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1. Introduction

All large-scale events, like natural disasters and conflict mechanisms follow certain
endogenous and exogenous interactions, which are still unclear to geoscientists by
normal surface observations. It has been established that complex scale analysis
provides a direct insight into the precursory framework for occurrence of endog-
enous and exogenous events related to large-scale dynamics. The present study is
based on the mathematical derivation of a theoretical framework for the process in
Earth system dynamics using Poisson process and Markov analysis to identify the
endogenous and exogenous stress distribution and their redistributions beneath
the sub-surface earth. The transition probability matrix derived for the optimal state
sequences of the Markov model, which is relevant in analysis of shock wave of a
complex system. This study validates the concept of exogenous events using sand
pile cellular automata system, an approach to study complex behavior of multi-
component system. In this paper, Poisson hidden Markov model implemented on a
continuous space of sand pile behavior shows that seismogenesis and conflicts
occur due to accumulating stress, representing disequilibria in energy and interac-
tions between active agents (faults and heterogeneities) in which the stress may find
its release through the onset of a tremor. Earthquake occurrence in the critical state
or a critical shock due to the contributor states or conflict in societal analysis is not
adequately known. Subsequently, the influence of each contributor tries to come
back into stasis (meta-stable state or stable equilibrium state), the spatial system
position of earth dynamics or conflicts through a series of tremors (aftershocks) or
post earthquake responses.

The process of complex system analysis to
validate processes occurring in the system Earth
characterized by complex spatio-temporal dynamics
[1], has become a challenging topic of research to
get deep insights into the earthquake generating
processes by deploying various tools of multi-disci-
plinary science and technology available with the
world [2]. It is always hard to establish clear-cut
assessments of the causal roles that individual

drivers play in conflict oriented situations that may
result in a pre-determined change in the system. A
systematic study for earthquake physics involves
analysis of occurrence of events that evolves through
multi-scale structures in a dynamical network of
relations and mutual interrelations. Specifying every
state and transition in the state space of even a mod-
erately complex Markov process with hundreds of
states is an infeasible task. The natural process of
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earthquake occurrence involves non-linear time
delayed process that requires redistribution of stress
in earthquake occurrence. However, the models of
geophysics fail to propose a clear-cut model that
might effectively interpret the chain of causality
process interacting in the geodynamic process, and
to ensure an easy formulation of the predictability of
the system behavior. The present study is a way
forward to assess the system by drawing resem-
blances with natural occurring phenomena and
societal viewpoints, processes at work in the Earth's
crust, where stresses build up slowly to be released
in sudden earthquakes as per the Reids Elastic
Rebound theory. The earth system mechanisms can
be understood in the likelihood of an egg kept in a
pressure cooker in boiling hot water. The surface of
the outer shell of the egg is highly fragile and cracks
start showing up in meta-stable conditions as the
temperature of water rises. An hourglass calibrated
alongside to analyze the time sequence of processes
that eventually lead to catastrophic events like earth-
quakes serves as a time scale measure of the global
coupling effects that take place in earth system. The
shell breaking and the internal fluid of egg are two
components that interact among themselves in non-
equilibrium states. In order to address the issue of
understanding the earthquake mechanism, we need
to assess some dynamic mechanisms that help
analyze critical state of a system in non-equilibrium
states with many interdependent and diverse compo-
nents that interact locally resembling the earthquake
initiating process [3]. At some point, these pressures
release their accumulated energy with catastrophic
effect, creating shock waves. It has been earlier
observed by Cederman [4] that the dynamic analysis
of shock waves can provide the analogies between
earthquakes and conflicts. Earthquakes and conflicts
are complex systems, exhibiting emergent features
associated with critical states. A quantitative
signature of precursory (endogenous) behavior helps
recognize and then reduce growing conflict. Many
studies have tried to interpret physical interpretation
of earthquake genesis mechanism with precursor
activity [2, 5] to shed light on sharp and sudden
emerging behavior associated with critical states in
geodynamic system. In order to understand the com-
plex dynamics involved in the exogenous and
endogenous behavior of the dynamic system, there is
a need to establish the interplay dynamics between
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these effects. These components can be realized as
sand grains self-organizing to form a sand pile [6].
Knopoff [7] was the first one who analyzed the
earthquake sequence as a Markov chain for the first
stochastic model for earthquake occurrence. The
proposed work deals with the study of emergent
properties can themselves interact with each other in
the rupture stress accumulation dynamics through
sand deposition as per the methodology described
by Winslow [8]. This study provides an analytical
validation by deriving properties of a sand pile model
to respond to the questions raised by Meier [9] to
identify the exogenous and endogenous behaviors
in earthquake physics and conflict analysis. In our
study, a Poisson process reflects the exogenous
process involved in stress dynamics, and Markov
process reflects the endogenous interactions for an
earthquake system. The fixed energy sand pile
responses to endogenous and exogenous processes
quantified as the fluctuation-dissipation theorem of
energy states in statistical mechanics. The sudden
drop of sand grains through pile can be representa-
tive of the stress drop that occurs prior to an earth-
quake where each sand grain site plays a definitive
role based on density of the pile. Sudden drop from
the sand pile is an emergent phenomena [10] having
interactive forces in earthquakes and conflict system
[11] analysis. The paper provides a mathematical
basis for the endogenous and exogenous process and
provides a step-by-step approach to study associated
dynamics in a large-scale system through a compu-
tational framework. The paper is structured as
follows:

