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This paper is devoted to present a method of three-dimensional stability analysis
of concave slopes in plan view based on lower-bound theorem of the limit
analysis approach in static and seismic cases. Slope stability problems are often
analyzed two-dimensionally by conventional limit equilibrium method (LEM).
Accuracy of LEM is often questioned due to the underlying assumptions that it
makes, and at the same time, analyzing a 3D problem two-dimensionally may lead
to significant differences in safety factors depending on the slope geometries. In
this paper, the numerical linear finite element and the rigorous lower bound limit
analysis method is used to produce some seismic stability dimensionless charts for
three-dimensional (3D) homogeneous concave slopes. The charts can be used by
practicing engineers as a convenient tool to estimate the stability for excavated or
man-made slopes. The results obtained using this 3D method show that the stability
of concave slopes increases as the relative curvature R/H and the relative width of
slope decrease.
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ABSTRACT

1. Introduction

Up to now, stability of slopes has been tradition-
ally analyzed two-dimensionally by practitioners.
During the past decades, some three-dimensional
slope stability methods have been proposed. Most
of these analyses have dealt with straight (in plan
view) slopes with a planar surface. However, there
are many concave slopes in plan view with non-
planar surfaces. The influence of plan curvature on
the stability of slopes has been investigated mainly
by Giger and Krizek [1, 2], Leshchinsky et al [3],
Leshchinsky and Baker [4], Baker and Leshchinsky
[5], Xing [6], Michalowski [7], Farzaneh and Askari
[8], and Ohlmacher [9] for some special cases. Giger
and Krizek [1, 2] used the upper-bound theorem of
limit analysis to study the stability of a vertical corner

cut subjected to a local load. They assumed a kine-
matically admissible collapse mechanism and, through
a formal energy formulation, assessed the stability
with respect to shear strength of soil. They presented
a 3D analysis of slope stability based on the varia-
tional limiting equilibrium approach and proved that
it can be considered as a rigorous upper bound in
limit analysis. Leshchinsky and Baker [4] used a
modified solution of the approach mentioned to
study 3D end effects on stability of homogeneous
slopes constrained in the third direction and applied
it to investigate the stability of vertical corner cuts.
Using a variational approach, Baker and Leshchinsky
[5] discussed the stability of conical heaps formed by
homogeneous soils. Xing [6] proposed a 3D stability
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analysis for concave slopes in plan view using the
equilibrium concept. Based on the limit equilibrium
method, Michalowski [7] introduced a rigorous 3D
approach in the strict framework of limit analysis
for homogeneous and straight slopes. In his analysis,
the geometry of slope and slip surface was unre-
stricted and both cohesive and frictional soils were
included. Farzaneh and Askari [8] improved
Michalowski's algorithm in the case of 3D homoge-
neous slopes and extended it to analyze the stability
of nonhomogeneous slopes. Ohlmacher [9] investi-
gated a case study including concave and concave
slopes.

Ignoring the 3D effects when analyzing slopes
can lead to unsafe answers. As an example, in the
back analyses of shear strengths, neglecting the 3D
effects will lead to values that are too high, and
therefore affect any further stability assessments.

In this paper, finite element lower bounding
method is used and 3D stability charts are presented,
which may be used to evaluate the safety factor in
seismic 3D concave slope stability problems.

2. Background

Idealizing the soil behavior as a perfectly plastic
material obeying the associated flow rule, two
plastic bounding theorems can be proved and used
to obtain the lower and upper bounds of the limit
load in limit analysis method. According to the upper
bound theorem, if a set of external loads acts on a
failure mechanism and the work done by the exter-
nal loads in an increment of displacement equals
the work done by the internal stresses, the external
loads obtained are not lower than the true collapse
loads. It is noted that the external loads are not
necessarily in equilibrium with the internal stresses
and the mechanism of failure is not necessarily the
actual failure mechanism. By examining different
mechanisms, the best (least) upper bound value
may be found. The lower bound theorem states if
an equilibrium distribution of stress covering the
whole body can be found that balances a set of
external loads on the stress boundary and is
nowhere above the failure criterion of the material,
the external loads are not higher than the true
collapse loads. It is noted that in the lower bound
theorem, the strain and displacements are not con-
sidered and that the state of stress is not necessarily
the actual state of stress at collapse. By examining

different admissible states of stress, the best (high-
est) lower bound value may be found.

