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This paper presents the results of a numerical parametric study on the seismic
behavior of 2D triangular-shaped valleys subjected to vertically propagating
incident SV waves. The medium is assumed to have a linear elastic constitutive
behavior. All calculations are executed in time-domain utilizing the spectral finite
element method. Clear perspectives of the amplification patterns of the valley are
presented by investigation of the frequency-domain responses. It is shown that the
amplification pattern of the valley and its frequency characteristics depend strongly
on its shape ratio. The maximum amplification ratio along the ground surface
occurs at the centre of the valley. A simple formula has been proposed for making
initial estimation of the natural period of the valley in site effect microzonation
studies. The natural frequency of the alluvial valley decreases as the shape ratio of
the valley decreases; moreover, the value of the natural frequency of the triangular
alluvial valley is bigger than the natural frequency of the corresponding rectangu-
lar alluvial valley.
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ABSTRACT

1. Introduction

It is well-known to the discipline of geotechnical
earthquake engineering that site effects and local
conditions can exert large amplifications and
important spatial variations of ground shaking. There
is a close relation between earthquake damage
and topographic and geological irregularities. This fact
has been substantiated by the reported variability of
ground shaking or the non-uniform distribution of
damage during numerous strong earthquakes in
recent years alleging that one-dimensional (1-D)
analysis cannot sufficiently explain the seismic
behavior of subsurface irregularities.

Various analytical or numerical simulations have
suggested that the existence of subsurface irregu-
larities, like alluvial valleys or sedimentary basins can
exert a profound influence on the surface ground
motion, notably by altering the frequency content,
prolonging the duration of shaking or by aggravating
the amplitude of motion [1-14]. The main phenom-
ena that constitute the "valley amplification" effects
on site response have been summarized for the
geotechnical community by Aki [2] and Finn [15];
some newer major seismic events have dramatically
reinforced their main conclusions.
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The damage distribution observed during the
1988 Armenia earthquake is the archetype of "valley
amplification" effects on site response. Yegian et al.
[16], trying to correlate the observed damage with
the ground shaking in the city of Kirovakan, located
about 10 to 15 km from the surface outbreak of
the fault, pointed out that 1D analyses substantially
underestimated the ground surface motion in a
region of Kirovakan in which the soil profile
constitutes a triangular alluvial valley whose width
is only about five times its depth. A satisfactory
explanation for the observed damage was adequately
presented by Bielak et al. [13] who conducted two-
dimensional (2-D) ground response analyses for
the same valley. As another illustration of the "valley
amplification", numerical studies have also shown
that the aggravation of damage reported in the
Marina District, San Francisco, during the 1989
Loma Prieta earthquake, could be generally attri-
buted to the 2D site conditions [17-19]. Graves [20],
simulating the seismic response of the San Fernando
basin in the 1994 Northridge earthquake, showed
that the subsurface irregularities may have caused
a large amplification, especially in the long period
ground motions. Finally, during the 1995 Hyogoken-
Nambu earthquake, most of the damage in the city
of Kobe occurred within the so-called "disaster
belt", a narrow zone 1 km wide, nearly 20 km long,
located between about 1 to 1.5 kilometers from the
Rokko mountain rock outcrop. Numerical analyses
by various researchers [12, 21-25] have underlined
the need for doing 2D simulations in order to
capture correctly the valley amplification.
      Several methods have been utilized to analyze
the seismic response of basins and alluvial valleys.
Analytical techniques can be applied only for
simple geometries and homogeneous deposits
that allow the separation of variables of the gov-
erning equations (e.g., [26-29]. For simulations of
realistic basins and valleys with irregular shapes
and heterogeneous deposits and alluvial materials,
numerical procedures become essential. The most
widely used ones include the finite-difference
method (e.g., [30], [31] in 2D, and [32] in 3D), the
finite-element method (e.g., [9, 33-36], the boundary
element method (e.g., [28, 37-43], and hybrid
type methods, which combine the effective charac-
teristics of two or more methods, such as the hybrid
BE/FE method (e.g., [13, 44].

