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A hysterical constitutive law for reinforced concrete subjected to earthquake
loadings in both compression and tension is presented in this study. This constitu-
tive law is selected to provide improvements on modeling the hysterical behavior of
concrete structures in the finite element codes under earthquake loadings. The
fundamental framework of the presented concept is the stress-based elasto-
plastic-damage-fracture (EPFD) theory. In this theory applied relationships in
compression domain include the elasto-plastic-damage behavior and in tension
domain, include the elasto-plastic-fracture behavior. The main novelty of the
proposed hysterical constitutive law for reinforced concrete lies in the fact that
the foundation of constitutive formulations are based on thermodynamics
framework and all the required parameters can be obtained through simple
formal tests. In the case of earthquake loading, the 1/3 scaled wall model, which was
tested on the shaking table at C.E.A., has been derived from experimental results
obtained by considering the dependency of the hysterical parameters with the EPFD
attained by the concrete.
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1. Introduction

The rational computational analysis of reinforced
concrete structures subjected to earthquake loadings
requires realistic mathematical description of the
material response under various stresses. The require-
ments characterize RC behavior with a constitutive
law, which gives the stress as a function of strain, for
reproducing the exact behavior of the structures. In
order to model the behavior of concrete structures
under earthquake loading, it is essential to model
the tension and compression envelope curves and
properties of the concrete material.

In this paper, a novel EPFD constitutive law for
predicting the cyclic parameters of reinforced concrete
and damage of concrete subjected to earthquake
loading is presented.

In the past, different constitutive laws have been
presented to realize the behavior of concrete in many
articles [1-15]. Numerous concrete models have
been proposed in the recent years. In the macroscopic

level, four broad categories can be distinguished:
a) models derived from the theory of elasticity, b)
models based on the theory of plasticity [4, 11, 16],
c) models based on the continuum damage theory
[7, 15, 17, 18, 19], and d) models based on the
fracture mechanics [1, 9, 10, 12, 18, 20, 21, 22].
Also, some coupled models based on the association
of elasto-plasticity and continuum damage theory
[3, 5, 6, 13, 14, 23], and elasto-plasticity and fracture
mechanics [13], have been recently developed.

The first objective of the present study is to find
a novel general potential function which can estimate
the behavior of materials in different conditions due to
variation of material parameters. This potential
function should satisfy a complete description of the
elastic compression strains, the elastic tension strains,
the plastic compression strains, the micro cracks in
tensions, the micro crashes in compression, the cracks
in tension, and the crashes in compression.
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The constitutive law created by this novel potential
function could describe the behavior of concrete for
unconfined and confined state under earthquake
loadings.

In this study, a complete uniaxial hysterical consti-
tutive law is presented for reinforced concrete. For
this constitutive law, mechanical formulations were
derived from the thermodynamic principles and were
verified by generalization of test results for concrete
under cyclic and earthquake loading histories. Many
uniaxial stress-strain models have been documented by
different researchers, such as [24-27]. Most of them
refer only to the compressive cyclic behavior of
concrete and just a few consider the cyclic tension
response.

This paper is organized as the following. First, the
theory of constitutive law of reinforced concrete based
on thermodynamics framework will be introduced.
In the next section, the mapping of the complete
hysterical constitutive law based on EPFD theory will
be presented. The F.E.M. relations required for
modeling of reinforced concrete structure under
earthquake loading will be then rewritten in steady
state. And finally, the law will be verified, a numerical
study for simple cases will be presented, and some
conclusions will be presented.

2. The Constitutive Law Governing Reinforced
Concrete

In this section, a framework for deriving novel
constitutive law provided by thermodynamics is
established. In the first step, the terminology of
classical thermodynamics is used, but some minor
changes are convenient. The classical thermodynam-
ics makes use of the intensive quantities pressure p
and temperature ,Θ  together with extensive quantities
specific1 volume v, and specific entropy s. Four
energy functions are defined, the specific internal
energy, specific Helmholtz free energy, specific
enthalpy and specific Gibbs free energy. Each energy
function is defined by two state variables, and other
state variables are obtained by the differentials. The
Helmholtz free energy is a Legendre transform of the
internal energy, in which the roles of entropy and
specific volume are interchanged. In this paper, the
relations are expanded based on Helmholtz free
energy. In applying thermodynamics to quasi brittle

materials as concrete, it is necessary to replace the
role of pressure by the stress tensor, and the specific
volume by the strain tensor. Therefore, The Helmholtz
free  energy may be expressed in the form of ),,( ΘΨ ijf ε
and the following relationships are then readily

obtained as 
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2.1. First Law of Thermodynamics

