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The response spectrum of an oscillator with bilinear stiffness excited by band-lim-
ited Gaussian white noise is considered. The response is obtained by integrating
over all energy levels weighting each with the stationary probability density of the
energy. The procedure presented leads to estimates of linear and nonlinear response
spectra in frequency domain and agrees well with those obtained by direct numeri-
cal simulation. Development of stochastic-based response spectra based on the
frequency information concerning ground motions is important in engineering.
Approximation of non-stationary ground motions by band-limited white noise is
shown to be adequate for systems at the structural periods of engineering interest.
Formulating the nonlinear response based on the excitation frequency information
opens a door for wider use of seismological theory for regions with scarcely avail-
able recorded ground motion data. Despite simplicity and computational efficiency
of the method, it provides an accurate prediction of the observed nonlinear response
spectra on average.
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ABSTRACT

1. Introduction

In structural engineering, problems involving
unpredictable variables or stochastic processes are
frequently encountered. In these cases, a prob-
abilistic analysis may be the most rational way of
approaching the problem [1]. One of the main sources
of uncertainty in the assessment of the actual
response of structures is input ground motion
excitation. In engineering applications, structural
systems often display strong nonlinear behavior.
Regarding the structural system, nonlinearities
stem from geometry and/or material properties.
However, probabilistic solution for nonlinear
systems is difficult to obtain. In structural analysis,
the stochastic seismic response analysis is rarely
known, except for simple systems under idealized

excitations [2]. With certain restrictive conditions,
the state space vector is a Markov process, and the
state space variable can be obtained as the solution
to the corresponding Fokker-Planck equation [1].
Approximate solution techniques such as perturba-
tion method [3], equivalent linearization method
[4], equivalent non-linearization method [5], energy
balance method [6], and numerical simulation
method [7] are typically needed because such
restrictive conditions can rarely be met in practical
cases.

Methods for the evaluation of the response of
linear and non-linear systems under Gaussian and
non-Gaussian processes have been recently proposed
by several authors, some of which are based on the
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theory of Markov processes and determine the
probability density function of the response process
[8]. Using the concept of equivalent linear system
with random coefficients, Miles [9] estimated the
power spectra density (PSD) response of a Duffing
oscillator. Bellizzi and Bouce [10] presented a
method to evaluate the higher harmonics of the
PSD response of weakly damped oscillator with a
nonlinear asymmetrical restoring force under exter-
nal stochastic wide-band excitation. In a theoretical
point of view, Lin and Cai [11, 12] and Cai and
Lin [13] presented method based and an exact
stationery solution for a class of systems termed
the class of stationery potential. They indicated
that approximate solutions can be obtained by replac-
ing a stochastic system by an equivalent system
belonging to the class of stationery potential for
which solution exists. Furthermore, Lin and Cai [12]
by using the concept of dissipation energy balancing
and equivalent nonlinear system, replaced a non-
linear system by another nonlinear system so that
the average dissipated energy in the two systems
remains the same. This procedure is refined by
Yazdani and salimi [14] to estimate spectral dis-
placement of a hysteretic oscillator with bilinear
stiffness excited by band-limited excitation.
Rudinger and Krenk [1] considered a method to
evaluate PSD of an oscillator with bilinear stiffness
based on energy balancing procedure. Yazdani
and Komachi [15] and Yazdani and Takada [16]
respectively calculated the stochastic response of
linear and Duffing oscillator under excitation based
on the frequency  information of ground motion. Zhu
et al [17] obtained the stationary response stability
and bifurcation of strongly nonlinear systems using
the stochastic averaging technique for non-white,
but not-so-narrow-band excitation. Kumar and
Datta [18] presented a generalized procedure using
the sto-chastic averaging technique for determining
the response of strongly nonlinear single degree of
freedom (SDOF) systems for cases where closed
form solutions are not possible. Xiong et al [19]
evaluated the dynamic behavior of system and the
response regimes nonlinear mechanical system
coupled to nonlinear energy sink based on the
complex-averaging method and frequency detuning
methodology under the impact of the narrow band
stochastic excitation.

