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ABSTRACT

In this paper, we investigate the long-range correlations and trends between
consecutive earthquakes by means of the scaling parameter so-called locally Hurst
parameter, H(t), and examine its variations in time, to find a specific pattern that
exists between Earthquakes. The long-range correlations are usaully detected
by calculating a constant Hurst parameter. However, the multi-fractal structure of
earthquakes caused that more than one scaling exponent is needed to account
for the scaling properties of such processes. Thus, in this paper, we consider the
time-dependent Hurst exponent to realize scale variations in trend and correlations
between consecutive seismic activities, for all times. We apply the Hilbert-Huang
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transform to estimate H(t) for the time series extracted from seismic activities
occurred in California during 12 years, from 2/24/2007 to 9/29/2017. The superior-
ity of the method is discovering some specific hidden patterns that exist between
consecutive earthquakes, by studying the trend and variations of H(t). Estimationg
H(t) only as a measure of dependency, may lead to misleading results, but using this
method, the trend and variations of the parameter is studying to discover hidden
dependencies between consecutive earthquakes. Recognizing such dependency

patterns can help us in prediction of future main shocks.

1. Introduction

Earthquakes are complex phenomena to analyze.
Seismic data as time series exhibit complex
patterns, as they encode features of the events
that have occurred over extended periods of time,
as well as information on the disordered morphology
of rock and its deformation during the time that the
events were occurring. It is for such reasons that
seismic records appear seemingly chaotic. Numer-
ous papers have reported that large events are
preceded by anomalous trends of seismic activity
both in time and space. Several reports also indicate
that seismic activity increases as an inverse power
of the time to the main event (sometimes referred to
as an inverse Omori law for relatively short time

spans), while others document a quiescence, or
even contest the existence of such anomalies at all.
If such anomalies can be analyzed and understood,
then one might be able to forecast future large
events.

One of the most interesting properties that time
series of different kinds of phenomena exhibit, is
the long-range correlation, also known as long
memory or long-range persistence, means that the
auto-covariance function decays exponentially, by
a spectral density that tends to infinity [1]. Self-
similar processes have been used successfully to
model data exhibiting long memory and arising in
a wide variety of fields, ranging from physics
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(geophysics, turbulence, hydrology, solid-state
physics, ...) or biology (DNA sequences, heat
rate variability, auditory nerves spike trains, ...), to
human operated systems (telecommunications
network traffic, image processing, pattern recogni-
tion, finance, ...) [2].

For self-similar (or scale invariant) processes,
the probabilistic properties of the process remain
invariant when it is viewed at different time-scales.
In mathematical expression, a stochastic process
{X (t), t e R*} is scale invariant or self-similar with
Hurst parameter H, if for all A >0 it follows the
scaling law: X (A t) =1" X (t), t e R*, where = means
equality in all finite dimensional distributions [3].
The index H characterizes the self-similar behavior
of the process, and a very large variety of methods
has been proposed in the literature for estimating
it [4-6].

Earthquakes are an example of complex pheno-
mena that are scale invariant and fractal in their
collective properties. These properties are revealed
both in nature and laboratory experiments where the
spatial, temporal and size distributions of earthquakes
or laboratory acoustic emissions display structures
that are invariant in scale [7-9]. The emergence of
these properties is indicative of complexity and
nonlinear dynamics in the earthquake generation
process, such that concepts like fractals and multi-
fractals are becoming increasingly fundamental for
understanding geophysical processes and estimating
seismic hazard more efficiently. Therefore, time
series of earthquakes are widely used to charac-
terize the main features of seismicity and to provide
useful insights into the dynamics of the seismogenic
system. The complex phenomenology exhibited
by earthquakes is due to the deformation and
sudden rupture of parts of the earth's crust because
of the external forces acting from plate tectonic
motions [10].

Detecting the long-range power-law correlations
between consecutive earthquakes is regarded as a
main feature in studying seismic activities. This
property traditionally measured by the scaling
Hurst parameter, which allows distinguishing the
persistence (correlation), anti-persistence (anti-
correlation) or randomness of the data [11]. Until
now, the Hurst exponent is estimated as a constant
parameter for the whole seismic data process.
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However, based on the multi-fractal structure of
seismic data, considering only one Hurst exponent
for the whole process, may lead to misleading
results. Therefore, to study the short or long-range
dependence in seismic activities, more than one
scaling exponent is needed to account for the scaling
properties of such processes, which reflects the
occurrence of different dynamics at different
time-scales, and the local variations of roughness
can be described by allowing the Hurst exponent to
vary with time [12]. References [6, 13-16] studied
this family of self-similar processes, and estimated
the local Hurst parameter H (t).