In Section 2, we evaluate the mathematical
models associated with endogenous and exogenous
processes for sand pile process where, for section
2.1 and 2.2, a deterministic prediction of emergent
features using point probability that can occur from
a single source and multi sources in a sand pile in
continuous time interval for an exogenous process,
respectively. In section 3 and 3.1, analysis of the
different Markov states for endogenous changes in
the sand pile for transition probability matrix of the
recurrent energy state of the sand grain is derived,
respectively. In section 4, we calculate transition
probability matrix and computational model analysis.
Section 5 concludes the paper on future work about
using more real life constraints to the sand pile
architecture.
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2. Mathematical Model

An evaluation for the physical processes to
earthquake genesis for a single fault based on past
fault behavior can be the same as the correlation
between earthquake magnitude and parameters of
fault trace based on dislocation theory. X(¢) is a
Markov process, having the Markov or memory less
property: given the value X(t) of the system at some
time t, its future evolution depends only on the
current state and not on the knowledge of history. In
case of initial distribution period as ¢, increases in
calculating the probability distribution over the
state space at an arbitrary instant #, <..<t,:
Pr(X(t,,) = X, | X(t,) =X, ..., X(ty) = %) =Pr
(X(ty.) = X,.|X(t,) = x,). The main objective
with respect to a Markovian model is to calculate
the steady state probability distribution that is the
probability distribution of the random variable X(t)
over the state space S, as the system achieves a
regular pattern of behavior. Each state of the
process is a node in a graph; the arcs represent
possible transitions between states, and are labeled
by their respective rates (parameters of the expo-
nential distributions determining the transition
durations) n states has a one step nxn transition
matrix P with elements p;. From the g, we have
derived the exit rates, g;, and the transition proba-
bilities, pj;-

The generalized semi-Markov models [12] take
into account time and space dependencies of large
earthquakes. The study shows the graph of occur-
rence of events having a time series of conflict
events (frequency) of earthquake occurrence over
a particular period of time. The study reveals the
event occurrence in the macro-scale for transition
threshold of event occurrence. The transient state
distribution of a stochastic transition probability
matrix P{X(t),te R}, pi ~ j(~ j represents a set of
states), is the probability that the process is in a
state in p; at time ¢, given that it was in state 1 at
time 0 for mathematical validation of Poisson
process and Markov model. Sand grains drop at the
source for a sand pile in a continuous probability
distributions, drop of the sand grain from sand pile by
avalanche decay tends to follow a simple Poisson
point process for a single source and multi source
events of the sand pile. Any sand-pile deformation
process shows that time delay before a transition
from i to j is exponentially distributed with a
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parameter ¢; for instantaneous transition rate. This
transition in the sand pile responds in the form of
shock waves [13] that occurs with the variance of
stationary active site energy density originating from
zero. Inference for large-scale system can be
explained as transition in the sand pile responds in
the form of shock waves sites as density increases
at points from zero. The exogenous process exhib-
ited by the system can be similar to a sand pile
system. This shock wave can be analogous to an
earthquake occurrence in the critical state and can
be explained from the Poisson source having A rate
of drop [14], see Figure (1).

T " T B T T T . T

Base Level

Number of Events Per Year

Time Scale of Occurrence

Figure 1. Statistical validation of precursory signature using
arbitrary thresholds.