Limit theorems have not been applied to 3D
slope stability problems as widely as they have been
used in 2D problems. Currently, most slope stability
evaluations based on the limit theorems such as
Giger and Krizek [1, 2], Michalowski [7, 10], Donald
and Chen [11], Chen et al [12, 13], Farzaneh and
Askari [8, 14] and Viratjandr and Michalowski [15],
have used the upper bound method alone.
Michalowski [7], who investigated local footing
load effects on the 3D slope stability, presented
major contributions for upper bound 3D soil slope
stability analysis.

Three-dimensional limit analysis applications
has almost exclusively concentrated on the upper
bound method because of the difficulties of con-
structing statically admissible stress fields analytically
in 3D problems. The finite element lower bound
limit analysis techniques developed by Lyamin and
Sloan [16] and Krabbenhoft et al [17]  provided a
useful numerical method for dealing with complex
problems (Appendix 1). The method was used in
three-dimensional analyses of convex slopes by
Askari et al [18] in static cases. This paper is
devoted to use the linear finite element and an
optimization approach to find the lower bound
solutions in seismic 3D concave slope stability
problems.

3. Formulation of the Problem

Suppose a body with volume V and surface area
A, and t and q are the set of known and unknown
tractions acting on the surface areas At and Aq
respectively. Similarly, let g be the system of
fixed and known body forces which act, respectively,
on the volume V. Under these conditions, the
objective of a lower bound calculation in a limit
load problem (such as a bearing capacity problem) is
to find a stress distribution that satisfies equilibrium
throughout V, balances the prescribed tractions t on
At and body forces on g, nowhere violates the yield
criterion, and maximizes the integral:

∫=
qA

AdqQ                                                          (1)

As will be shown later, the formulation can be
easily rearranged to find the safety factor in a
stability problem (such as slope stability problems).
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This problem can be solved analytically for a few
simple cases; however, the most appropriate method
for this task in problems with complex geometries,
inhomogeneous material properties, and complicated
loading patterns may be considered the finite element
method.

Formulation of the lower bound theorem in this
problem leads to a constrained optimization problem
of the form:

n

j

i

Rx                                      

r  Jj     xf               
m  Ii       xa       

∈

=∈≤
=∈=

}...,,1{,0)(to
}...,,1{0)(subject

Function Objective Maximize

               (2)

where x is an n-dimensional vector of stress
variables. The equalities defined by the functions ia
follow from the element equilibrium, discontinuity
equilibrium, and boundary and loading conditions,
while the inequalities defined by the functions jf
arise because of the yield constraints and the
constraints on applied forces. Maximizing Objective
Function leads to use an optimization approach.

In this paper, the nonlinear optimization based
on a fast quasi-Newton method whose iteration count
is largely independent of the mesh refinement, is
selected for finding the maximum lower-bound
solution of the safety factor of the slope, which
satisfies the elements equilibrium, discontinuities
equilibrium, and boundary and loading conditions.

The schematic geometry of the concave slope
considered in this paper and the section of the slope
at plane of symmetry are shown in Figure (1).

The global form of a typical element in present
solution is shown in Figure (2). The stress variation
between each two nodes of the element is assumed
linear, thus this type of finite element is called Linear
Finite Element. The following section gives a
detailed description of the discretization procedure
for the case of three-dimensional linear elements.

Unlike the usual form of the finite element method
in which each node is unique to a particular element,
multiple nodes can share the same coordinates,
and statically admissible stress discontinuities are
permitted at all inter-element boundaries.

Elements are organized from some prismatic
units as shown in Figure (3). Each discussed unit is
combined from three volumetric pyramid elements,
shown in Figure (4).

The global form of modeling consists of two

Figure 1. (a) Schematic model of the concave slope analyzed
(b) section at plane of symmetry.

Figure 2. Global form of a typical element [18].

Figure 3. Prismatic unit used for organizing the elements [18].
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plans, one locates at the top and the other at the
bottom of the model. Figure (5) shows the top and
bottom plans of modeling. Between each pair of

slices in the plans (1 to 12), three elements in the
form of a prismatic unit shown in Figure (3) are
constituted. For higher slopes, various numbers of
prismatic units are used in the height of the slopes.

The typical 3D slope model for the problem of
this paper is shown in Figure (6). This model consists
of 12 units and therefore 36 elements.

Figure 4. Elements used for Lower Bound Limit Analysis [18].

Figure 5. Bottom and top plans of modeling, extension of the
stress fields into a semi-infinite domain.