In spite of wide application of approaches based
on nonlinear dynamics methods, the Fourier and
wavelet transformations, etc., there are essential
limitations, which narrow down the range of appli-
cability of the results obtained. One of the main
difficulties is that seismic data are discrete signals,
which is not taken into account. Another factor, which
should be taken into account is the influence of local
time effects. Alongside the discreteness and the
local behavior of the seismic signals, is the influence
of long-range memory effects.

Now, in this work, to detect the long-range
correlations that exist between foreshocks, main
shock and the aftershocks corresponds to earthquakes
that occurred during 12 years in California
(Figure 1), we estimate the Hurst exponent locally
using the empirical mode decomposition (EMD)
and the Hilbert-Huang transform (HHT). The
Hurst exponent, that also called H index of long-
range dependence, is a measure of long-term
memory of a time series. It quantifies the tendency
of a time series either to regress to the mean value,
or to cluster in a direction. The Hurst exponent
was introduced in the analysis of hydrological
data by [17]. By applying this method, at first, the
time series of earthquakes decomposes into several
oscillatory modes by means of empirical mode
decomposition, and then, the Hilbert transform is
applied to these oscillations to obtain time varying
attributes. The time-dependent scaling properties
of seismic data are associated with the relative
weights of the amplitudes at characteristic frequen-
cies.

The main contribution of the paper is investi-
gating the trend and time-dependent autocorrelation
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Figure 1. The map shows the earthquakes occurred in
California during 24 February 2007 to 29 September 2017.

patterns that exist between consecutive seismic
activities occurred around great earthquakes. This
study will help us to find a specific hidden pattern
that exists between seismic activities that leads to
main shocks and prediction of them. For this end, we
should study some earthquakes in a special area, that
in this paper we consider earthquakes in California
during 10 years and define the main shocks as
earthquakes with magnitudes greater than 6. Then,
its foreshocks and aftershocks are considered as
earthquakes occurred three days before and seven
days after the main shock, respectively. Thus, we
construct some intervals in the time index, which
consist of foreshocks, main shock and the after-
shocks correspond to those earthquakes, and then
calculate the exponent for all times in the intervals.
By this method, the Hurst exponent is estimated
locally and so, we can detect short and long
memory behavior exist between consecutive
seismic activities. However, we should notify that,
in spite of the importance of estimating H(t), we
should know that considering only the value of
this parameter may lead to misleading results.
Because, most of the time, we estimate H(t) for
seismic data as a measure less than or equal to 0.5,
which shows a stochastic behavior of seismic
activities. But, in fact, there is a great dependancy
among earthquakes that are not shown by only
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computing the value of H(t). Thus, in addition of
estimating the locally Hurst parameter, we should
study its trends and variations in time to discover
some hidden patterns which declare us great
earthquakes. Therefore, we propose a new method
in discovering such hidden trends by studying the
behavior of H(t) in time. Thus, we can detect
some trends that exist among foreshocks and their
relationships to occuring the main shock, and also
between the main shock and its aftershocks. Using
this method, some hidden patterns exist among
consecutive earthquakes are realized, where at first
glance, it seems that they are happening randomly,
but in fact they are strongly dependent. As an
example, we have studied earthquakes happened
during 10 years in California that contain six
main shocks to show this kind of hidden trends
and correlations that repeated regularly in all six
great earthquakes.

The paper is organized as follows: In Section 2,
we review the Hilbert-Huang transform and
the methodology used for estimation of H(t). In
Section 3, the performance of the method is
evaluated for simulated data, and then we apply
the method to estimate the time-dependent Hurst
exponent for investigating the long-range correl-
ations and trends between foreshocks, main shock
and the aftershocks of seismic activities occurred
in California during 10 years, from 2/24/2007 to
9/29/2017.

