A series of undrained resonant column, monotonic and cyclic triaxial tests was performed to investigate the effects of non-plastic fines on the dynamic properties of Firoozkooh sand. Specimens of sand-silt mixtures were prepared at different densities, and tested under various confining pressures. Test results revealed that shear modulus decreases with fines, and increases with relative density and confining pressure. Normalized shear modulus is not affected by fines, relative density and confining pressure, while damping ratio is affected by fines and confining pressure. Finally, field cyclic resistance ratios versus normalized shear wave velocity values are developed on the basis of cyclic triaxial and resonant column tests.

1. Introduction

Determination of dynamic deformation properties (i.e., shear modulus and damping ratio) of soil materials is an important step in characterization of their dynamic behavior. Although empirical relationships for the dynamic properties of sands [1-3] have been developed well, these relationships for sand-non-plastic silt mixtures, if found, are rare. It is customary to use modulus reduction and damping curves of granular soils for sand-non-plastic silt mixtures. Hence, similar to sands and gravels, normalized modulus and damping ratio should not depend on relative density, but should depend on confining pressure, in such a manner that normalized shear modulus increases and damping ratio decreases with increase in confining pressure [4-5]. Among the modulus reduction and damping curves for granular soils, the Darendeli [5] model seems to match better for sand-non-plastic silt mixtures, since it considers grain size distribution by incorporating coefficient of uniformity (C_u) in the dynamic properties model. Salgado et al. [6] investigated the maximum shear modulus (G_{max}) of sand-silt mixtures, which were prepared by the slurry deposition method, and contained up to 20% silt. They calibrated Hardin and Richart [7] and Jamiolkowski et al. [8] models to obtain two different relationships for in terms of void ratio, silt content, and initial confining pressure. On the other hand, standard materials are used as a basis to characterize fundamental mechanical behavior of soils. Toyoura, Ottawa and Fontainebleau sands are some examples of the standard materials that are widely used by the geotechnical engineers and researchers throughout the world. Unfortunately, such standard material does not exist in Iran. Recently, Iranian institutions decided to work on Firoozkooh sand as an Iranian standard material. Firoozkooh mine is situated 60 km away from
north of Tehran. The predominant formation of the region is Fajan that is composed of conglomerate and sandstone conglomerate, and belongs to the Paleocene period. The area has faced severe erosion. Recently, Ghalandarzadeh and Bahadori [9] and Bahadori et al. [10] studied the effects of stress anisotropy on the behavior of Firoozkooh sand. However, it seems that more studies are needed to quantify the mechanical behavior of Firoozkooh sand, particularly dynamic deformation properties (including shear modulus and damping ratio), which is a need for equivalent linear and non-linear analyses.

This paper aims to study the dynamic deformation properties (i.e., shear modulus and damping ratio) and liquefaction resistance of Firoozkooh sand and its mixture with non-plastic silt. It is attempted to cover the gaps in the context of dynamic behavior of sand-silt mixtures in geotechnical literature. Dynamic properties in small and large strains are evaluated on the basis of the resonant column and cyclic triaxial tests conducted on the Firoozkooh sand-silt mixtures. As a companion to the dynamic tests, monotonic triaxial tests were also carried out to explore the static liquefaction behavior of the mixtures. This paper, first, presents the static liquefaction behavior of the Firoozkooh sand-silt mixture followed by dynamic deformation properties of the mixtures, and finally, cyclic resistance versus shear wave velocity curves are developed based on the cyclic triaxial and resonant column tests.

2. Materials and Experimental Method

The study described herein investigates the effects of non-plastic silt content on the shear modulus, damping ratio and the shear wave velocity-based cyclic resistance of Firoozkooh sand using undrained cyclic triaxial and resonant column tests. The systems used for conducting tests were automated triaxial testing and fixed-free type, torsional resonant column apparatus. A detailed description of the soils used, sample preparation technique and tests procedures are given below.