The purpose of this study is to estimate elastic
and inelastic displacement and acceleration spectra
of an SDOF with bilinear stiffness on the basis
of generated Fourier amplitude spectra (FAS) of
ground-motion using information on the seismic
source, seismic wave propagation through the
earth, and geological site conditions that affect
ground-motion. The presented procedure based on
stochastic techniques in frequency domain can be
applied to regions where strong ground motion data
are limited in availability regarding the magnitude
and distance range of engineering interest. The
procedure is validated by comparison with the
results of conventional time domain response
analysis for different recorded earthquakes.

2. Theoretical Analysis

When a nonlinear system is subjected to additive
excitations of Gaussian white noise, the reduced
Fokker-Planck equation can be solved in closed
form only with certain highly restrictive relations
between the system parameters and the spectral
densities of the excitations. Rarely can such restric-
tive requirements be met in practical cases and for
this reason the approximate solution techniques are
generally necessary. The dynamic equilibrium
equation for a SDOF system with linear damping and
bilinear stiffness subjected to Gaussian white noise
excitation W(t) can be written as:

)()(2 2 tWxgxx nn =ω+ζω+ &&&                                (1)

where x(t) is the displacement and dot indicates
the derivative with respect to time. nω  and ζ  are the
natural circular frequency and damping ratio in
linear range, respectively. The nonlinear function
g(x) describes the bilinear force with pre-yielding
slope of k and a post-yielding slope equal to αk.
The yielding and maximum displacements are
represented by xy and xm, respectively. The ratio
xm / xy defines the ductility µ, which is a measure of
nonlinearity degree in response. These character-
istics of the force-displacement diagram are shown
in Figure (1). Caughey [20] by assuming that the
damping is only a function of the energy, using
Fokker-Planck equation calculated the stochastic
joint probability density of plane variable of
displacement and velocity ),( xx &  as:
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Figure 1. Force-deformation relationship of bilinear system.
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where λ is the total mechanical energy that is
equal to the sum of the kinetic energy and the
potential energy. The potential energy is obtained
by integration of the stiffness function. The constant
C normalizes the density function of displacement
and velocity. In this equation, the value of S0 is
equal to amplitude of the power spectral density
function corresponding to natural frequency of
system. Within the framework of the energy
balancing, a set of weighting functions is selected,
and the replacement system is required to satisfy
the constraint that each weighted residual be
zero. The main constraint is equivalent to dissipated
energy balancing. By transformation from the
plane variable ),( xx &  to the energy and phase

),,( ϕλ   the probabilit density of ),( ϕλ  can be defined
as [21]:
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=ϕλϕλ                               (3)

The marginal probability density of the mechani-
cal energy can be calculated by integrating over the
phase as:

)2exp()()(
0S
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π

ξλω−λ=λλ                          (4)

where )(λT  is the period of free undamped vibration
at energy level λ. In this case, the natural period is
determined as [1]:
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In a system with bilinear stiffness, the probability
density of energy at each energy level can be
obtained. The ductility ratio of the system may be
computed as follows:
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The power spectral density function of ground
motion is defined by grTF /|)(| 2ω  in which )(ωF  is
the FAS of ground motion acceleration at frequency
of ω, and grT  is the earthquake ground motion dura-
tion [22]. There is a vast amount of research aimed
at predicting the amplitude of the Fourier spectra,
especially in the field of engineering seismology.
Brune [23] assumes that the far-field accelerations
on an elastic half-space are band-limited, finite-
duration Gaussian noise and that the source spectra
are described by a single corner frequency model
whose corner frequency depends on the earthquake's
size. One of the essential characteristics of this
method is that, it distills what is known about the
various factors affecting ground motions into simple
functional forms. The far-field Fourier amplitude
spectrum, ),(ωF  that has been used in seismological
models can be broken into contributions from
the earthquake source model (point-source), the
typical geometric, inelastic whole path and upper
crust attenuation; and site amplification functions
[24].
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where R is the distance, PR  is the wave radiation
factor (taken here as 0.55), SF  is the free surface
amplification factor (taken to be 2), and P is the
factor that partitions the energy into orthogonal

directions (taken to be ρ ).
2
2  is the density of the

rock within the top 10 km of the Earth's crust
(typically 2.8 ton/m3), and β is the shear-wave
velocity in the vicinity of the source [23]. E(ω) is
Brune's source spectrum, which is given as follows:
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where 0M  is the seismic moment, and cω  is the
corner frequency, which is given as follows:
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where, in this equation, the stress drop σ∆  has units
of bars, cω  has units of Hz, sβ  has units of km/s,
and 0M  has units of dyne-cm. The seismic moment