2. Methodology

To describe nonlinear distorted waves in detail,
along with the variations of these signals that
occur naturally in nonstationary processes, the
HHT was developed. As is well known, the data
analysis methods for nonlinear and nonstationary
processes provide very limited options. The natural
physical processes are mostly nonlinear and
nonstationary, where the available methods are
either for linear but nonstationary, or nonlinear but
stationary and statistically deterministic processes
[18]. Thus, the HHT was developed to provide an
alternative view of the time-frequency-energy
paradigm of data. In this approach, the nonlinearity
and nonstationarity can be dealt with better than
by using the traditional paradigm of constant fre-
quency and amplitude. One way to express the
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nonstationarity is to find instantaneous frequency
and instantaneous amplitude. This was the reason
why Hilbert spectrum analysis was included as a
part of it [19]. The HHT consists of two steps: namely,
the empirical mode decomposition and the Hilbert
transform. In this section, we will introduce briefly
both components of HHT and present some pro-
perties of HHT.

The EMD decomposes the time series into a set
of intrinsic mode functions (IMFs), and the Hilbert
transformation of these IMFs provides local frequency
and amplitude attributes [20]. The EMD is a fully
adoptive decomposition that does not require any a
priori basis systems. The purpose of the method is
to identify oscillating components of the process
with scales defined by the local maxima and the
minima of the data itself. Hence, given a time series
Y(),t=1,2,..., N, the EMD decomposes it into a
finite number of IMFs denoted as 3, (t), k =1,---, n
and a residue function, £(¢t). The IMFs are com-
ponents oscillating around zero and obtained
through a sifting process, which uses the local
extrema to separate oscillations starting with the
highest frequency. At the end of the sifting process,
the time series Y (t) can be expressed as:

Y(©)=3%, +e) )

where the residue function, ¢(t), is the non-oscilla-
ting drift of the data [21].

First, the EMD method pre-processes the time
series and then the Hilbert transform is applied.
The easiest way to compute the instantaneous fre-
quency is by using the Hilbert transform, through
which the complex conjugate Sk (t) of any real
valued function §, (¢) can be determined by:

8,03, 0] = | %d"' )

—0

where the integral has a singular point at t=¢ and
it is defined as a Cauchy principal value [22]. In this
case, a complex function Z,_, would be defined as
Z,(t)=38,(t)+5, (t)=a, (t)e'™", with amplitude
a,(t) and phase ¢, (t) that are defined as follows:

8, 0=y51 0+, O=tan' =D g

0, (t)

Also, the instantaneous frequency is defined as
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the derivative of the phase, ¢, (t), with respect to
the time:

b (1)
dt 4

O )=

The time-dependent Hurst estimation method
proposed in [20], was constructed by observing how
the local amplitudes a, (t) in Equation (3), change
with respect to the local periods 1, (t)=w,'(t) for
all k=1,2,.--, n. The estimation method was first
applied to the fractional Brownian motion (fBm),
and empirically observed that the amplitude function
obtained through the HHT follows a power-law
behaviour with respect to the instantaneous period
as:

a, ()t (1) (5)

where the time-dependent Hurst exponent describes
the local scaling properties of the IMF amplitudes
and takes values distributed around the Hurst
parameter of fBm [20].

3. Simulations Results

To investigate the accuracy of the method in
Hurst estimation and so in detection of long-range
dependence, first we apply the method for simulated
data, and then we estimate the Hurst parameter
locally for California seismic activities. To this end,
first, we have generated a fBM with scale exponent
H=0.6 and length 10000. Then, the HHT method is
appliedandthe H (¢) is estimated forall ¢t [1, 10000].
Figure (2) shows the simulated fBm. Also, the
estimated time-dependent Hurst exponent for the
simulated fBm is depicted in Figure (3) for all times
t=1 to 10000. The mean and standard deviation of
the estimated H (t), are computed as 0.5957697 and
0.0079905, respectively. Evidently, the mean is very
close to the Hurst exponent 0.6 with very small
variance, which shows the accuracy of the esti-
mation method.