The study identifies few time-changing compo-
nents in a sand-pile architecture. We have assumed
a model for all events, P, the probability of a
point process in A¢ time for sand grain drop, and P
the associated event occurrence of avalanche
occurrence probability in AT time, where N is the
number of sand grain drop in AT time. Expected
number of all earthquakes for the intervals involved
would be some factor N, =R,ATP,(M,AM). A
Poisson random process for a random sand grain drop
can be characterized by an exponential distribution
function that drops off sharply above an e-folding size
scale [15].

N, = RAT{\*/K! ™} where k= M/AM (1)

The factor k! in the denominator is the number
of ways in which the same multiple event can occur
resulting in avalanche. By knowing the probability
that sand grain drop will occur in an interval of time
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of width At for an avalanche is rAT, we evaluate
the distribution of the drop condition in some larger
interval AT.

In the first interval, the sand grain fall occurrence
is p. In the second interval of continuous probability
distribution, it can be givenby (1— p)x p, where 1 — p
states does not occur in the first interval but is
occurring in the second interval At of time AT.

In the third, it is (1— p)x(1— p) p and so forth.
Thus, the event occurrence probability P dependence
on the p point process is a partial sum of a geometric
series and the total is the difference between two
infinite sums.

p=[p+(1-pp+(1-p’p+1-p)"p-
(1- p)™'p—(1- p)™? p] where m=AT/At.
=pll+(1-p)+(A-p) +..—(1-p)" -
(1-p™-1-p)™?p...
=[1-(1- )T/

This shows that the distribution of sand grains in
the time interval AT is a geometric progression

)

] where m=AT/ At.

for point process events occurring in At time. Point
process probability (q) for sand grain does not fall in
the infinitesimal time period At and Q that the
sand pile has no change in AT time interval.

Q:pAT/At (3)

2.1. Continuous Probability for a Single Event in
a Sand Pile

The lattice energy state for avalanche for the sand
pile in the stationary state for a single event will
occur in a time interval, dt, is dP=Qr, dt where
Q=1- p is the probability that the lattice energy of
the grain may vary from the energy at the state Q to
1 to occur in time AT. A is the Poisson distribution
that a single event occurs in the given time interval
and can range from 0 to 1.

Q: pAT/At

p=r,AT
AQ=q(At+AT)/At—q(At+AT)

=—qAT/At(l-q)
=—qAT/At.p
AQ=-Qr,At
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dQ=-Qr,dt

The system behavior says that the avalanche
will collapse completely or either collapses with a
rate r_dt in the time period t.

[C1/QdQ=~[;r,dt

InQ=r,t
0=¢" )

P=1-¢"

s

dP=¢"r,dt=Q.r,.dt

2.2. Multiple Events from a Single Source in the
Sand Pile

The emergence phenomenon is a bottom-up
process for avalanche decay. The avalanche decay
initializes at At time interval and proceeds towards
a stable state as it reaches AT for a stationary sand
pile. The single event decay, see Eq. (4), may vary
with probability distribution for a simple Poisson
"counting" process [16] where multiple events may
occur from the same source. The probability of
observing k events in an interval of time k dimen-
sions in which the time of observation of each k
events is represented by an axis. The P, is easily
calculated in nD, a space with arbitrary number of
dimensions on the sand pile system. For P, the
intervals for the avalanche phenomena can be taken
as independent random variables drawn from an
exponentially distributed population, population
with the density function f(x)=le™'* for some fixed
constant. Each time the probability that the event
happens at time ¢, is the probability that it does not
happen for an infinitesimal time interval At. We end
up integrating higher powers of the same function
over and over again and can deduce a general
expression for P,.

AT AT AT

P.= | [([](Qrdt)Qrdt)Qrdt
0 At At
For a single event occurrence from Eq. (4):
AT AT AT

Po=[ [([(dP)dP)dP

0 At At

P’ is the probability of single event observed within
interval for change in the sand grain and P, is the
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probability of observing k events.

B(t)= AdeP = P(AT) - P(At) =

—|P(At) - P(AT))=—P'(1)

— P'(t)= P(At)— P(AT)

dP'=dP

P(t)=[P'dP' =[P"? /2]

P () =~[P'(t)/ K]y =[P(AT) - P()]*/ K!

Initial system of probability =[1—e""1*/ k!
= Pk/ Kk

Y P=3 P =y Pk/K
k=0

It is easily seen that the probability distribution
for multiple observations is the Poisson distribution.
The expected number of occurrences for k events
by the time ¢ is given by the integral.