Figure 6. Typical 3D finite element model of the slope analyzed
in this paper.

The extension elements may be used to extend
the solution over a semi-infinite domain and there-
fore provide a complete statically admissible stress
field for infinite half-space problems [16]. In fact,
the extension elements referred to in Figure (5)
can be used readily to extend the stress fields into
a semi-infinite domain, which is discussed in
Appendix 1. Because this paper is concerned mainly
with the stability of finite slopes resting on a firm
base, extension elements are needed only behind of
slopes, shown in Figure (5).

4. Objective Function and Loading Constraints

The purpose of lower bound limit analysis is to
find a statically admissible stress field, which
maximizes the objective function with consideration
of the combination of surface tractions and body
forces of the problem. In the terminology of slope
stability, safety factor is known as the objective
function, since this is the quantity that is wanted to be
maximized in lower bound case.

The general form of the yield condition for a
perfectly plastic solid has the form:

0)( ≤σijf                                                          (3)
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where f is a convex function of the stress compon-
ents and material constants. The solution procedure
presented later in this paper does not depend on a
particular type of yield function, but does require it
to be convex and smooth. Convexity is necessary to
ensure that the solution obtained from the optimiza-
tion process is the global optimum, and is actually
guaranteed by the assumptions of perfect plasticity.
Smoothness is essential because the solution algo-
rithm needs to compute first and second derivatives
of the yield function with respect to the unknown
stresses. For yield functions, which have singularities
in their derivatives, such as the Mohr-Coulomb
criteria, it is necessary to adopt a smooth approxima-
tion of the original yield surface. A plot of this
function in the meridional plane is shown in Figure
(7).

Figure 7. Hyperbolic approximation to Mohr-Coulomb yield
function.

Defining tensile stresses as positive, the Mohr-
Coulomb yield function may be written as:

ddd cf φ−φσ+σ+σ−σ= cos2sin)()( 2121          (4)

where the principal stresses are ordered so that
321 σ>σ>σ  and dc  and dφ  are:

dc ccFS /=                                                       (5)

)tan(/)tan( dFS φφ=φ                                         (6)

in which c and φ  denote, respectively, the cohesion
and friction angle of the soil. Assuming == cFSFS

,φFS  the objective function define as maximizing the
safety factor by satisfying the yield function. This
implies that the stresses at all nodes in the finite
element model must satisfy the yield condition.

Thus, in total, the yield conditions give rise to some
non-linear inequality constraints on the nodal stresses.

Because each node is associated with a unique
set of stress variables, it follows that each yield
inequality is a function of an uncoupled set of stress
variables .l

ijσ  Each admissible stress field has its
own safety factor. Using an optimization method of
nonlinear programming that is based on Newton's
method the highest lower bound safety factor is
attained. In this method, the non-linear equations at
the current point k are linearized and the resulting
system of linear equations is solved to obtain a
new point k + 1. The process is repeated until the
governing system of non-linear equations is satisfied.
Thus, the highest lower bound safety factor of
admissible stress fields is searched; this feature
can be exploited to give a very efficient solution
algorithm.

The typical lower bound finite element meshes
and boundary conditions used to analyze the 3D slope
problem are illustrated in Figure (6). The stability of
homogeneous slopes is usually expressed in terms of
two dimensionless stability numbers in the following
form:

cFHN SS   /γ=                                                    (7)

SS FN /tan φ=λ                                                 (8)

where SN  is the stability number, γ  is the soil unit
weight, H is the slope height, SF  is the safety factor
of the slope. In addition, c and φ  are known as the
strength parameters of the material; c represents
the cohesion and φ  represents the angle of internal
friction.

5. Comparison with Other Results

Increasing the number of elements in models in-
creases the accuracy of the results; however, high
number of elements leads to time-consuming runs.
In order to select an optimum number of elements,
some models were made and results by different
number of elements were compared to make a deci-
sion on the number of elements to use and suitable
time taken in each run.

For constant quantity of slope angle β = 30 and
λ  =  2, the results of some straight slopes for
elements number 18, 36 and 72 are compared, shown
in Figure (8). As it is seen, an increase in elements
number results in decreasing the interspaces between
lower bound solutions. It means that by increasing
the number of elements, the accuracy of results is
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increased, but its rate decreases, as Figure (8) shows.
Therefore, it can be concluded that for higher
number of elements, the difference between results
can be connivance. In this paper, all numerical
results are made of 36 elements because of low rate
of variations afterwards.