     The present study analyzes numerically the
effects of the triangular alluvial valley on its ground
surface seismic motion utilizing a Spectral-Finite-
Element code developed by Najafizadeh and
Kamalian [45]. The "confinement" of seismic waves
in the valley and the generation of surface waves at
the edges of the valley are phenomena expected to
have the following "valley amplification" effects:
1- The aggravation of the ground shaking may be
amplified more than 1D wave-theory predicts. 2- The
spatial variability of the ground surface motion may
be substantial.
     The goal of this paper is to capture numerically
"valley amplification" effects on the surface ground
motion of triangular alluvial valleys, and to find out
the answers of the following questions: What is
the maximum amplification potential of the valley?
Where does it occur along the valley? How does
the amplification pattern vary along the valley?
Does increasing the shape ratio (ratio of height
to half-width) of the valley necessarily mean
intensifying the amplification potential at any
point along it? Is it possible to extract a simple
formula in order to get an initial estimation of the
natural period of the alluvial valley for microzona-
tion studies?

2. Analyze the Walley
2.1. Characteristics of the Valleys and Basis

Excitation

The valley, the seismic behavior of which is
examined in current study, constitutes a wide
spectrum of triangular alluvial valleys with various
shape ratios. The geometry of the 2D homogenous
isotropic linearly elastic alluvial valley is depicted in
Figure (1) where H and ax denote the thickness of
center line and the half-width of the soil layer along
the ground surface, respectively. The surrounding
bedrock is assumed to be rigid.
      Inasmuch as altering the basis excitation would
not influence the amplification pattern in a linear
elastic media, the incident wave is chosen as the
well-known Ricker type, Figure (2), with the follow-
ing equation:
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where 0, tfp  and maxA  denote the predominant
frequency, the time shift parameter and the
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U = vector of time-dependent nodal displacements;
an overdot denotes differentiation with respect to
time; M, C, and K = global mass, damping, and
stiffness matrices; and F = vector of equivalent nodal
forces. If material damping is assumed in the
medium, Eq. (3) can be rewritten as follows:

FUKUCUM =⋅++⋅ &&& .                                       (5)

In this research, the well-known Rayleigh
damping mechanism was used which can be
expressed proportional to the mass and stiffness
matrixes as follows:

KaMaC 10 +=                                                   (6)

Basically, it was strived to analyze the "valley
amplification" effects on the ground surface motion
of the valley when soil behaves linearly. It has been
observed in many cases that soft soil layers could be
assumed to have a linear behavior because of two
reasons [46]. The first reason is that approximately
even the strongest earthquakes were characterized
by low acceleration levels, while the second one is
that the soft soil layers were generally characterized
by large PI, behaving almost linearly even at large
strain levels. In this study linear 2-D ground response
analyses were conducted, utilizing one numerical
model, based on the Spectral-Finite-Element
method (SFEM). In this model, an incident SV
wave excitation was induced.

The linear SFEM modeling was performed by
NASEM, an advanced code of the two-dimensional
spectral finite element analyses, developed by
Najafizadeh et al. [45]. The advantage of this
method is that, by using a special group of inter-
polation functions, Eq. (7), the SFEM is able to pass
a wider range of wavelengths in the elements with
more careful and less computational efforts than
that of the conventional FEM, and by using fewer
meshing points an equal degree of accuracy is
gained. These specific interpolation functions are
achieved by implementing Legendre-Gauss-Lobatto
(LGL) points in Lagrange polynomials of degree.

Figure 1. Geometry of the 2D homogenous triangular alluvial
valley. H and ax denote the thickness of center line
and the half-width of the soil layer along the ground
surface, respectively.

Figure 2. Displacement time history of the incident wave.

maximum amplitude of the displacement time history,
respectively.