E(k)= S kP* /K= ¢ 3 k(ut)* / K=
k=1 k=1
e M AT AT Sk —T)1= 0t
(5)

= p> P J(k—1)1= P P¥/ K
k=1

E(k=P.e"=1-¢™" 0<Ek)<e (6)

This single grain of sand in the previous state
results in the present avalanche, which can be
explained by a Markov process. It is a challenge to
identify the precursory states and the after-shock
distribution based on the precursor states and the
imminent occurrence of the critical state that
precludes the avalanche to anticipate the possibility
of a collapse.

3. Markov Model for Earthquake Stress Drop

Analysis

A sand pile endogenous behavior has been
described by a Markovian dynamics. The sand
pile has a few endogenous elements interacting
among themselves having each element dependent
on the rate r function of the transition probability
matrix represents the probability that the state is
j at the time t+1, given that the state was [ at
the time ¢, and the probability can be written as:

JSEE / Wol. 14, No. 2, 2012

p;; = Prob[ X,,,_ j|Xt:i] for a stationary sand pile.
The P(X,,, = x,,|X, =x,) describe the one-step
transition probabilities of a DTMC, that is then
probabilities that the DTMC moves from state x_ to
state x,,, in a single transition. These values can
be organized in a stochastic transition probability
matrix P, the elements p; of which are defined as:
pii = P(X,,12 j|X,,:i) under the conditions that for
all i, je §,0< p; <1 and p; =1. Equilibrium (point
or trajectory) for a system that is at least locally
stable, if the state ever gets "sufficiency close" to
this equilibrium. The "sufficiently close" region is
called the basin of attraction of the equilibrium.
Emergent phenomenon is a bottom-up process that
occurs with local interactions of sand grain distrib-
uted this equilibrium for interdependent spatial
structures.

(A, N)) =
Jo,, (AL, N, @) p(@|1), N) dD (7)

(A2, N, @) =TT ey, F(O|2), N}, @) (8)

@, y, Hidden Markov Models triple the number
of regional space parameters of the likelihood func-
tion p((D|7»1,N,).

Attractor conditions for the energy states for the
growth of the sand pile where p; is the decay prob-
ability and g;; is the growth probability of sand pile
in normal condition. In a condition of self-organized
criticality, a system exhibits a property of "homeosta-
sis" [17] as the system returns back to the original
state of energy under the effect of local stress. Sand
grain can transit from a highly integrated state to a
highly segregated state in response to a small local
disturbance, which affects the activity of the system.
The phase transition occurs in between set of states,
S = (s;; s,; s;) for the sand grain system. The
process is irreducible: all states in S can be reached
from each other by following a path of transitions.
The process starts in one of these states and moves
successively from one state to another. If the chain
is currently in state S, then it moves to state 5; at the
next step with a probability denoted by f, for the
sand pile, and this probability does not depend upon
which states the chain was in before the current
state. In the present study, a continuous time Markov
model is assumed having N, number of occupancy
states, r is the probability of the active sand grains to
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sustain shift of occupational energy of the sand
grain at f state transition probability of the sand
grain that cannot sustain the shift in energy state, g
is associated gain function to compute the fraction
of numbers of sand grains in the states r. For a sand
grain in critical state condition where every sand
grain has a change of energy state, we can establish
that the system continues to be in the active state
with the shift of the occupational active state energy
or undergoes transition to fall into a lower state of
energy depending on the state requirements. From
the law of conservation of energy for any occupa-
tional state, it is evident that for any state r+ 1‘];: 1.
In the sand pile grain lattice energy states can be
categorized as either active (1), semi-active (2) or
dormant (3) states, which act as the attractor states
for the sand grains. States diagram, see Figure (2), is
labeled 1 through 3 having three levels of occupa-
tional states. In a given interval of time, a fraction of
the states, r, will produce sand grain decay while
the remainder f will undergo transition to the next
higher vacant state of energy. The exceptions are
the initial and final states. Fraction of states r will
produce grain drop and remaining f goes to the
next higher states. We evaluate the transition matrix
to evaluate the change of gain between two upper
sequential states of the sand grain that is the
sub-critical state after which the sand grain drops.
Change in the sand grains after self-organization can
be given as:

AN, =rN,+1rN, + N;+rN, —(1-r)N,
AN, =(1-r)N, =rN, - (1-r)N,
AN;=(1-r)N, - N,

AN=N-N

N' =N+ AN

AN= DN
N'=N+DN=(I+D)N=T(N)

For the energy state ink™ level, N, = N, —rN, +
feei N -

For instance, the condition of a system in state 1
AN, =N; = Ny =- N, + i |N
N = i /5Ny

Energy level of state E, =, N, =1, f,_, /1. N, (9)
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1-r .| 2. Semi-Active | 1-r

1. Active State State

3. Dormant

Figure 2. A simple Markov process for three level stress drop.