0M  is often expressed in terms of the moment
magnitude ,wM  which is defined as follows [25]:

7.10log67.0 0 −= MM w                                    (10)

The loss of energy along the wave's travel path
is very complex. By definition, the )(ωAn  factor
includes all of the losses that have not been accounted
for by the geometrical attenuation factor and is
defined by the exponent expression, which is given
as follows [24]:
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where 0Q  and n are the regional dependent factors
of the wave transmission quality factor Q, which is
defined by the exponent expression. The attenuation
(or diminution) operator )(ωP  in Eq. (7) accounts
for the path independent loss of high-frequencies in
the ground motions.
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where κ  is the attenuation parameter that accounts

for the high-frequency cutoff [26]. The term site
effect is generally used to refer to wave propagation
in the immediate vicinity of the site and not to
propagation effects, which refer to the complete path
from the source to the receiver. The boundary
between a site effect and a propagation effect is
not always clear, but it is useful to discuss them
separately. In Eq. (7), )(ωA  is the upper crust
amplification factor and is a function of the shear-
wave velocity versus the depth. The quarter-wave-
length method proposed by Boore and Joyner [27]
is used to model the amplification factor of the
site. The geometrical attenuation can be defined
from the developed trilinear attenuation model in
accordance with the regional crustal thickness [24];
here, it is assumed to be 1/R for simplicity.

By substituting the stochastic point-source shear
wave spectrum model into Eq. (4), it is indicated
that the probability density of energy can be calcu-
lated as:
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The probability density function of energy can be
computed in frequency domain, based on seismologi-
cal information. The presented relation in calculating
the response is based on the well-known stochastic
model for generating strong motion, customarily
used to calculate design earthquakes in places where
there is a lack of sufficient recorded data. The
stochastic point source model, which was used here,
is based on a static corner frequency. Despite some
theoretical deficiencies, this model gives similar
results as the dynamic corner frequency version for
medium and far distances and for ground motion
frequencies of most interest to engineers [28]. The
expectation of the energy can be obtained by
integration of the energy with respect to its probabil-
ity measure as:

∫
+∞
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λ λλλ=λ dPE )(][                                          (14)

Moreover, the coefficient of ductility of SDOF
system, µ, is obtained by substituting the expected
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value of the energy in Eq. (6).

3. Numerical Results and Validation

In order to verify the validity of the presented
approach to estimate the maximum deformations
of SDOF system by bilinear stiffening and linear
damping ratio, the results are compared with the
linear and nonlinear response of SDOF system in
time domain. In the proposed formulation in the
frequency domain, the response is computed only
by the FAS information based on the seismological
variables. In places with lack of recorded data, the
seismological variables can be calculated based on
the stochastic models. The validity of the proposed
approach is investigated through comparisons with
results for the recorded earthquakes. Three differ-
ent recorded ground motions, i.e. San Fernando
1971, Loma Prieta 1989, and Superstition Hills 1987
are considered. The simulated and observed FAS
in three different events are presented in Figure (2).
The good agreements achieved between simulated

and observed FAS confirm the reliability of the
utilized procedure in simulating ground motions.
The values of seismological variables of these
events [29] are indicated in Table (1). Based on the
seismological information, by using Eq. (7), the
probability density of energy can be calculated.
Figure (3) indicates the probability density of the
total energy of bilinear system for different coeffi-
cients of ductility at structural period of 0.2 and
1.0 s. By calculating the level of energy, the coeffi-
cient of ductility based on seismological information
in frequency domain is obtained.

Figures (4) and (5) compare the linear and
nonlinear response spectrum obtained by the con-
ventional time domain method and the proposed
frequency domain approach with parameters α =
0.03, ζ = 0.05. In this figure, the solid line shows
the response spectrum evaluated using the time
domain approach and the dashed line illustrates
response spectrum obtained in frequency domain.
Different traces compare the displacement and

Figure 2. Comparison of the observed (dash line) and the simulated Fourier amplitude Spectra (solid line) for three different ground
motions.
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Table 1. Set of variables of used strong motions in simulation.