2.2. Method of Analysis

The mathematical problem under consideration
is a wave propagation from a rigid bedrock into an
alluvial valley with a homogeneous soil and
irregular geometries. The governing equation for
an isotropic, homogeneous, small-displacement
body with linear elastic behavior can be written as
the equilibrium equations for an elastic bounded
medium dR⊂Ω  subjected to an external body-force
fi:

d1,...,i     uf iijij =ρ=+σ ,, &&                                 (2)

where .lijnσ  denotes the stress tensor components;
ρ, is the mass density, and 22 / tuu ii ∂∂=&&  is the sec-
ond derivative of displacement of the medium
with respect to time. By using the weighted residual
approach, the matrix form of the governing equation
is obtained.

FUKUM =⋅+⋅ &&                                                (3)
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Place of the control points is determined through
solving the following equations:

0)(*)1(,0)(*)1( 22 =η′η−=ξ′ξ−
ll nn LL      (8)

where, 
lnL′  is first derivative of Lagrange polynomi-

als of degree .ln
By using these control points, the computational

errors decline exponentially. This method can
converge faster to the precise solution than FEM
due to using fewer degrees of freedom with almost
the same accuracy. A highly interesting property
of the SFEM is the fact that the mass matrix [M]
is diagonal due to using LGL quadrature for each
element [47]. This allows for a very significant
reduction in computational cost and complexity. In
this model, the basis excitation is implemented as
an incident plane SV wave obtained by exerting the
same acceleration to all nodal points belonging to
the boundary lines, and rigid boundaries were placed
around the domain of interest.
      The spectral-element mesh, Figure (3), is made
up of some quadrilateral (2D) non-overlapping
elements .eΩ  The size of the elements has also
been tailored to the local wavelength of the
propagating waves. An expansion in terms of a
tensor-product of Nth-order orthogonal polynomials
is used to approximate solution, data, geometry and
physical properties on each element.
      After assembly of the individual mass, damping,
and stiffness matrices, and of the equivalent seismic

forces, Eq. (3) has been solved numerically by the
implicit, unconditionally stable Newmark's step-
by-step method with 5.0=δ  and .25.0=α  Selection
of time step t∆  is another factor that must be
taken into account when solving the system of
equations. The number of the time steps influences
directly the computation volume and the needed
accuracy. In SFEM, in high orders, the intervals
between the nodes are smaller than those of the
FEM. Therefore, smaller time steps are needed for
high-order spectral elements.

The verification of this numerical model has
been performed by solving several examples
including 1D site response analysis and 2D seismic
behavior of rectangular alluvial valleys [45] in
order to show the accuracy and efficiency of this
implemented SFEM algorithm in conducting site
response analysis of topographic irregularities.

To demonstrate the influence of shape ratio
(ratio of height to half-width) on the valley ampli-
fication of the specific site, linear 2D ground
response analyses were performed, modeling
various triangular valleys with a constant depth and
a wide spectrum of shape ratios (by changing the
widths of valleys). While comparing seismic behav-
ior of different alluvial valleys not only shape ratios
but also the dimensions of valleys must be taken
into account. It has been recognized that the ratio
of the topography height to the wavelength of
the incident wave is a key factor in analyzing the
amplification pattern. By normalizing the frequency-
domain responses of the 2D topographic structures
to the same results of the corresponding 1D uniform
soil layer over the bed rock, the responses of the
2D topography irregularities can become non-
dimensionalized.

All calculations were executed in time-domain
using the spectral finite element method. Then, to
illustrate the difference between frequency charac-
teristics of a rectangular valley and the correspond-
ing triangular valley in different shape ratios,
clear perspectives of the amplification patterns of
the valleys were compared by investigation of the
frequency-domain responses.