For a validation, the results of the current approach
can be compared with those of other investigators
for straight slopes. Different methods have been
proposed for 3D analysis of straight slopes by
Baligh and Azzouz [19], Chen and Chameau [20],
Ugai [21], and Leshchinsky and Baker [4]. Compar-
ing the current results with most of these methods, a
good agreement is found among them. Leshchinsky
and Baker [4] extended a modified limit equilibrium
solution of variational approach in 3D stability of
slopes. Ugai [21] extended Baker variational limit
equilibrium approach to 3D cohesive slopes.

Figure (9) shows the ratio iDDD FFF (/ 23  is the
safety factor in iD analysis) as a function of L/H

Figure 8. Effect of element numbers in accuracy of results.

Figure 9. Comparison of the present results with those of
Ugai [21] and Leshchonsky [4] in cohesive soils.

obtained by Ugai [21], Leshchinsky and Baker [4]
and the present solution. As it is seen, the results of
current solution underestimate in good accuracy.

6. Numerical Results

The analysis developed in this paper allows for
calculations of three-dimensional safety factors and
stability numbers in concave slopes, for which the
failure mechanism is expected to pass through or
above the toe, and for slopes with no pore-water
pressure within the failure mechanism.

In Figures (10) to (13), stability diagrams for
homogeneous concave slopes in plan view obtained
from numerical lower bound analyses are displayed
for slope angles (β) 45o and 90o, λ equal to 0 and 3
and seismic coefficients (kh) ranging from 0 to 0.3.
These diagrams demonstrate the stability for three
ranges of the relative curvature radius of the slope
in plan (R/H) for different L/H ratios (L and H are
shown in Figure (1)). The stability numbers for 2D
cases are obtained from bishop's simplified method.
The relative width of the mechanism of failure, L/H,
ranges from 2 to 10.

Although the diagrams are results of lower bound
method, the true ratio of DD FF 23 /  has been investi-
gated and identified to be bracketed by the numerical
upper and lower bound analysis within a range of
± 9% for all cases considered.

A comparison of the equivalent 2D and 3D cases
can be made by investigating the factor of safety
ratio DD FF 23 /  for the same slope angle (β), seismic
coefficient (kh), and slope height dimensionless
parameters L/H and λ. The ratio DD FF 23 /  is simply
equal to the ratio of the stability numbers /)3( DsN

.)2( DsN
Following results can be obtained based on the

diagrams shown in Figures (10) to (13):
l Three-dimensional effects (the ratio /)3( DsN

))2( DsN  decrease as the slope angle (β) and λ
increase. The effect increases as the seismic
coefficient (kh) increases. In other words, 3D
analyses are more important in cohesive soils
with gentle slopes in seismic areas.

l sN  decreases when L/H ratio increases. There-
fore, using 2D solution is conservative for
design of slopes. However, the solution may be
non-conservative when determining strength
parameters from a back analysis of a failed
slope.
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Figure 10. Seismic stability number ratios in different L/H ratios for β=45 and λ =0.

Figure 11. Seismic stability number ratios in different L/H ratios for β=45 and λ =3.
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Figure 12. Seismic stability number ratios in different L/H ratios for β=90 and λ =0.

Figure 13. Seismic stability number ratios in different L/H ratios for β=90 and λ =3.
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l For a given β, λ and kh, Ns achieve the min-
imum value when L/H goes to infinite. This
implies that the 3D factor of safety will reduce
with increasing L/H ratio. As is known, the plane
strain analysis does not consider the resistance
provided by the two lateral ends of the slip
surface. The boundary resistance from these two
ends can be seen as 3D end boundary effect,
which makes the slope more stable. While
increasing the L/H ratio, the relative contributions
of resistances provided by lateral ends decrease,
which means that 3D end boundary effect
reduces. Therefore, using 2D stability numbers
will lead to a more conservative slope design.

l For a given concave slope, the stability number
increases as the ratio R/H decreases. In other
words, concave slopes in plan view are more
stable than straight ones.

7. Conclusions

A method was presented for the evaluation of
the three-dimensional stability of concave slopes in
plan view based on Lower-bound theorem of the
limit analysis approach subjected to seismic excita-
tion. Slope stability problems are often analyzed two
dimensionally by conventional limit equilibrium
method (LEM). Accuracy of LEM is often questioned
due to the underlying assumptions that it makes
and at the same time, analyze a 3D problem two
dimensionally may lead to significant differences in
safety factors depending on the slope geometries.