Energy level of the 2™ state defines the gain
function of the previous state. Discrete gain func-
tions for the previous occupational states have been
evaluated.

g =N +1/N, (10)
n,=1/1+g, (11)
e = &Iy (12)

3.1. Transition Matrix for a Continuous Time
Markov Model

r r 1
Mn]l=1-r 0 O
0 1-r O

Energy state [18] of sand piles with height
restrictions exhibit a phase transition due to gain of
energy at the sequential states at the active phase
sites as the particle steady state density zis increased
beyond a critical value. A work on statistical me-
chanics by [19] has been used to explain the
mathematical framework for the gain function
between two sequential states of a Markov process.
For a critical threshold A as the spreading rate of
sand pile with activity at the critical level A of the
active site, the activity density varies as (A-A )p.
The survival probability of the sand pile P(¢) varies
as (At)? while mean number of events grows as
(At/ AT)? is the condition that the system will not
respond to avalanche breakdown. In this system, the
level gain will be dependent on P(t)/(L/A,)". The
system decays with the ratio of At/AT, so knowing
the gain function we can estimate the change of states
from f, to r.

4. Results and Analysis

Any set of forecast values givenas = (f, £ ,...,
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f'), and that the set of observed values is: x = (x, X,
,--» X ) characterizing the joint distribution of
forecasts and observations: p( f;, x) for a continuum
state model needs a joint distribution that includes
observations as well as their mutual association.
Defining the matrix p;; as the joint relative frequency
of forecast £, and observation x;, the dimension of
this matrix is the product of mand n less one, since
the sum of all entries is constrained to be unity. In
the deterministic forecasting illustration the matrix
dimension has been set to three which is minimal.
Assuming r = 0.3 for the state transition matrix:

N N, N
03 03 1
T(n) = A=
07 0 0 (13)
0 07 0

The non-continuous and continuous hidden
Markov model transition rate comparison r is used as
a measure of the dissipation in the semi-active state
behavior. Current research indicates a correlation
between the size of avalanche growth and energy
occupation levels for observational matrix B [20].
In order to simplify disaster mechanism, we only
consider three medium and large, or S, M and L for
avalanches. The probabilistic relation- ship between
energy states and avalanche sizes could be given
by the possibility of observation of given region is
B= bj(k) for the observed time t area Vk of the
possibility of thousands of events Vk:

b;(k)= P(ot=VK|s, = q;) (14)
S M L
N, |03 04 05

B=N,|02 03 03
N;|05 03 03

The transition from one state to the next is a
Markov process since the next state depends only on
the current state and the fixed probabilities in (11).
However, the actual states are "hidden" since we
cannot directly observe the state of energy in the
past. A computational model of 3x3 transition matrix
for the simulated states [1, 3] of the Markov model
chain based on parametric data approach fluctuates
between different regimes where the data comes
from three observable data and partition space of
empirical transition matrix. The next step is given in
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a particular state to generate a sample from that
state compute empirical discrete probability distribu-
tion of each regime with a precision 'd¢. This model
can now be used to simulate the observed process
dynamics, the results show that the sample paths as
well as histograms match quite well. The general
mechanism can be applied via a wide array of dataset
for nonparametric simulations, though we cannot ob-
serve the state of the empirical measurement of the
size of avalanche.