2.1. Soils Tested

Firoozkooh sand (#161) is uniformly graded silica sand (SP) with a mean grain size, D_{50} of 0.25 mm, coefficient of uniformity, C_u of 1.75 and a specific gravity of 2.67. Its grains are sub-angular to sub-round in shape. The non-plastic silt used in the testing program was derived from the fine-grained portion of the Firoozkooh sand. Figure (1) shows the grain size distributions of the soils used in this study. The scanning electron microscope photographs of the sand and silt are also depicted in Figure (2). Clean sand with three mixtures of sand-silt was used in this study. The mixtures were obtained by mixing 15, 30, and 60% of silt by weight, respectively, with sand. The specimens were prepared to achieve after-consolidation relative densities of 15, 30, 60 and 75% depending
Dynamic Properties of Firoozkooh Sand-Silt Mixtures

2.1. On their silt content. The global void ratio, \(e \) along with minimum void ratio, \(e_{\text{min}} \) and maximum void ratio, \(e_{\text{max}} \) for the mixtures are presented in Table (1). Figure (3) presents the variation of \(e_{\text{max}} \) and \(e_{\text{min}} \) in terms of silt content.

Table 1. Values of void ratios for different mixtures.

<table>
<thead>
<tr>
<th>Type of Materials</th>
<th>(e_{\text{min}})</th>
<th>(e_{\text{max}})</th>
<th>Dr = 15%</th>
<th>Dr = 30%</th>
<th>Dr = 60%</th>
<th>Dr = 75%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand</td>
<td>0.38</td>
<td>0.87</td>
<td>0.83</td>
<td>0.78</td>
<td>0.09</td>
<td>0.03</td>
</tr>
<tr>
<td>Sand + 15% Silt</td>
<td>0.41</td>
<td>0.81</td>
<td>0.76</td>
<td>0.7</td>
<td>0.58</td>
<td>0.51</td>
</tr>
<tr>
<td>Sand + 30% Silt</td>
<td>0.32</td>
<td>0.854</td>
<td>0.77</td>
<td>0.69</td>
<td>0.53</td>
<td>0.45</td>
</tr>
<tr>
<td>Sand + 60% Silt</td>
<td>0.36</td>
<td>1.259</td>
<td>1.124</td>
<td>0.99</td>
<td>0.72</td>
<td>0.58</td>
</tr>
</tbody>
</table>

2.2. Method of Sample Preparation

In order to obtain a uniform density throughout the specimen, the undercompaction technique [11] was used. The procedure consists of placing each layer at a density slightly greater than the density of the layer below it to account for the decrease in volume and the increase in density that occurs in the lower layers when a new layer is placed on it. The specimens were made of six layers with an undercompaction value of 5%, so that the relative density varied by 1% per layer. To ensure uniform density throughout the specimen height, the void ratio distribution within the specimen was obtained by solidifying a specimen using a gelatin solution [12]. The solidified specimen was then sliced into sections and the distribution of void ratio within the test specimen was determined. The measurements revealed that the relative error in achieving the required density throughout the specimens was successfully less than 5% for each layer. In addition, the specimens were prepared in a Plexiglas mold to have better control over layer thickness. During sample preparation, it was found that forming low density specimens for high silt content (i.e., 60%) materials was impossible because of excessive collapse during the saturation. Thus, high silt content specimens were prepared at high relative densities of 60 and 75%, meanwhile other specimens were prepared at densities of 15, 30 and 60%.

2.3. Test Setup

Resonant column and cyclic and monotonic triaxial tests were run in this study. Small-strain shear wave velocity and strain dependent-shear modulus \((G) \) of sand-silt mixtures were obtained by a fixed-free type torsional resonant column apparatus in small shear strain amplitude (i.e. \(10^{-6} < \gamma < 10^{-4} \)). The tested specimens were typically 70 mm in diameter and 100 mm in height. The specimens were saturated with a Skempton B-value in excess of 98%, under application of a 100 kPa back pressure. To facilitate the saturation process, carbon dioxide \((CO_2) \) was first percolated through the specimens. Following the saturation, specimens were isotropically consolidated under three effective confining pressures of 100, 200 and 300 kPa. All the relative densities reported herein are based on the after-consolidation void ratios.

All the monotonic and cyclic triaxial tests were run on the specimens with a typical diameter of 70 mm and a height of 150 mm. The sample preparation technique and saturation procedure were similar to the ones in resonant column tests. In the cyclic triaxial tests, the specimens were loaded sinusoidally at a frequency of 0.1 Hz under stress-controlled condition [13] at the appropriate cyclic stress ratio until they liquefied under an initial confining pressure of 100 kPa. Monotonic triaxial test was also performed on the sand-silt mixtures under three effective confining pressures of 100, 200 and 300 kPa.
3. Test Results and Discussion