Limit analysis is a powerful tool for evaluation of
the stability of slopes. The analysis presented includes
3D and seismic effects of concave slopes. Seismic
effects are approximated as pseudo static loadings
and it does not account for the periodicity during
seismic shaking.

The charts produced for homogeneous cohesive
slopes can be used by practicing engineers as a
convenient tool to estimate the three-dimensional
effects in stability of concave slopes.

Based on the results presented, the smaller the
curvature radius of the slope (R/H), the higher the
stability of concave slope in plan view is. It should be
mentioned that with decreasing λ and increasing
seismic coefficient (kh), three-dimensional effects
are more significant. In other words, the effect of
curvature of the slope is more important in cohesive
soils with gentle slopes in seismic areas.
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Appendix

A.1. Linear Finite Element Formulations

As mentioned in the paper, the finite element
formulation used is similar to those of Lyamin and
Sloan [16]; however, in this study, the types of
elements are different and the formulations are
applied in seismic condition. Formulations are
explained in more detail in reference [18]; however,
a summary is presented in this Appendix.

The stresses, together with the body force
components hi, which act on a unit volume of mate-
rial, are taken as the problem variables. The vector
of unknowns for an element e is denoted by xe and is
written as:

{ }
Dij Di

hx
TT

i
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ij
Tl

ij
e  
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,}{,}{,...,}{ 1

==

σσ= +

                         (A1)

where }{ l
ijσ  denotes the stresses at node l and }{ ih

denotes the elemental body forces. The variation of
the stresses throughout each element may be written
conveniently as:

l
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                                                  (A2)

where Nl denotes the linear shape functions. The
latter can be expressed as:
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where kx denotes the coordinates of the point at which
the shape functions are to be computed (with the
convention that 0x = 1), C is a 4×4 matrix formed
from the element nodal coordinates according to:
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and C(l)(k) is a 3×3 submatrix of C obtained by
deleting the lth row and the kth column of C. In
above expressions, the superscripts are row numbers,
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correspond to the local node number of the element,
while the subscripts are the column numbers, and
designate the coordinate index. Elements in the first
terms of Eq. (A2) can be written in the more
compact form:

klkl xaN   ∑=
3

0
                                               (A5)

C

C
a klkl

lk

 ))((1)1( ++−=                                      (A6)

A.2. Element Equilibrium

To generate a statically admissible stress field, the
stresses throughout each element must obey the
equilibrium equations:

32,1,,   i     gh
x ii

j

ij

 

 

=−=+
∂

σ∂
                             (A7)

where ijσ  are Cartesian stress components, defined
with respect to the axes ,jx  and ig  and ih  are,
respectively, prescribed and unknown body forces
acting on a unit volume of material within the
element. Writing the governing equations in terms
of stress vector, which reduces the number of
unknowns, Eq. (A5) becomes in following matrix
notation:

equil
e

equil bxA  =                                                (A8)

in which equilA  is coefficients matrix of equilibrium
and equilb  is constant matrix of equilibrium. Thus,
in total, the equilibrium condition generates three
equality constraints on the element's variables in
three-dimensional modeling.

A.3. Discontinuity Equilibrium

To incorporate statically admissible discontinuities
at inter-element boundaries, it is necessary to enforce
additional constraints on the nodal stresses. A
statically admissible discontinuity requires continuity
of the shear and normal components but permits
jumps in the tangential stress. Since the stresses vary
linearly along each element side, static admissibility
is guaranteed if the normal and shear stresses are
forced to be equal at each pair of adjacent nodes on
an inter-element boundary.

In the previous section, the components of the
stress tensor were defined with respect to the
rectangular Cartesian system with axes xj, j = 1, 2, 3.

In addition to this global coordinate system, let us
define a local system of Cartesian co-ordinates ,kx′
k = 1, 2, 3, with the same origin but oriented
differently, and consider the stress components in
this new reference system. Assuming these two
coordinate systems are related by the linear trans-
formation:

3,2,1,   k    xx jkjk  =β=′                                     (A9)

where kjβ  are the direction cosines of the kx′ -axes
with respect to the jx -axes, then the tractions acting
on a surface element, whose normal is parallel to one
of the axes ,kx′  are given by the vector tk with    com-
ponents:

kjij
k
it βσ=                                                     (A10)

The corresponding transformation law for the
stress components is:

mjkiijkm ββσ=σ′                                               (A11)

Using the definition of the stress vector, and
assuming that the normal to the discontinuity plane
is parallel to the axis ,lx′  Eq. (A9) may be written as:

disc
e

disc bxA  =                                                   (12)

in which discA  is coefficients matrix and discb  is
constant matrix. Hence, the equilibrium condition
for each discontinuity generates nine equality
constraints on the nodal stresses.