1,.......,1,11;
))...()()...()((

))...()()...()((
)(

11121

11121 +=≤ξ≤−
ξ−ξξ−ξξ−ξξ−ξξ−ξ

ξ−ξξ−ξξ−ξξ−ξξ−ξ
=ξ

++−

++−
l

nnnnnnnn

nnn

n
n

nn       

h

l

l

l

                   (7)

Figure 3. Spectral-element discretization of the valley. The
spectral mesh is made up of some quadrilateral (2D)
non-overlapping elements.
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3. Parametric Study
3.1. Methodology

In order to find out the "valley amplification"
effects on the surface ground motion of triangular
alluvial valleys, the broad range of 2D homogenous
isotropic linearly elastic triangular alluvial valleys
resting on a rigid bed rock with different shape
ratios (H/ax) of 0.2, 0.4, 0.6, 0.8, 1.0 and 2.0,
encountered frequently in the nature, were consid-
ered. The thickness of the soil layer at the center
line was selected as 50 m. The mechanical
behavior of soil with values of Poisson's ratio as
0.33, damping ratio as 0.05, mass density as 2.0 t / m3

and shear wave velocity of the medium as 300 m/s
were considered. Only one value of Poisson ratio
was considered, because previous works [48]
showed that the Poisson ratio of the media has a
less important effect on the seismic behavior of
topographic features in comparison with the shape
ratio. The valley was subjected to the vertically
propagating incident SV wave of the Ricker type,
Figure (2). The basis excitation was implemented

by exerting the same acceleration to all nodal points
belonging to the boundary lines, and rigid boundaries
were placed around the domain of interest.

3.2. Results of Parametric Analysis

This section presents the most important results
obtained by the executed parametric study, which
demonstrates the general amplification pattern of
2D triangular alluvial valleys and shows how it is
affected by the various parameters.

3.2.1. General Amplification Pattern

Figure (4) demonstrates frequency-domain
responses of various nodes along the ground surface
of 2D triangular valleys with different shape ratios
subjected to a vertically propagating incident
SV wave; in fact, it is a clear perspective of the
amplification curves. As can be seen, the amplifica-
tion pattern of the triangular alluvial valley and its
frequency characteristics depend strongly on its
shape ratio. In each triangular alluvial valley and
irrespective of its shape ratio, the maximum amplifi-

Figure 4. Variation of the amplification curves of various nodes along the ground surface of Triangular Valley (Vs = 300 m/s) via the
different shape ratios.
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cation ratio at each node along the ground surface
occurs at a characteristic frequency that is uniform
along the ground surface. This characteristic fre-
quency could be named as the natural frequency of
the Triangular alluvial valley. The value of the
natural frequency of the triangular alluvial valley
decreases as the shape ratio decreases and tends
towards the natural frequency of the corresponding
1D uniform soil layer over the bed rock (W =
Vs/4H). Vice versa and as expected, the value of
the natural frequency of the triangular alluvial
valley increases as its shape ratio increases. It
can also be seen that in each triangular alluvial valley
and  irrespective of its shape ratio, the maximum
amplification ratio along the ground surface occurs
at the center.

3.2.2. Maximum Amplification

Figure (5) illustrates the maximum amplification
of various nodes along the ground surface of
triangular alluvial valley via the different shape
ratios normalized to the maximum amplification of
a 1D uniform homogeneous soil layer resting on a
rigid bed rock (amplification ratio). By normalizing
the frequency-domain responses of the 2D topo-
graphic structures to the same results of the
corresponding 1D uniform soil layer over the bed
rock, the responses of the 2D topographic irregular-
ities can become non-dimensionalized. As can be
seen, it is substantiated that in each triangular
alluvial valley and irrespective of its shape ratio, the
maximum amplification ratio along the ground
surface occurs at the center of the valley and by

Figure 4. Continue

Figure 5. Comparison of the maximum amplification ratio along the ground surface of the triangular alluvial valley via the different
shape ratios.
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moving from each of the corners towards the center,
the maximum amplification ratio of the ground
surface increases. The triangular alluvial valley of
the central point gets its maximum value at a
shape ratio of 0.2 and decreases gradually as the
shape ratio increases from 0.2 to 2.