For inquiring the accuracy of the estimation
method, we have simulated m= 100 sample paths of
fBm with length T=10000 and different Hurst
parameters H = 0.1, 0.2, ..., 0.9. Then, the time-
dependent Hurst exponent, H (t), is estimated for
each time. The time-dependent sample mean for
each t is calculated as H (t) = %ﬁﬁ ; D). Also, we

j=I
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Figure 2. A simulated fractional Brownian motion with length T=10000 and Hurst exponent H=0.6.
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Figure 3. The estimated time-dependent Hurst exponent for the simulated fBm in Figure (2), for all times in t = 1 to 10000.
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Figure 4. Mean-square of errors of time-dependent Hurst parameter estimation in 100 repetition of fBm for H=0.1, ..., 0.9.

calculated the mean square of errors (MSE) of fBm. Figure (4) shows the MSEs of H(t) for

. . 1 & . _
the estimation as MSE = . ZZ(HJ (t)—H)Q, different Hurst parameters H= 0.1, ..., 0.9.
m

ERS . .
where H is the Hurst parameter of a fBm that we 4- L.ocal Hurst Analysis of Seismic Data
have simulated, and H,(¢) is the Hurst exponent Now, in this section, we apply the HHT method

estimated from the j-th sample path simulated from for empirical data. In this case, we investigate whether
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there exist a long-memory pattern between the
consecutive seismic data, by measuring the Hurst
exponent locally. Also, we can check how the main
shocks are related to the foreshocks and the
aftershocks. To study the long-memory behavior
between foreshocks, main shock and the after
shocks precisely, we consider earthquakes in
California during 10 years, beginning with the
earthquake occurred on 2/24/2007 and ending with
the earthquake on 9/29/2017. As noted before, most
of the time, dealing with real world data, the Hurst
parameter is not constant for the whole process
that may change in time. Therefore, to investigate
accurately the long-range correlations between
consecutive earthquakes, the time-dependent Hurst
exponent should be computed. However, computing
H(t) for the whole process, which consists of
earthquakes occurred during 10 years would be
confusing and can not lead to an accurate and
acceptable result. In order to enhance the applica-
bility of the estimation method in detection of
long-range dependence between earthquakes, we
consider some subintervals of the process, where the
parameter H (t) is estimated locally for consecutive
earthquakes of each subinterval, separately. First,
we choose only great earthquakes, which in this
paper we consider only the ones with magnitudes
greater than 6. Then, each subinterval is constructed
based on the main shock, and its fore and aftershocks,
where we consider three days before and seven days
after the main shocks as periods for foreshocks and
after shocks, respectively. Then, the time-dependent
Hurst parameter is estimated for all times in each

subinterval. This procedure in selecting subintervals,
enabling us to characterize explicitly the correlations
exist between the fore and aftershocks, and also
discovering hidden dependencies and trends exist
between consecutive earthquakes. Figure (5) shows
the 38895 seismic activities with magnitudes greater
than 1.1 occurred in California from 2/24/2007 to
9/29/2017.

In this study, we have considered seismic activi-
ties in a special area for 10 years to distinguish a
long-memory pattern that exists between fore-
shocks, main shock and the aftershocks, based on
the locally Hurst parameter. Studying the behavior
of H(t), enables us to model how the consecutive
earthquakes are correlated, and its variations in
time helps us to distinguish hidden trends and also
the relationship between foreshocks that leads to
the main shock. To this end, we have considered
earthquakes with magnitudes greater than 6 as a
main shock, and seismic activities for three days
before and seven days after the main shock as
foreshocks and aftershocks, respectively. As we have
seen below, there exists a precise pattern between
so many earthquakes, which at first glance, it
seems that they were happened randomly, but in
fact they are strongly dependent. One reason for
considering 10 years earthquakes is to show this kind
of correlation pattern in so many earthquakes,
which may be used as a precise tool in predicting
main shocks [23-26].

4.1. LRD Detection Between Fore and Aftershocks

At first, we consider the first great earthquake
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Figure 5. Time-series of magnitudes for seismic activities occurred in California during 24 February 2007 to 29 September 2017,

(38895) earthquakes.

70

JSEE / Wl. 21, No. 3, 2019



Detection of Long-Range Correlations and Trends Between Earthquakes in California

that happened in the subinterval of time, consisting all times. Therefore, by considering the values of
of seismic activities occurred on 8th to 17" January  H (t), we may conclude that all earthquakes occurred
2010. Then, we study the behavior of the estimated randomly. However, by considering the times that
time-dependent Hurst parameter to discover earthquakes happened and comparing the values of
hidden trends and correlatons between consecutive  H(t) against the corresponding magnitudes in
earthquakes, which leads to the main shock, and Figure (7) (top), it should be noted that the values of
after that the dependencies goes to zero. Figure (6) H(t) are increasing in time, and the autocorrelation
(top) shows the estimated time-dependent Hurst between foreshocks, and also foreshocks and the
exponent, where this parameter is less than 0.5 for  main shock, which occurred on 1/10/2010, enhanced.
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Figure 6. The estimated time-dependent Hurst exponent, H(t), for seismic activities occurred in California, where the time intervals