A.4. Boundary Conditions

Consider a distribution of prescribed surface
tractions Ppt p ∈,  where P is a set of pN prescribed
components, which act over part of the boundary area

.tA  For the case of a linear finite element, where the
tractions are specified in terms of global coordinates
over the linearized boundary area ,d

tA  we can cast
the stress boundary conditions for every node l as:

l
p

l
ki

l
ip t=βσ                                                      (A13)

Assuming the local coordinate system is chosen
with lx′  parallel to the surface normal at node l, this
type of stress boundary condition gives rise to the
constraints:

bound
e

bound bxA  =                                           (A14)

in which  discA  is coefficients matrix and discb  is
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constant matrix. Thus, every node, which is subject
to prescribed surface tractions, generates a maximum
of three equality constraints on the unknown stresses.

A.5. Assembly of Constraint Equations

All of the necessary steps to formulate the lower
bound theorem as an optimization problem have now
been covered. The only step remaining is to assemble
the constraint matrices and objective function
coefficients for the overall mesh. Using mentioned
equations, the various equality constraints may be
assembled to give the overall equality constraint
matrix according to:

∑∑∑ ++=
Bn

Bound
Ds

disc
E

equilglobal AAAA
111

    (A15)

where E is the total number of elements, Ds is the
total number of discontinuities, Bn is the total
number of boundary nodes, which are subject to
prescribed surface tractions. Similarly, the correspond-
ing right-hand side vector b is assembled according
to:

∑∑∑ ++=
Bn

Bound
Ds

disc
E

equilglobal bbbb
111

      (A16)

When the stress field is modeled using linear
finite elements, the objective function and equality
constraints are linear in the unknowns, with the only
non-linearity arising from the yield inequalities.
Thus, the problem of finding a statically admissible
stress field that maximizes the collapse load may be
stated as:

n

n
j

Rx                                           

Rj     xf                       

bxA        
xC

∈

∈≤

=

,0)(

subject to
        Maximize

 

T

                  (A17)

where c is a vector of objective function coefficients
of length n, A is an m×n matrix of equality constraint
coefficients, )(xf j  are yield functions and other
convex inequality constraints and x is a vector of
length n which is to be determined.

A.6. Extension of Stress Field into Semi-Infinite
Domain

When the lower bound method described
previously is applied to problems with semi-infinite
domains, only part of the body is discretized. This
means that the optimized stress field does not

necessarily satisfy equilibrium, the stress boundary
conditions and the yield criterion throughout the
entire domain; and therefore, it cannot be used to
infer a rigorous lower bound on the collapse load.
Although this type of solution, which is known as a
partial stress field, may actually furnish a good
estimate of the true collapse load, a fully rigorous
lower bound can be obtained only by extending
the stress field over the semi-infinite domain in
such a way that all the conditions of the lower bound
theorem are fulfilled. This process is often difficult,
especially for cases involving irregular boundary
shapes, and is frequently omitted in hand calculations.
To resolve this situation, some extension elements,
which are deployed around the periphery of the mesh,
are used. These are constructed so that they extend
the stress field beyond the limits of the grid in such a
way that it is statically admissible.

A D-dimensional extension element is much like
a regular lower bound finite element in that the
stress field is defined by the stresses at D + 1 nodes
and the body forces are assumed to be constant.
Indeed, as with any lower bound element, the stresses
must satisfy the equilibrium, stress boundary and
yield conditions. Consider the 2D case, where a
linear expansion is used to model the stresses across
and outside a three-noded extension element.
Provided the equilibrium and stress boundary condi-
tions are satisfied within the triangle, then they are
automatically satisfied for any point p outside the
triangle. This implies that all extension elements are
subject to the same equilibrium and stress boundary
constraints as regular elements. For D-dimensional
geometries, a maximum of D different types of
extension elements are required. Although they are
restricted to certain types of yield criteria, extension
elements are attractive because they guarantee that
the solution obtained is a rigorous lower bound.

Figure A.1. Approximation of stress field inside and outside
the extension element.