After this introductory description, the first law of
thermodynamics can now be presented in a general
form suitable for purposed constitutive law of
reinforced concrete. In global form, the first Law of

Thermodynamics is .
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2.3. The Choice of Evolution Laws Fulfillment of
the EPFD Mechanical Dissipation Inequality

The EPFD constitutive law must fulfill the mecha-
nical dissipation inequality. The EPFD mechanical
dissipation inequality appears from section (2.2) as:
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So, the EPFD mechanical dissipation of Helmholtz
free energy is changed to .0≥= κκ       aAd f

mech &  If all
forces are zero, it seems reasonable to assume that
also all fluxes are zero (if κ  A = 0 then κ  a& = 0). In
this paper, the potential approach is applied for
establishment of the EPFD evolution laws for κ  a&  so
that the EPFD mechanical dissipation of Helmholtz
free energy is fulfilled (For more information, see
Appendix (I), and Figure (1)).

2.4. Yield Surface

For a rate-independent material (like concrete)
the dissipation must be a homogeneous first order
function in ,κ  a&  since (for fixed ratios between the
rates) the magnitude of dissipated energy must be
directly proportional to the magnitude of deformation.
For a homogeneous first order function, Euler's
theorem gives:
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And comparing κκ      aA &  with ,      aA κκ &  the following

is obtained:
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The roles of the EPFD fluxes κ a&  and the sets
of conjugated dissipation forces κ  A  can now be
interchanged by a further Legendre transform. The
transform of the dissipation function is in fact the
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2.5. Generating an EPFD Constitutive Law

Adopting the approach described above, the EPFD
constitutive law of reinforced concrete is entirely
defined by the specification of two potentials:
a) The Helmholtz free energy potential.
b) The yield surface.

Therefore, the principle EPFD constitutive laws
are obtained as follows:
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Figure 1. The generation of plΦ function of concrete.
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In the numerical analysis of problems involving
nonlinear materials under earthquake loading, the
incremental form of the EPFD constitutive law is
usually required. This, for instance, often forms a
central part of a finite element analysis.
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For the plastic multiplier , y
plλ&  the following are

satisfied:
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And the plastic consistency condition is .0=λ pl
y
pl    Φ&&

It is assumed that the strain is divided into elastic,
plastic, damage and fracture strains.
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And the Helmholtz free energy is divided into four
parts:
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To better identify the EPFD response introduced
by the considerations presented in the previous
sections by the total stress-strain relations, in this
section, the tangent rate equations, associated to the

general laws developed above are derived. Global
relations between the rates of total strain σ&  and stress
are obtained as follows. The rate form of the elastic
relation leads to:
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this last expression are eliminated in the usual way.
Indeed, the imposition of the fracture consistency in
combination with Eq. (13) leads to:
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The plastic strain rates plε&  in this last expression
are eliminated in the usual way. Indeed, the imposition
of the plastic consistency in combination with Eq.
(16) leads to:
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Finally, the damage strain rates daε&  in this last
expression are eliminated in the usual way. Indeed, the
imposition of the plastic consistency in combination
with Eq. (18) leads to:
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3. Mapping to Hysterical Constitutive Law
Based on EPFD

In this section, uniaxial constitutive law for plain
or reinforced concrete subjected to earthquake
loadings in both compression and tension is presented.
Under real dynamic and earthquake loadings,
quasi-brittle materials, like concrete, may experience
complex loading processes involving not only full
or partial loading- unloading- reloading processes in
tension or compression spaces, but also mixed cycles
involving compression and tension.

This uniaxial hysterical constitutive law was divided
into compression envelope curve, tension envelope
curve, compression unloading curves, tension unload-
ing curves, compression reloading curves, tension
reloading curves, partial unloading-reloading, and
transition laws.

Most researchers commonly accept that the
uniaxial monotonic stress-strain can approximate the
envelope curve for concrete subjected to uniaxial
hysterical compression [27, 30-33]. As shown in
Figure (2), the envelope curves must verify some
special conditions:
a) The initial slope at origin should be equal to the

Yong modulus
b) This curve should present post peak coordinates

correctly (maximum stress, and strain correspond-
ing the maximum stress), ascending (hardening),
and descending (softening) branches. In appendix

Figure 2. Crack-close model.

(II), more explanation is provided about uniaxial
constitutive law.

4. Reinforced Concrete Structure under Earth-
quake Motion

To further illustrate the capability of the proposed
constitutive law, the simple shear wall is subjected
to ground acceleration during several earthquake
motions.