Figure 3. The probability density of the total energy of bilinear system with α = 0.03 for three different coefficients of ductility
and damping ratio equal to 0.05 (a) at structural period of 0.2 s (b) at structural period of 1.0 s.
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Figure 4. Comparison of the linear and nonlinear displacement response spectra in the proposed frequency domain (dash line)
and in time domain approaches (solid line) when ζ=0.05 for three different ground motions.

Figure 5. Comparison of the linear and nonlinear displacement response spectra in the proposed frequency domain (dash line)
and in time domain approaches (solid line) when ζ=0.05 for three different ground motions.
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Figure 5. Continue.

acceleration spectra for different events for three
different coefficients of ductility. Discrepancies of
several percent can be found in the frequency
domain and time domain methods. These discrepan-
cies are caused by the difference in the procedure
and the input seismological parameters. The
acceptable mismatch between results based on
seismological FAS and recorded information
verify the integrity of the proposed approach.

4. Discussions and Conclusions

The formulation of the response spectrum in the
frequency domain is appropriate for computing the
response when the FAS information is available. The
presented formulation of dynamic structural response
in the frequency domain, based on only the frequency
information of the excitation, provides an important
basis for structural analysis in some countries, such
as Iran, that lacks strong motion records for dynamic
analysis. In the estimation of dynamic responses, a
suite of ground motion time histories needs to be
utilized in nonlinear time domain analysis. These

ground motions are limited by the amount of
available strong motion data and by the fact that they
are based on combined recorded data sets from
different earthquakes recorded in different regions.
In some locations for which there is a lack of
sufficient recorded data, well-known stochastic
models are customarily used to simulate strong
motions for the purpose of structural analysis. Some
of the uncertainties in design of safer structures
result from the lack of information due to the low
occurrence rate of large earthquakes and this
problem cannot be resolved in a practical time span.
It is, therefore, strongly desirable to develop a
robust method taking into account these uncertain-
ties with limited information and enabling the design
of safer structures.

One of the essential characteristics of the
seismological method is that it distills what is known
about the various factors affecting ground motions
into different functional forms. The presented
expression in this study provides an important basis
for a wider use of seismological theory in structural
analysis. For regions where recorded ground motion
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data are scarce, it becomes imperative to use the
proposed models to represent the linear and nonlin-
ear response of structures.

The accuracy of the proposed formulation was
investigated by comparing the results with those
obtained from conventional time domain. While
neither the conventional time domain response
spectra nor the recorded Fourier spectra are appro-
priate to use as a measure, because of the lack of
information on recorded data, the proposed measure
overcomes the problem. Despite possessing some
deficiencies the presented processor, formulating a
response spectrum on the basis of information on the
frequency excitation opens the door for wider use of
seismological theory in understanding the relationship
between the linear and nonlinear response spectra
and the seismological variables of interest. Due to
the simplicity and computational efficiency of the
method, it provides an accurate prediction of the
observed nonlinear response spectra on average for
structural periods of engineering interest.
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Symbols
A : Upper crust amplification factor
C : Normalizing constant
F  : Fourier amplitude spectrum
R : Source to site distance
T : Free vibration period
W : Unit white noise processes

0M : Seismic moment
:0Q Regional dependent factor of the wave trans-

mission quality
0S : Intensity of additive white noise process
grT : Earthquake ground motion duration

g : Stiffness function
m : Effective mass
x : Displacement
t : Time

yx : Yielding displacement
mx :  Maximum displacement

ζ : Damping ratio
nω : Natural circular frequency

λ : Mechanical energy
ϕ : Phase
α : Post-yield hardening ratio
µ : Ductility
β : Shear-wave velocity
ρ : Density
κ : Attenuation parameter that accounts for the high-

frequency cutoff
cω : Corner frequency

E[.]: Mean value operator
P(.): Stochastic joint probability density

Abbreviations

FAS: Fourier Amplitude Spectrum
PDF: Probability Density Function
PSD: Power Spectral Density
SDOF: Single Degree Of Freedom

* Dots over variable denote derivatives with respect
to time.