3.2.3. Shape Ratio Effect

Figure (6) depicts the amplification curves of the
center of the triangular alluvial valley with different
shape ratios in comparison with the amplification
curve of the corresponding 1D uniform homogeneous
soil layer resting on a rigid bed rock. As can be seen,
when the shape ratio decreases, the natural

Figure 6. Amplification curves at top of the centerline of the triangular alluvial valley (Vs = 300 m/s) with different shape ratios.

frequency of the triangular alluvial valley decreases,
and the amplification curve of the center node (2D
case) moves towards the amplification curve of
the corresponding 1D case. In all triangular alluvial
valleys with shape ratio of less than 0.6, the
maximum amplification ratio at the center node is
more than that of the corresponding 1D case; on
the contrary, in the triangular alluvial valley with a
shape ratio of more than 0.6 it decreases in com-
parison with the corresponding 1D case.

3.2.4. The Ratio of the Topography Height to the
Wavelength of the Propagated Wave

Figure (7) demonstrates the effect of dimensions

Figure 7. Amplification curves at top of the centerline of two different valleys possessing a constant shape ratio of 0.2 with a
thickness of the soil layer at the center line of 50 and 20 meter (Vs = 300 m/s).
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on the amplification curve of the center of 2D
triangular alluvial valleys possessing a constant
shape ratio of 0.2, subjected to vertically propagating
incident SV waves. Two curves are presented that
correspond to two different valleys with a thickness
of the soil layer at the center line of 50 and 20 meter,
respectively. The mechanical characteristics of the
filling soil are the same in two valleys. As can be
seen, the amplification pattern of the triangular allu-
vial valley and its frequency characteristics depend
strongly on its dimension. When the shape ratio is
kept constant, and the thickness of the valley in-
creases, the natural frequency of the triangular allu-
vial valley decreases, and the amplification curve
of the center node (2D case) moves towards the
amplification curve of the corresponding 1D case.
On the other hand, by increasing the thickness of
the valley while shape ratio is kept constant, the
maximum amplification of the ground surface
increases. The main reason for this behavior is the
ratio of the topography height to the wavelength
of the propagated wave. In fact by increasing the
thickness of the valley while the wavelength of
the incident wave is constant, the repetition of a
complete wave to travel from bedrock to surface
increases, and it means that the incident wave
amplifies more.

3.3. Natural Period of a Triangular Alluvial Valley

Extracting a simple formula in order to get an
initial estimation of the natural period of a triangular
alluvial valley could be useful in site effect
microzonation studies. Figure (8) demonstrates
how the natural frequency of the triangular alluvial
valley alters with its shape ratio. Two curves are
presented that correspond to two different alluvi-
ums with a shear wave velocity of 300 and 400 m/s,
respectively. As can be seen, the curves are similar
and infuse the idea of being capable to become
non-dimensionalized. Figure (9) demonstrates these
two curves once again, this time normalized to the
natural frequency of the corresponding 1D uniform
soil layer over the bed rock. As expected, the
curves coincide and the ratio of the natural frequency
of a triangular alluvial valley )( 2DF  to the natural
frequency of the corresponding 1D uniform soil
layer over the bed rock )( 1DF  can be approximated
as a function of the shape ratio by the following

formula:

)6.0(exp3.112 SRFF DD ⋅⋅=

which can be re-written as:

( )( )HVSRF sD ⋅⋅⋅⋅= 4)6.0(exp3.12

where, Vs represents shear wave velocity, H is
triangular valley depth, and SR is the valley shape
ratio (SR = H/ax).

Figure 8. Natural frequency of the rectangular alluvial valley via
its shape ratio for two different shear wave veloci-
ties of 300 and 400 m/s.

Figure 9. Dimensionless frequency of the triangular alluvial
valley via its shape ratio.