consist of three days before and seven days after the main shock, that the main shocks occurred in: January 2010 (top), April 2010
(middle), and December 2012 (bottom).
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Figure 7. The magnitudes time series for seismic activities occurred in California, where the time intervals consist of three days
before and seven days after the main shock, that the main shocks occurred in: January 2010 (top), April 2010 (middle), and
December 2012 (bottom).
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Figure 8. The estimated time-dependent Hurst exponent, H(t), for seismic activities occurred in California, where the time intervals
consist of three days before and seven days after the main shock, that the main shocks occurred in: March 2014 (top), August 2014

(middle), and December 2016 (bottom).

After the main shock happened, the Hurst param-
eter still grows till 1/13/2010, which shows that the
autocorrelation between aftershocks are increasing.
As it can be seen in Figure (7) (top), there is only one
peak in the plot which corresponds to earthquakes
that happened on July 13, 2010. By comparing
Figures (6) and (8) (top), we realize that six earth-
quakes with magnitudes near 4 happened until
1/12/2010 that caused such an increasing trend in
H(t). In this case, in spite of the values of H(t)
that shows the random behavior, by this technique
we detect a strong relationship between foreshocks
where increased till the main shock happened, and
also there are strong dependencies between
aftershocks that goes to zero after some big
earthquakes.

Next, we consider earthquakes that happened
on 2™ to 11" April 2010. The time-dependent
Hurst parameter is estimated for all times and the
plot is depicted in Figure (6) (middle). As it can be
seen in this plot, which shows the behavior of H (t)
in time, we realize that the Hurst parameter for
foreshocks are less than 0.5, and so we may
conclude that they were happening randomly.
However, the parameter H(t) was increasing till
the main shock occurred on 4/4/2010. Then, the
Hurst parameter is still increasing until it reaches to
H(t)= 0.65, which corresponds to aftershocks
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until 5/4/2010, and after that the autocorrelation
between aftershocks decreases. By comparison of
this Figure with its Magnitude counterparts in
Figure (7) (middle), we realize that three after-
shocks with magnitudes 5, 4.9 and 5.1 happened
on 5/4/2010, and the first peak corresponds to their
aftershocks (aftershocks of these three earth-
quakes). Other peaks in the figure also show the
great autocorrelation between aftershocks especially
for 10™ and 11% October 2010, about one week after
the main shock, and after that the autocorrelation
between aftershocks decreases evidently.

Figure (6) (bottom) shows the behavior of H (t)
in time, for seismic activities occurred on 12™ to
21 December 2012. In this plot, we also see that
the values of H(t) for all foreshocks are less than
0.5, and so the autocorrelations between con-
secutive earthquakes are weak. Just considering
the values of H(t), may lead to the result that the
foreshocks were happening randomly. However by
considering the trend in the values of H (t), and also
by comparing the values of H(t) versus time and
magnitudes that they were happened (Figure 7 (top)),
we realize that the values of H(t) are increasing in
time till 12/13/2010, and then the parameter H (t)
decreases until the main shock with magnitude
6.14, happened on 12/14/2010. It should be notified
that when the Hurst exponent decreases on 13®

JSEE / Wl. 21, No. 3, 2019
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December, the time-series of magnitudes is also
decreasing (Figure 6 (bottom)), which shows that
there is no dependence between activities, and so
they were happening randomly. On the other hand,
when we do not expect an earthquake, the main shock
with magnitude 6.14 happened. After the main
shock, the Hurst parameter is increasing in time till
20" December (six days after the main shock),
which is shown as a peak in Figure (7) (bottom).
After that the Hurst parameter shows a random
behavior in aftershocks, which means the after-
shocks were happenning randomly.