3.1. Static Liquefaction of the Firoozkooh Sand-Silt Mixtures

To explore all features of liquefaction behavior of Firoozkooh sand, 33 undrained monotonic triaxial tests were conducted on sand-silt mixtures. The effective stress paths on the $p' - q$ diagram (p' = mean effective confining stress, and q = deviatoric stress) for all the tested materials are shown in Figure (4). The steady state line, SSL [14] is typically shown for the clean sand prepared at a relative density of 60% (Figure 4a). It is observed that in the clean sand and sand-silt mixtures containing up to 30% silt flow liquefaction occur, as was previously shown by Yamamuro and Lade [15], and Lade and Yamamuro [16]. However, the mixtures with 60% silt content exhibit flow liquefaction with limited deformation [17] (Figure 4d). Table (2) shows steady state angle of friction (ϕ_{ss}'). As seen, ϕ_{ss}' decreases with fines content.

3.2. Shear Modulus and Damping Ratio of Firoozkooh Sand-Silt Mixtures

Shear modulus and damping ratio are important input parameters in dynamic analyses. To explore all features of the dynamic behavior of Firoozkooh sand, it was decided to evaluate the dynamic deformation properties of the Firoozkooh sand-silt mixtures. Figure (5) show the effects of non-plastic fines on the shear modulus of Firoozkooh sand at different relative densities and confining pressures. The experimental results clearly show that at an identical relative density and effective confining pressure, shear modulus decreases when fines content is raised. As shown, shear modulus of clean sand is reduced up to 40% when silt content is 60%. Hence, a weaker structure would be formed when fines content is raised. It can also be inferred that in all the mixtures, shear modulus increases with relative density and confining pressure. Next, on the basis of the shear modulus obtained at very low shear
Dynamic Properties of Firoozkooh Sand-Silt Mixtures

Strains (i.e. $\gamma \approx 10^{-6}$), a mathematical model for maximum shear modulus of Firoozkooh sand-silt mixtures was developed. Form of the model was based on the Hardin and Richart [7] equation that states the maximum shear modulus in sands can be presented as:

$$G_{\text{max}} = AF(e)(p'_0)^n$$ \hspace{1cm} (1)

in which A is an empirical constant reflecting soil fabric formed through various stress and strain histories, n is empirically determined exponent, approximately equal to 0.5 [18], $F(e)$ is a void ratio function, and p'_0 is initial mean confining pressure.

It was shown (Figure 5) that shear modulus is a function of silt content, confining pressure and relative density or void ratio. Hence, to characterize the low-amplitude dynamic properties of Firoozkooh sand-silt mixtures, it is necessary to find an appropriate mathematical model in the form of Equation (1). Herein, a regression analysis based on the least square technique is used to find the values

![Figure 5. Effect of fines on the shear modulus of Firoozkooh sand.](image)

<table>
<thead>
<tr>
<th>Material</th>
<th>Drt(%)</th>
<th>e_{opt}</th>
<th>CRR$_{\text{opt}}$</th>
<th>V_s (m/s)</th>
<th>α_{max}</th>
<th>β</th>
<th>CRR$_{\text{opt}}$ (Eq.6)</th>
<th>CRR$_{\text{opt}}$ (Eq.9)</th>
<th>V_s (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clean Sand</td>
<td>15</td>
<td>0.096</td>
<td>182</td>
<td>0.88</td>
<td>1.15</td>
<td>0.087</td>
<td>0.07</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.132</td>
<td>193</td>
<td>0.68</td>
<td>1.15</td>
<td>0.103</td>
<td>0.094</td>
<td>174.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>0.25</td>
<td>201</td>
<td>0.63</td>
<td>1.3</td>
<td>0.201</td>
<td>0.15</td>
<td>178</td>
<td></td>
</tr>
<tr>
<td>Sand + 15% Silt</td>
<td>15</td>
<td>0.112</td>
<td>169</td>
<td>0.83</td>
<td>1.15</td>
<td>0.106</td>
<td>0.082</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.142</td>
<td>181</td>
<td>0.752</td>
<td>1.15</td>
<td>0.123</td>
<td>0.1</td>
<td>167</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>0.23</td>
<td>202</td>
<td>0.65</td>
<td>1.3</td>
<td>0.194</td>
<td>0.138</td>
<td>181</td>
<td></td>
</tr>
<tr>
<td>Sand + 30% Silt</td>
<td>15</td>
<td>0.061</td>
<td>157</td>
<td>0.832</td>
<td>1.15</td>
<td>0.058</td>
<td>0.045</td>
<td>149</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.096</td>
<td>168</td>
<td>0.796</td>
<td>1.15</td>
<td>0.088</td>
<td>0.068</td>
<td>157</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>0.23</td>
<td>189</td>
<td>0.68</td>
<td>1.3</td>
<td>0.203</td>
<td>0.138</td>
<td>171</td>
<td></td>
</tr>
<tr>
<td>Sand + 60% Silt</td>
<td>60</td>
<td>0.033</td>
<td>164</td>
<td>0.69</td>
<td>1.3</td>
<td>0.03</td>
<td>0.02</td>
<td>149</td>
<td></td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>0.093</td>
<td>175</td>
<td>0.66</td>
<td>1.45</td>
<td>0.068</td>
<td>0.048</td>
<td>157</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Summary of resonant column and cyclic triaxial tests results for the tested materials.
of constants A and n in Equation (1). It is supposed that $F(e)$ takes the same form as stated by Hardin and Richart [7]:

$$F(e) = (2.973 - e) / (1 + e) \quad (2)$$

Then, the appropriate model for each mixture was obtained as follows:

Clean Sand:

$$G_{\text{max}} = 4528F(e)\left(p_0^{0.38}\right) \quad R^2 = 0.80 \quad (3)$$

Sand + 15% Silt:

$$G_{\text{max}} = 2977F(e)\left(p_0^{0.40}\right) \quad R^2 = 0.89 \quad (4)$$

Sand + 30% Silt:

$$G_{\text{max}} = 2116F(e)\left(p_0^{0.45}\right) \quad R^2 = 0.86 \quad (5)$$

Sand + 60% Silt:

$$G_{\text{max}} = 994F(e)\left(p_0^{0.59}\right) \quad R^2 = 0.86 \quad (6)$$

where R^2 is the coefficient of determination.

Figure (6), clearly shows that A and n depend on the fines content (FC). Therefore, a general equation for Firoozkooh sand-silt mixtures can be represented as:

$$G_{\text{max}} = -57(FC) + 4159F(e)p_0^{0.004(FC)+0.36} \quad (7)$$

where FC is in percent, and G_{max} and p_0' are in kPa.

Having obtained the values of maximum shear modulus, normalized shear modulus (G / G_{max}) curves can be drawn for Firoozkooh sand-silt mixtures. Figure (7) shows the effects of fines on the normalized shear modulus of Firoozkooh sand for the range of shear strains covered by resonant column tests in this study. To have better understanding on the dynamic deformation properties of the sand-silt mixtures, normalized shear modulus curves of Seed et al. [2] have been superimposed on Figure (7). As seen, normalized shear modulus of sand-silt mixtures is independent of fines content, and fall in the upper bound region of Seed et al. [2] curves. It is also evident that G / G_{max} of clean sands and sand-silt mixtures is almost independent of relative density and confining pressure.

Figure (8) shows the effect of fines on the damping ratio of Firoozkooh sand for the range of shear strains covered by resonant column tests in this study. Curves of Seed et al. [2] have also been superimposed on Figure (8). As seen, damping ratio decreases with silt content up to 30% fines, further increase in fines content would increase damping ratio. However, damping ratio of clean sands is still more than that of the mixtures containing 60% fines. As shown, damping ratio of clean sand is reduced up to 35% when silt content is 30%. In addition, the values of damping ratio for
Firoozkooh sand-silt mixtures fall in the lower bound region of Seed et al. [2] curves.

Figures (9) and (10) typically show the effects of relative density and confining pressure on the damping ratio of clean sands and sand-silt mixtures respectively. As seen, damping ratios of clean sands and sand-silt mixtures are almost independent of relative density, but depend somewhat on the confining pressure. As seen, the damping ratio of all the mixtures decrease with confining pressures.

3.3 Shear Wave Velocity-Based Cyclic Resistance of Firoozkooh Sand-Silt Mixtures

Several liquefaction evaluating procedures have evolved over the past three decades since a simplified method was pioneered by Seed and Idriss [19]. The use of shear wave velocity (V_s) as an index of liquefaction resistance has a sound basis because both V_s and liquefaction resistance are similarly, but not proportionally, influenced by many of the same factors (void ratio, state stress, stress history, geologic age). The advantages of a V_s-based method have been discussed by many researchers (e.g., [20-21]). The prevailing approach involves in-situ V_s measurements at sites experiencing earthquakes, following the framework of the Seed and Idriss [19] simplified procedure and correlating the overburdened stress-corrected shear wave velocity (V_{s1}) to the magnitude-scaled...
cyclic stress ratio (CSR) induced by earthquakes. However, these in-situ V_s-based methods are still less well-defined mainly because of the lack of field performance data [22]. Most measured soil parameters for in-situ V_s testing are for post-earthquake properties and do not exactly reflect the initial soil states before earthquakes. Thus, despite their great practical importance, field correlations do not furnish insight into the fundamental behavior of liquefiable soils. As pointed out by Seed and Idriss [19], if field seismic conditions are properly simulated, controlled laboratory studies can be used to broaden the applicability of liquefaction criteria, especially where little or no field performance data is available. A number of studies have focused on this subject on clean sands and sand-silt mixtures (e.g., [21, 23-27]), which demonstrated the validity of laboratory V_s-based methods.