4. Comparison of Seismic Response between
Triangular and Rectangular Alluvial Valleys

At this point, it is of interest to compare the
response spectra obtained for triangular alluvial
valleys in this study with one derived for rectangular
alluvial valleys, in order to identify the effects of
topographical characteristics on seismic response of
valleys. The amplification curves of various nodes
along the ground surface of rectangular alluvial
valley via the different shape ratios were presented
in order to specify the effect of each parameter on
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seismic response of rectangular alluvial valleys in
previous works [45]. Figure (10) compares the
amplification curves of the center of the triangular
alluvial valley with those of the corresponding
rectangular alluvial valley in each shape ratio. As
can be seen, in a distinctive shape ratio always the
value of natural frequency of the triangular alluvial
valley is bigger than the natural frequency of the
rectangular alluvial valley. One other important
subject in Figure (10) is that the value of amplifica-
tion of the center point of rectangular alluvial
valley is bigger than the triangle alluvial valley except
for shape ratio of 0.2.

Figure (11) illustrates the maximum amplifi-
cation of various nodes along the ground surface of
triangular alluvial valley normalized to the maximum

Figure 10. Comparison of the amplification curves of the center of the triangular and rectangular alluvial valleys via the different
shape ratios.

amplification of a 1D uniform homogeneous soil
layer resting on a rigid bed rock (amplification
ratio) in comparison with those of the corresponding
rectangular alluvial valley in each shape ratio. Once
again, it is obvious that the greatest amount of
amplification that occurs at the center point of the
ground surface of each valley is bigger in rectangu-
lar alluvial valleys than in triangle alluvial valleys
except for shape ratio of 0.2. A prominent point in
Figure (11) is that in almost all shape ratios, the
curve of the maximum amplification ratio of various
nodes along the ground surface of triangular alluvial
valley is completely under the curve of the rectangu-
lar valley. Only in shape ratio of 0.2 and 2 this rule
is not true and the main reason for this behavior can
be explained by considering the edge effects of
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Figure 11. Maximum amplification of various nodes along the ground surface of triangular alluvial valley normalized to the maximum
amplification of a 1D uniform homogeneous soil layer in comparison with those of the corresponding rectangular alluvial
valley in each shape ratio.

Figure 12. Dimensionless frequency of the triangular and rectangular alluvial valleys via the different shape ratios.

valley in scattering the incident and reflected
waves.

Figure (12) demonstrates how the natural

frequency of the triangular and rectangular alluvial
valleys normalized to the natural frequency of the
corresponding 1D uniform soil layer alter with their
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shape ratios. As can be seen, the dimensionless
frequency of the triangular alluvial valley in each
shape ratio is bigger than that of the rectangular
alluvial valley. The volume of alluvium in a triangular
valley is less than the amount of alluvium in the
corresponding rectangular valley. That is why the
behavior of the triangular alluvial valley is more
similar to the behavior of a rock outcrop.

5. Conclusion

This paper is concerned with the problem of soil
amplification and seismic site effects due to the
local topographical and geotechnical characteristics.
It has been conducted as an attempt to capture the
significant 2D valley effects on the amplitude and
the variability of ground shaking of the triangular
and rectangular alluvial valleys. All calculations are
executed in time-domain utilizing a linear spectral
finite element method under SV excitation. It is
shown that the amplification pattern of an alluvial
valley and its frequency characteristics depend
strongly on its shape ratio. A natural frequency can
be defined for the triangular and rectangular alluvial
valleys so that at all nodes along the ground surface,
the highest amplification factor occurs at this
predominant frequency. The natural frequency of
the alluvial valley decreases towards the natural
frequency of the corresponding 1D uniform soil
layer on bed rock, as the shape ratio of the valley
decreases. The maximum amplification ratio along
the ground surface occurs at the center of the valley
and decreases when one moves towards the corners.
A simple formula has been proposed for initial
estimation of the natural period of triangular alluvial
valleys, which can be used in site effect micro-
zonation studies. Comparison of seismic response
between the triangular and rectangular alluvial
valleys specifies that in a distinctive shape ratio
always the value of natural frequency of the triangu-
lar alluvial valley is bigger than the natural frequency
of the corresponding rectangular alluvial valley.
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