The equation of motion of a structure subjected to
a single support seismic excitation ),(    tug&&  can be
written as [34]:

)(}{][}{][}{][}{][                               turMuKuCuM g&&&&& +−=++      (21)

in which the ×n 1 vector {u} designates the relative
displacements of the degrees of freedom; n is the
number of degrees of freedom; n x 1 the {r} vector is
the influence vector representing the displacement
of each degree of freedom resulting from static
application of a unit ground displacement; and the
n x n matrices [M  ], [C  ] and [K  ] represent the
structural mass, damping and stiffness matrices,
respectively.

The structural damping matrix [C ] is assumed to
be proportional to the mass and stiffness matrices as
[34]:
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∝  and 0β  are the proportional coefficients; 1ω  and

2ω  are the structural modals frequencies of modes 1
and 2, respectively; and 1ξ  and 2ξ  are the structural
damping ratios for modes 1 and 2.

The equation of motion of a nonlinear multi degree
of freedom system subjected to a single seismic
excitation )(tug&&  can be written as:
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the n x 1 vector {r} is the influence vector representing
the displacement of each degree of freedom resulting
from static application of a unit ground displacement.

The state equations of the combined system can be
written in the standard state-space form as follows:
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in which the [2n x 1] state vector Z is . u  u TTT
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The state matrix [A1], input matrix [B1], output
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matrix [C1], vector {eq} and output vector {d} are,
respectively, given by:
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in which O is a zero matrix and I is an identity matrix;
1m indicates that the value of column n is unity; mu
and mu&  are the displacement and velocity of the mth

degree of freedom, respectively. For solving this
problem, the simulink of MATLAB (V.7.6.0) is used,
see Figure (3).

To investigate the effectiveness of the nonlinear
constitutive law for different disturbances, four

different seismic motions are used in the numerical
simulations. These ground acceleration records are:
El Centro 1940, San Francisco 1957, Northridge 1994
and Kobe 1995 earthquakes. The absolute peak ground
accelerations (PGAs) of these earthquake records are
0.29, 0.64, 0.112 and 0.44g, respectively, see Table
(1) and Figures (4) and (5).

5. Numerical Study

5.1. Description of the CAMUS Experiment

In order to present a numerical model, the experi-
mental results of a wall have been used. To achieve
this goal, a 1/3 scaled model has been tested on the
shaking table at C.E.A. [35]. The mock-up is shown
in Figure (6).

The mock-up is loaded by horizontal acceleration
parallel to the walls. The response spectra on Figure
(6) shows the difference of these four kinds of
earthquakes. The Rayleigh damping coefficients have
been adjusted to impose a value of 1% on the first
mode and 2% on the second mode. The material
parameters are: E = 30000MPa for concrete with a
maximum compressive strength of 35MPa and 3MPa

Figure 3. Generation of nonlinear structural system under seismically exciting motion.

                                        1. National Earthquake Information Center

Table 1. Earthquake ground motion information.

Ref. Duration PGA (g) Location Name ID 

NEIC1 39.09 0.29 Houston El Centro F2 

NEIC 40.95 0.64 Kobe Kobe F23 

NEIC 39.59 0.11 Golden Gate Park San Francisco F26 

NEIC 29.98 0.44 Beverly Hills Northridge F25 
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Figure 4. Time history of selected earthquakes.

Figure 5. Spectrum of selected earthquakes (El Centro, San Francisco).

Figure 6. CAMUS mock up [36].
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in tension. Concerning steel, E = 200000MPa, yield
stress = 414MPa and the ultimate tensile strength is
480Mpa. Table (2) provides the ratio of steel reinforce-
ment for each wall.

Figures (7) to (10) show the analytical response of
the wall by the measured horizontal top displacement
under selected earthquakes.

5.2. Constitutive Law of Concrete with Pre-Cracking
Nonlinear Response

In this section, the uniaxial constitutive law of

Figure 8. The displacement of top point of wall under Kobe
ground motion earthquake.

Figure 9. The displacement of top point of wall under
San Francisco ground motion earthquake.

Figure 10. The displacement of top point of wall under
Northridge ground motion earthquake.

Table 2. Steel reinforcement ratio for each wall (mm2).

Figure 11. The stress-strain relationship of node 121 of shear
wall under Northridge ground motion earthquake.

Figure 7. The displacement of top point of wall under El Centro
ground motion earthquake.