In the present study, initial liquefaction was defined when the pore pressure in the specimen first equaled the initial confining pressure or the specimen reached 5% double amplitude axial strain, whichever occurred first. Cyclic resistance ratio (CRR_triaxial) was also calculated as the cyclic stress ratio required causing initial liquefaction in 15 cycles of loading [17]. V_s was also inferred from the G_{max} obtained from the resonant column tests as:

\[V_s = \sqrt{\frac{G_{\text{max}}}{\rho}} \] (8)

where \(\rho \) is mass density of the tested soil.

The results of cyclic triaxial and resonant column tests for this study are presented in Table (2). Both the CRR_triaxial and V_s were obtained in the undrained cyclic triaxial and resonant column tests under isotropic consolidation conditions, which are usually different from the in-situ conditions. Therefore, some consideration should be given in applying the laboratory test-based CRR_triaxial - V_s correlation to in situ conditions. It is common to correct CRR to in situ CRR (CRR_{field}) approximately as follows [28]:

\[CRR_{\text{field}} = \alpha \beta \cdot CRR_{\text{triaxial}} \] (9)

where \(\alpha \) and \(\beta \) are correction factors. Constant \(\alpha \) can be presented by many equations, as follows:

\[\alpha = K_0 \] (10)

\[\alpha = \frac{1 + 2K_0}{3} \] (11)

\[\alpha = \frac{1 + K_0}{2} \] (12)

\[\alpha = \frac{2(1 + 2K_0)}{3\sqrt{3}} \] (13)

in which \(K_0 \) is effective earth pressure ratio at rest. Equations (7a) and (7b) were proposed by Seed and Peacock [28] and Equations (7c) and (7d) by Finn et al. [29] and Castro [30] respectively. Coefficient \(K_0 \) was also considered as equal to \((1 - \sin \phi')\) where \(\phi' \) is the angle of internal friction. For each mixture at a specific relative density, \(\phi' \) was determined using monotonic undrained triaxial tests conducted under initial confining pressures of 100, 200 and 300 kPa (i.e. \(\phi'_{SS} \) in Table 2). Finally, by averaging over the \(\alpha \) values from Equations (7a) to (7d), the desired value of constant \(\alpha \) was determined (i.e. \(\alpha_{\text{mean}} \) in Table 2).

Constant \(\beta \) is a function of relative density [31] and is defined as:

\[D_r \ll 45\% \Rightarrow \beta = 1.15 \] (14)

\[D_r > 45\% \Rightarrow \beta = 0.01D_r + 0.7 \] (15)

Recently, Jafarian et al. [32] proposed the following relationship for CRR_{field}:

\[CRR_{\text{field}} = 0.9[-0.534\xi_R + 0.095\xi_R + 0.814][0.777(0.2 - \xi_R)^{4.47} + 0.139] \] (16)

The above equation was developed for a moment magnitude (M_w) of 7.5. \(\xi_R \) is also relative state parameter \((-0.6 \ll \xi_R \ll 0\) as suggested by Konrad [33] and Boulanger [34]:

\[\xi_R = \frac{1}{Q - \ln\left(\frac{100P_a}{P_s}\right)} - D_r \] (17)

where \(P_a \) is the atmospheric pressure, and \(Q \) an empirical constant dependent to the mineralogy and breakage of soils, and taken equal to 10 [35]. Table (2) presents the value of CRR_{field} based on two methods for different mixtures.