It is spectacular to mention that the erratic after-
shock trend of the 2004-2005 Sumatra - Andaman
tsunamigenic earthquakes created a wide-scale panic
among the people because of a series of subsequent
tremors and shocks in the region [2, 21]. Forecast
density at time ¢ is a weighted sum of the three
exponential densities, with weights the conditional
probabilities of being in states 1, 2, or 3 at time ¢+1.
These are computable for a given model. People of
the Andaman-Nicobar region of India anticipated
whether possibilities of another big tsunamigenic
earthquake in the vicinity of Andaman - Nicobar
region exist! Mishra et al [21] described genesis of
erratic aftershocks and continuous shaking of the
region after the main shock was related to the strong
heterogeneities with the causative faults and the
subsequent stabilization of the sub-surface earth
resulted in a series of tremors and aftershocks,
manifesting the healing process of the sub-surface
earth beneath Andaman-Nicobar region of India
during the year 2004-2005. This observation vindi-
cates the concept of seismogenesis and conflicts that
occur due to accumulating stress (disequilibria in
energy and relations) between active agents (faults
and heterogeneities) in which the stress may find its
release through sudden burst or emergence of new
features as shock waves analogous to an earthquake
occurrence in the critical state or a critical shock or
conflict in societal analysis. The influence of each
contributor tried to come back into stasis (meta-stable
state or stable equilibrium state), the spatial system
position of earth dynamics or conflicts through a
series of tremors (aftershocks) in accordance to a
Poisson process hidden Markov cellular automata
model.

There is additional evidence that the initial state
distribution, denoted as:

N, | 0.5
w,=N,|0.3
N;[0.2
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Figure 3a. Synthetic data set for transition probability.
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Figure 3b. Synthetic histogram output on event analysis.

The matrices ©t, A, and B are column stochastic,
as the elements in the column have to add up to 1,
which can then prove, by energy conservation rule,
that the system is stable. An HMM is defined by A, B
and 7 as the stochastic sand pile is denoted by c =
(A, B, m). A sample distribution by observing the
series of avalanches S, M, S, L, where O represents
S, 1 represents M and 2 represents L, as the obser-
vation sequence is O = (0, 1, 0, 2) is the most likely
for state sequence of the Markov process which has
state sequences as length four.

If we assume a state generic sequence of length
four X=(x, x,, x,, x;) with corresponding observa-
tions O=(OO, 0, 0, 03), then TX, is the probability
of starting in state x,. Moreover, bx (O,) is the
probability of initially observing O and a x, x, is
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the probability of transiting from state x; to state
x,. Continuing, we see that the probability of the
state sequence X is given by

P(X) = P(N;N,N,N,) =
TCXObXO(OO)aXO,xl b, (O))x

a4 0 by(0))ay, 5 b (0;)=0.00001764

x1,x2

We can compute the probability of each of the
possible state sequences of length four, assuming the
fixed observation sequence.

n=4
> P(x)=0.00001764+0.00001856 +
i=1

0.000014335+ 0.000003245

According to our study, the average stress, be-
fore and after a shock (cb+ca)/2 decreases with
increasing P(x) found for the nature of the shock;
that is, the absolute stress level decreases with
increasing magnitude. The distribution is then esti-
mated by the empirical distribution function, or the
histogram of the samples. Thus, using the sand pile
criterion, an active relationship between magnitude
and energy condition for stress variability with
density energy condition is derived for sand pile
concurrency with stress drop that emerges as a
characteristic property of the system.

5. Conclusion

The study shows that exogenous and endogenous
events interact and trigger spatially in large-scale
disasters and conflicts. The spatial existence of the
trigger basins is of vital concern in large-scale
networks. We have proved the interior stress distri-
bution and coupling effects for sources using sand
pile model. It needs to be seen whether such obser-
vation and data can be validated for other complex
systems as well for the observed state of extreme
event occurrence, which all are products of both
endogenous and exogenous effects. This study
validates the concept of exogenous events using sand
pile cellular automata system, an approach to study
complex behavior of multi-component system.

The methodology has clear-cut explanation about
the genesis of aftershocks and conflicting relation-
ship with faults and heterogeneities that bring the
system into a brittle failure. The special role in the
given model is the study of "triggering" functions
elaborated in [22]. At all stage of accumulation
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of elastic energy in the block of rocks, there is a
probability of external influence on the block and
dump of the elastic energy, which has been saved up
in this block. However, while the saved up energy
will not reach (achieve) a critical point, dump of
energy is realized as earthquakes or power shocks in
the critical state or a critical shock or conflict in
societal analysis. The influence of each contributor
tries to come back into stasis (meta-stable state or
stable equilibrium state), the spatial system position
of earth dynamics or conflicts through a series of
tremors (aftershocks) or post earthquake responses.
The present approach is very much valid for expla-
nation of aftershock sequences of the 2004 - 2005
tsunamigenic earthquake sequences.

It is ongoing research to see the predicting
potential of the sand pile model in unraveling the
dynamics of conflict analysis model in future obser-
vations based on detailed emphasis on environment
biased condition and real life constraints.
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