Now, we study the autocorrelation between
consecutive earthquakes happened during 8" to 17%
March 2014. The values of H(t) are depicted in
Figure (8) (top). In this plot, we also see that the
values of the Hurst parameter for foreshocks are
less than 0.5 which may provide a misleading
result that the foreshocks occurred randomly.
However regarding the increasing trend in H (t)
leads to the result that the autocorrelation between
consecutive earthquakes raised until they reached
to 0.5 that correspond to foreshocks happened on
3/9/2014. Then, the autocorrelation between
foreshocks decreased to H (t)= 0.04, and when the
autocorrelation is near zero, the main shock happened
with magnitude 6.8 on 3/10/2014, Figure (9) (top).
After the main shock, the Hurst parameter increased
again for aftershocks happened on 10" March,
where we have two aftershocks with magnitude
greater than 4.35. During three days after the main
shock, there is not a significant trend in H (t) values.
But the autocorrelation between aftershocks
decreased to a value near 0, on 3/10/2014, and then
an earthquake occurred with magnitude 4.41. We
should notify that, the same as before, when the
value of H(t) goes to zero and we do not expect an
earthquake, it happens. Again, as we have seen in
this plot that the autocorrelation between con-
secutive aftershocks increased and we have
significant autocorrelation between aftershocks on
14™ March. For the rest of aftershocks, the Hurst
parameter varies between 0 and 0.45, and then it
vanishes.

The behavior of the estimated parameter H(t)
for seismic activities during 22" to 31 August 2014
are depicted in Figure (8) (middle). Based on values
of the time-dependent Hurst exponent, we conclude

JSEE / Wl. 21, No. 3, 2019

that the foreshocks were happening randomly and
there is not any significant dependence between
foreshocks and the main shock, which occurred on
8/24/2014 with magnitude 6.02. In spite of the fact
that the foreshocks happened randomly, the figure
shows that the Hurst parameter were increasing
till the main shock occurred, and after that the
estimated H(t) for aftershocks increased only for
the day that the main shock happened and then the
Hurst parameter decreased. Moreover, there are
some peaks in the figure that illustrates the sig-
nificant autocorrelation between the aftershocks.
By comparison with Figure (9) (middle), it can be
seen that the peaks in Figure (8) (middle) corresponds
to aftershocks of earthquakes that happened with
magnitude greater than 3. It should be noted that,
we first consider a subinterval that consists of
earthquakes occurred during 22" to 3 1%t August 2014,
in which there is not any significant long-range
dependence behavior in fore and aftershocks. But
if we consider seismic activities in aftershocks
with magnitude greater than 3, some long-range
dependence specified between their aftershocks.

For earthquakes occurred during 6th to 15
December 2016, as it can be seen in Figure (8)
(bottom), there are short-range dependence between
foreshocks and also between foreshocks and the
main shock, which occurred on 12/09/2016. After
the main shock, the autocorrelations between after-
shocks are increasing and some peaks are evidently
seen in the figure, where the time-dependent
Hurst parameter is estimated greater than 0.5, which
shows that there is a long-range dependence between
aftershocks for about seven days, and after that
the autocorrelation decreases and aftershocks
randomly occurred.

5. Conclusions

We investigate the autocorrelations exist between
foreshocks, main shock and the aftershocks in
seismic activities occurred in California during 10
years, from 2/24/2007 to 9/29/2017. We can
measure this autocorrelation by means of the Hurst
parameter. However, dealing with real-world data,
considering a constant parameter for the whole
process may lead to misleading results. Therefore,
we consider time-dependent Hurst parameter, which
can vary with time. Using such a time-dependent
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parameter, we are able to estimate the autocorrelation
between consecutive earthquakes. However, most
of the time, considering only the value of H(t) may
lead to misleading results. In this paper, we have
shown such situations where the Hurst parameter
shows the random behavior in occurring earthquakes,
but there are strong correlations between foreshocks
that lead to main shock. We have shown this
strategy in predicting main shocks by checking the
H(t) pattern in time, for six great earthquakes
that happenned during 10 years in California, and we
have realized that this pattern is repeated for all
earthquakes. Thus, we conclude that, considering only
the value of H(t) may lead to misleading results
and can not help us in predicting main earthquakes.
However, we notify that we should check carefully
the pattern of the parameter, to detect hidden strong
correlations between consecutive earthquakes. To
inquire how the Hurst parameter varies in time in
foreshocks and aftershocks, we select some sub-
intervals of time in the whole process, in which each
subinterval consists of a main shock with magnitude
greater than 6 and its fore and aftershocks. Then,
we estimate the Hurst parameter for all times in
subintervals by means of the Hilbert-Huang
transform and empirical mode decomposition
method.
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