conceptual agreement with the
previous observations; specially, it is notable that, in
Figure (17c), the analysis using Technique 1 is halted
at the starting steps.

4.4. A Review on the Observations

With attention to Figures (14) to (17), in real
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Figure 17. Responses histories computed for the model in Figure (13b).

seismic analyses (generally nonlinear [3-6, 25, 59-
61]), the responses obtained after implementation of
Technique 1 are unreliable, and compared to the
responses obtained after implementation of
Technique 2 can be less accurate. In view of the
philosophy, design factors, and the details stated
in seismic codes [3, 4, 5, 61], the loss of accuracy
when implementing Technique 1 might be negligible
and unimportant, e.g. cases reported in Figures (14b),
(14c), (15b), and (16). The loss might be practically
considerable, e.g. cases reported in Figure (15c), or
might even prevent a  response throughout the tran-
sient interval; see Figures (14d) and (15d). Halt of
analyses in the starting steps is also probable; see
Figure (17c). Accordingly,  Technique 1 is unreliable
for implementation in real seismic analyses, and
Technique 2 can be an adequate alternative for
enlargement of integration steps and reducing the
computational costs, when tf Δ  considerably
dominates the right hand side of Eq. (2). Still, in
view of rare cases like that reported in Figure (17b),
where the results of the two techniques coincide
and are considerably different from the results of
ordinary analyses, further study on the accuracy
associated with Technique 2 is essential. (Figure (17b)
does not necessarily imply an evidence for the
weakness of Technique 2; see the explanation
in Section 5.) Finally, it is worth noting that, as

apparent in Figures (14) to (17), implementation
of Technique 2 in transient analyses, of systems
discretized in space by finite volume method can be
successful; this is reported for the first time in this
paper.

5. Discussion

Three issues are discussed in this section:
1) Why, in the numerical study, the responses are

compared with the responses of ordinary analy-
ses, not the exact responses?

2) Considering the role of n in Techniques 1 and 2,
and the role of the least dominant period of the
response, T, in determination of n, how should
the value of n be set, practically, prior to the
analysis?

3) How would be the future of techniques directly
or indirectly effectual in more efficient time
integration analysis against digitized excitations?
Regarding the first question, Eqs. (2) to (4),

which are the basis of the discussion in this paper,

all consider ,
100

,
10

T T
 or ,

1000
T

 as the step sizes,

providing sufficient accuracy for ordinary analyses.
This implies the smallness of the difference between
the response of the exact and ordinary analyses, at
least, from a structural engineering point of view (for
an exceptional case, see [45]). Because of this, the
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objective of this paper, and the fact that the exact
responses are not available for nonlinear problems
and are not simply available for linear problems, the
authors have considered the ordinarily computed
responses as sufficiently adequate bases for the study
of reliability.

The second question, i.e. the ambiguity in
determining T and n, in real analyses, can be
responded, considering the fact that the benefit
rate of an appropriate selection of n decreases,
as n increases; see Eq. (10) and the last row in
Table (4). This implies that, by assigning a value to
n smaller than the exact value, determined based
on the least dominant period of the response
(Eq. (4)), we may still considerably reduce the
computational cost, while expecting more accuracy.
Therefore, in assigning an appropriate value to n, it
is sufficient to make a reliable lower estimation for
T (when tf Δ  dominates the right hand side of
Eq. (2), smaller values of T lead to smaller values
of n). This is successfully examined, for mid-rise
residential buildings, e.g. see [41]). A secondary
question may however arise. It is how to reliably
estimate a lower bound for T, to later arrive at a lower
estimation for n. As a response, it is correct that
ambiguities regarding T persist, even when, instead
of determining T, we try to determine a lower
bound for T. Nevertheless, regardless of whether
the excitation is continuous or digitized, the ambigu-
ities originate in the conventional broadly accepted
integration-step-size-selection comments, e.g. Eq. (2)
[6, 16, 17, 25, 26], where, for continuous excitations

.Δ ∞→tf  Because of this, control of errors based
on repetition of time integration analyses is
recommended after time integration analyses [20,
25, 58]. Consequently, in implementation of
Techniques 1 or 2, a final control, with smaller
steps and unchanging value of n, would reveal
whether the obtained accuracy is sufficient [62]. As
a final explanation, Eq. (4) is based on Eq. (2),
which is not a theoretically rigorous inequality.
Therefore, it is reasonable to use the values of n
obtained from Eq. (4), not as values to be assigned

to n, but merely as upper-bounds for the values to be
assigned to n.