Various Levels Sa, Sb Sc 

Level 5 15.9 78.4 

Level 4 28.2 78.4 

Level 3 94.4 110.2 

Level 2 188.9 138 

Level 1 289.4 138 

concrete with pre-cracking nonlinear response related
to seismic engineering is evaluated. To achieve this,
pre-cracking stress-strain relationship for one confined
point in core of shear wall was presented in Figure
(11).
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5.3. Affected Constitutive Law in Tension-Stiffening
by the Bond Slip and Reinforcement Modeling

In this case study, a zero-thickness bond link is
placed between reinforced and concrete to deal with
bond-slip behavior. Because the main objective is to
model the concrete material, a perfect bond between
the concrete and the reinforcement is assumed.
However, it is important to mention that the bond
degradation of reinforcing bars is one of the weakest
links of the seismic performance of reinforced
concrete structures, and hence the bond-slip between
the concrete and the reinforcement needs to be well
modeled for further realistic nonlinear analysis. The
widely used Giuffré-Menegotto-Pinto model [37]
is employed in this study to represent the hysteretic
stress-strain behavior of reinforcing steel. The tension
envelope parameters of concrete near to reinforce-
ment are dependent to bond slip and reinforcement
modeling.

6. Conclusion

The aim of this work is principally the development
of general nonlinear constitutive law for reinforced
concrete. This constitutive law usually shows
pressure-dependent behavior and non-associated
flow rule, although the thermodynamics formulation
described here could also find many other applications.
Many theoretical laws for concrete have been proposed,
involving a huge variety of methods, assumptions and
procedures.

A combined 3D constitutive law based on thermo-
dynamics for the simulation of the response of
concrete subjected to earthquake loadings in both
tension and compression has been offered, including
an elasto-plastic-fracture model for concrete cracking
based on the novel potential function and an elasto-
plastic-damage model for concrete crushing based on
the novel potential function. The hardening/ softening
for the plasticity model was related to the plastic
parameters, interacting with a nonlinear novel plastic
potential function. Both models are globally formu-
lated.

This law can reproduce the complex behavior of
concrete under any history of uniaxial earthquake
loading. Two sets of independent parameters, one
for damage in compression and the other for fracture
in tension, have been presented to model the descent
of concrete under increasing loads. A one dimensional
constitutive law based on thermodynamics is presented
to model the cycles under earthquake loadings by
considering its dependency on the damage and

fracture parameters in concrete.
The behavior of this law was verified against

several hysteretic loading histories and reasonable
correlation with experimental results was generally
observed. There are experimental results in the
literature, for instance [27, 33], which could be used
to improve the shear behavior of the model.
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Appendix I (Potential Approach)

In order to obtain a nonlinear theory, let us assume
that there exists a function Φ  such as:
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The function Φ  is called the EPFD mechanical
dissipation potential and depends on the EPFD
conjugated thermodynamics forces ,κ A  but it may
as well depend on some other material parameters
Zp. Returning to the EPFD mechanical dissipation
potential gives:
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The EPFD mechanical dissipation potential in a

slightly more convenient form is divided to three
terms:

frdapl ΦΦΦΦ ++=                                         (A1-3)

According to the EPFD mechanical dissipation
potential terms, the EPFD conjugated thermo-
dynamics force sets κ A  and EPFD flux sets  κ  a&
must be divided into subsets plastic, damage and
fracture conjugated thermodynamics forces    A =κ
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The plastic potential functions are constituted by
using the unified coordinates in the Haigh-Westergaard
stress state which are based on the tensor invariant
variables [16]. The analysis will be restricted to
isotropic behavior. Therefore the Haigh-Westergaard
representation of the yield locus is employed, and the
corresponding three unified coordinates ρζ    ,  and θ
are defined as [29]:
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2J=ρ                                                        (A1-6)

Where ),,( 321 JJI  are the first invariant variables of
the plastic conjugated thermodynamics force tensor

,pl
ij
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∂Ψ

 second, and third invariant variables of the plastic

conjugated thermodynamics forces deviatory tensor.
The plastic potential function can be written as:

),()( 32211             JJI
  plplpl ΦΦΦ +=                             (A1-7)

where plastic potential function  plΦ  includes two
functions 1 plΦ  and 2 plΦ :
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))(
3
1(

3
2

31
22 jjpl bZ

J

JaZscooscJ      
 

−= −Φ              (A1-9)

Where, 
2
330 ≤≤ jaZ    and 

2
0 π≤≤ jbZ   .

Appendix II (Uniaxial Constitutive Law)

A2.1. Compression Envelope Curve

In this paper, the compression envelope curve is
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Figure A.1. Compression envelope curve and experimental
results.