On the other hand, the measured V_s requires adjustment allowing for the different stress states.
As V_s was widely observed to depend equally on principal stresses in the direction of wave propagation and particle motion [36], V_s can be expressed as:

$$V_{sf} = V_s\left(\frac{1 + 2K_v}{3}\right)^{0.25}$$

(18)

where V_{sf} is the equivalent field value of laboratory measured V_s. According to common practice [21] the V_{sf} in Equation (9) should be further corrected in terms of the in-situ effective overburden stress (σ_v') as follows [30]:

$$V_{s1} = V_{sf}\left(\frac{P_a}{\sigma_v'}\right)^{0.25} = V_s\left(\frac{1 + 2K_v}{3}\right)^{0.25} \left(\frac{P_a}{P_0'}\right)^{0.25}$$

(19)

where V_{s1} = overburden stress-corrected velocity; P_a = atmospheric pressure; and P_0' = mean effective stress in the laboratory. Table (2) presents the value of V_{s1} for each mixture.

3.3.1. Comparison of Converted Laboratory Results with Field-Based Correlation

To check the validity of the results of this study, the CRR_{field}-V_{s1} correlations developed in the laboratory for this and other laboratory-based studies are compared to the field-based correlations of Andrus and Stokoe [21] for different ranges of fines content (FC), i.e.: $FC \leq 5\%$, $5\% < FC < 30\%$, and $FC \geq 30\%$, as shown in Figure (11).

As seen, the results of this study are fairly close to the Andrus and Stokoe curves. However, most of the other laboratory-based results show a significant scatter with respect to the Andrus and Stokoe curves. Figure (11a) shows that the CRR_{field}-V_{s1} correlation for the clean sand used in this study almost lies near the semi-empirical curve proposed in the simplified procedure for fines content of less than 5%. Similarly, the trends in the laboratory data on sands with 15% fines content was found to be consistent with the liquefaction boundary curves developed by Andrus and Stokoe for $FC = 20\%$ from the field performance data (Figure 11b). As shown in Figure (11c), the laboratory-based correlations from this study for $FC = 30$ and 60% plot almost below the field-based curve for $FC \geq 30\%$; hence, using the field-based correlations would overestimate the liquefaction resistance of these sand-silt mixtures.

As seen in Figure (11), significant differences may exist between laboratory-based correlations and the field performance data of Andrus and Stokoe [21]. This difference may originate from the inherent uncertainties in laboratory and field performance data.

4. Conclusion

An attempt has been made to evaluate dynamic behavior of Firoozkooh sand, as an Iranian standard material, and its mixtures with non-plastic fines.
Specimens were prepared at different densities and tested under different confining pressures in triaxial and resonant column apparatus. Data from previous laboratory studies on sands, silty sands and the laboratory data generated as the part of this study were also compared to field based CRR_{V_s} curves prepared by Andrus and Stokoe [21]. The following conclusions, regarding the effects of non-plastic fines on the shear modulus and damping ratio and liquefaction susceptibility, can be drawn from this study:

- Monotonic triaxial tests revealed that the clean sand and sand-silt mixtures with silt content up to 30% exhibit flow liquefaction behavior. Meanwhile, 60% silt content mixtures show flow liquefaction with limited deformation behavior. Angle of friction in steady state also decreases with fines content;
- At an identical relative density and effective confining pressure, shear modulus decreases when fines content is raised. In addition, shear modulus increases with relative density and confining pressure;
- Maximum shear modulus of Firoozkooh sand-silt mixtures can be represented as a function of void ratio, initial confining pressure and fines content;
- Normalized shear modulus of clean sands and sand-silt mixtures is almost independent of relative density and confining pressure and the values of normalized shear modulus for the Firoozkooh sand-silt mixtures, fall in the upper bound region of Seed et al. [2] curves;
- Damping ratio decreases with silt content up to 30% fines, further increase in fines content would lead to the increase in damping ratio. Damping ratio of clean sands and sand-silt mixtures is almost independent of relative density, but depend somewhat on confining pressure, and decreases with confining pressure. In addition, the values of damping ratio for the Firoozkooh sand-silt mixtures, fall in the lower bound region of Seed et al. [2] curves.
- In conversion of laboratory data to field condition, results show that the $CRR_{field_{V_s}}$ correlation for the Firoozkooh clean sand and Firoozkooh sand containing up to 15% fines lie closely to the semi-empirical curve proposed in the simplified procedure by Andrus and Stokoe [21]. The $CRR_{field_{V_s}}$ values for FC = 30% and 60% in present research are almost below the field-based curve for, which means that field-based correlation overestimate the liquefaction resistance of these sand-silt mixtures related to the present study.

Acknowledgements

This research was conducted in and supported by the International Institute of Earthquake Engineering and Seismology (IIEES) under the Contract No. 6712. This support is gratefully appreciated.

References