Regarding the third question, the amount of the
study carried out in the past decade, directly or
indirectly effectual in reducing the computational
costs, e.g. see [17, 28, 29-45, 63-65], is an im-
plication of the current need to more efficient
methods. Moreover, in view of the every-day
progress in the instrumentation of digitization, e.g.
see [27], we can reasonably expect the decrease
of excitations steps sizes and specifically the sizes
of ground motions steps, at least, for the mid-term
future. Furthermore, transient analyses, and accord-
ingly integration analyses, are in rapid progress
[11, 22, 24, 66-72], and hence, we can expect
continuous improvements towards more accurate
time integration methods. Therefore, the difference
between the sizes of excitation steps and the sizes
recommended for integration steps is in increase,
in view of Eq. (4) leading to higher values of n
and the need to techniques for providing the cap-
ability of more efficient analysis against digitized
excitations. Consequently, more relevant research is
essential.

Regarding the latter, an ambiguity persists. It is
whether, with attention to the everyday growing
capacity of computational facilities and hard wares,
the difference between efficiencies will be meaning-
ful in the coming decades and long term. If the size
and complexity of structural systems and analyses
were unchanging or in gradual increase, surely, there
would come a day that, not only the efficiency, but
also, the computational cost, would be trivial issues.
However, our imaginations are unlimited, and the
structural systems, the structural material, and the
analyses methods, are in continuous advancement
with accelerating rates. These entail larger and
more complicated structural models to be analyzed
every day. The consequence is the essentiality of
further attention to analyses efficiency, and specially,
to techniques facilitating more efficient sufficiently
accurate analyses against digitized excitation, e.g.
earthquake induced excitations.

Table 4. Changes of the cost reduction in implementation of Techniques 1 or 2 in linear analyses (%).



JSEE / Vol. 17, No. 1, 201556

Aram Soroushian, Pegah Farshadmanesh, and Soheil Azad

6. Conclusion

In transient analysis against digitized excitations,
recorded at steps smaller than those recommended
for the accuracy, the conventional approach not to
disregard the excitations information is to time
integrate with steps equal to the steps of the
excitations. Nevertheless, because of the computa-
tional costs, it is also conventional, to scale up
the integration steps sizes, by a positive integer,
and omit the inter-integration-step excitations. In
this paper, the above-mentioned computational
cost reduction technique and a more theoretical,
convergence-based and successful technique [17]
are studied and compared with special attention to
earthquake engineering issues. As the result:
v Simple omission of inter-integration-step excita-

tions, potentially, leads to inaccuracies, practically
unacceptable. The case is worse in nonlinear
problems, and the analyses might even stop
during the nonlinearity iterations. Consequently,
simple omission of inter-integration-step excita-
tions is unreliable.

v Implementation of the technique proposed in [17]
can be considerably more adequate, for both
linear and nonlinear problems.

v The results above are independent, from system,
excitation, and the integration method.

v Besides, it is worth noting that application of
the technique proposed in [17] to transient
analysis of semi-discretized equations of motion
resulted from finite volume method was not
carried out before. The results reported for the
first time in this paper clearly display the adequate
performance.
Accordingly, further investigation on both

techniques is recommended; on simple omission of
inter-integration-step excitations, to determine a
specific range of reliability, and on the technique pro-
posed in [17], for more advancement. An area for
research on the latter, is the comparative distribution
of errors in different oscillatory modes.

Finally, in view of the progresses in seismological
instrumentation, the enhancements in integration
methods, and the trend of establishing larger and
more complex structural systems, further research
towards more efficient time integration analyses
against digitized excitations is essential and strongly
recommended.
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