Figure A.2. Tension envelope curve.

proposed by Tasnimi for a complete Elasto-plastic
damage constitutive law for plane and reinforced
concrete [33]. This envelope equation is defined by a
set of parameters that can be obtained in a uniaxial
test, such as initial tangent modulus of elasticity,
secant modulus corresponding compression strength,
stress and strain at turning point, strain corresponding
to the peak stress of envelope curve, and density of
concrete.

The compression envelope equation that can be
proposed for concrete in this section can be written
as, see Figure (A.1):
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A2.2. Tension Envelope Curve

On the other hand, this envelope curve that used
to compression area, is applied for a complete
Elasto-plastic-fracture constitutive law for plane and
reinforced concrete in tension state [33]. The tension
envelope equation is defined by the other set of
parameters that can be obtained in a uniaxial tension
test, such as initial tangent modulus of elasticity,
secant modulus corresponding tension strength,
stress and strain at tension turning point, strain
corresponding to the peak tension stress of envelope
curve, and density of concrete.

The tension envelope equation that is proposed
for concrete by Tasnimi [33] can be written as, see
Figure (A.2):
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For the tension envelope equation, the value of pqm
is ).1(
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portion m equals zero. For descending tension
envelope region, if the uniaxial constitutive law of
the structural elements contains a turning point on its
descending section of the uniaxial envelope, the
following are obtained:
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For the compression envelope equation, the value
of pqn  is .)( 1
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For ascending portion, p is equal to three and q is
equal to one. Therefore, n is known if value of
concrete compression strength, strain corresponding
to the peak stress, and initial tangent modulus of
elasticity are known. For descending envelope region,
if the uniaxial constitutive law of the structural
elements contains a turning point on its descending
section of the uniaxial envelope, the following are
obtained:
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The envelope equation can be rewritten as:
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The envelope equation can be rewritten as, see
Figure (A.3):
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the fracture parameter +α fr  is:
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for the unloading curve includes the mean features of
the unloading equations obtained experimentally,
such as, see Figure (A.5):
v The curvature parameter of the unloading equation,
v The initial unloading stiffness,
v The final unloading stiffness,
v The unloading strain and plastic strain.

The relationships of compression reloading curve
can be expressed:
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The damage parameter of reloading −α dar,  is the
function of ).( −ε

A2.4. Partial Unloading and Reloading Constitutive
Law in Compression

In contrast to other relationships, which were
presented in the literature, this stress-strain relation-

Figure A.3. Fracture parameter.

A2.3. Unloading and Reloading Constitutive Law in
Compression

In many literature, the behavior of plain or rein-
forced concrete, when a specimen loaded up to
certain stress and then unloaded to a base stress level,
has shown, under a typical hysterical loading [31-33].
In this action, the compression unloading constitutive
law contained maximum stiffness and started from
unload point. This is illustrated in Figure (A.4).

The condition of the unloading and reloading
compression laws depends on the amount of non
recoverable damage in the compression region. Many
models consider the unloading strain as the parameter
that defines the unloading and reloading path and
determines the degree of damage caused by the
cycling [30-35, 37-38]. Some kind of equations have
been used to reproduce the unloading equation also,
like the Ramberg-Osgood equation used by [38], the
power type used by [36] or the multi linear curve
proposed by [39]. On the other hand, [37] present
power type unloading and linear reloading. In all above
researches, the equations of envelope, unloading, and
reloading are not unique. In this paper, those equations
are based on general constitutive law, and are integrated.
This novel uniaxial reloading constitutive law proposed

Figure A.4. Curve of complete unloading.

Figure A.5. Curve of complete reloading.
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Figure A.6. Curve of partial reloading. Figure A.7. Curve of partial unloading.

ship considers the behavior of plain or reinforced
concrete in the case of partial unloading and reloading.
The equation proposed herein for the general case of
partial unloading and reloading cycles are based on
the same test data, see Figures (A.6) and (A.7). The
relationships of partial compression reloading curve
can be expressed:
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The partial damage parameter of reloading −αp
dar,  is

function of ).( −ε
As suggested by experimental result, when a partial

unloading occurs following by reloading to meet the
envelope curve, the reloading path can be modeled by
the same equation as envelope equations.

A2.5. Unloading and Reloading Constitutive Law in
Tension

Hysterical behavior is modeled by the same tension
envelope. An equation same as tension envelope
equation is used for the reloading branch:

t

itm
nta

t

t

pqm

t

un

un
pq

t
 E 

f
 

m

 m
f  

 

pq ε
εε

−+
ε
ε

ε−=σ +

+

−++ 05.205.1

]1)[(

)()1(

              (A2-9)

So, a linear equation is used for the unloading
branch. Based on the experimental data from [31], the
following criterion is proposed to account for the
stiffness deterioration:
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