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A numerical boundary element, as an appurtenance of integral equation method,
has some useful characteristics that facilitate the solutions of numerical equations,
but asymmetrical and sparse structure of formed stiffness matrix in large-scale
boundary element method related to high degree of freedom problems make it
unpractical, especially in seismic analysis of large-scale surface topographies
with irregularities. Nowadays, fast algorithms such as fast multi-pole method
present new media in numerical solutions with the aim of revolutionary changes
in geometric definitions. In contrary with the usual node-to-node or element-to-
element interconnection implementation, the cell-to-cell relation along hierarchy
tree structure is applied. In most papers, the fast algorithm uses a two-level
hierarchical tree structure as a  part of algorithm internally without detail
illustration. Therefore, a comprehensive detail of hierarchical tree structure is
requested. In this paper, a multi-level (level definition is dynamic) hierarchical
tree structure is presented with graphical theme and examples. This paper presents
the relation between conventional boundary element method geometric structure
with hierarchical tree model, and later, explains the method along with its abilities
and limitations.
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ABSTRACT

1. Introduction

In technical literature, there are two applicable
choices based on different volumetric and boundary
methods to solve equations numerically. Both of them
have their own benefits and limitations. The former
solvers have symmetrical coefficient matrix where
volumetric discretization definition is mandatory,
while the latter solvers impose radiation condition
implicitly, which eliminate the need for local
absorbing boundary conditions [1]. They need to
only mesh exterior surface, while MOT nature
schemes of integral equation methods enforcedly are

unstable and computationally expensive, as the
number of DOF increases remarkably.

These days, BEM with systematic analysis
nature has been developed in both frequency and
time domain, especially in small strain range and
linear behavior of materials. One of the first attempts
in this media was established by Friedman and
Shaw [2] for anti-plane elastodynamics. Boundary
element was formulated in 2-D time domain by
Cole et al. [3] for the first time in scalar problems.
Niwa et al. [4], Manolis and Beskos [5], and Manolis
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[6] used Cole formulation with some changes in
analysis of 2-D elastodynamics problems, and their
solutions were compared with responses obtained
in the transformed domains. The new generation of
full-plane time-convoluted kernels and BE formula-
tion  was presented by Mansur [7] for 2-D scalar
and elastodynamics problems. Antes [8] developed
the time-domain BE formulation for arbitrary initial
conditions, and Spyrakos and Antes [9] changed last
formulation for dynamic analysis of various problems
usage. Regardless of the Heaviside functions in
integration, Israil and Banerjee [10] were able to
show the simpler and more tangible form of full-
plane time-convoluted kernels for scalar and
elastodynamics problems so that later Kamalian
et al. [11] modified their in-plane kernels and
implemented that in time-domain BEM algorithm in
order to analyze different geotechnical earthquake
engineering problems as well.

In the mid-1980s, Rokhlin and Greengard [12]
established a new algorithm that reduces the time
consumption and complexities of the equation
system in integral base equation solvers intentionally.
They called it Fast Multi-pole Method (FMM) [13]
that presents innovative media in solving boundary
element formulation.

This method was developed by Greengard [14]
as he established FMM to solve problems with two
main elements in structure, consisting of hierarchical
tree architecture plus iterative solver. Iterative
solvers are available as form of external subroutines
based on CG, GMRES, Bi-CGSTAB methods, etc.
On the contrary, the hierarchical tree architecture is
applied in some papers related to fast algorithm with
overall description.

The purpose of this article is two-fold:
1. Description of the tree structure with details and

illustration of hierarchical algorithm graphically.
2. Solving some practical examples with detailed

explanation.
Hierarchical tree algorithm utilizes in various fields

in science and engineering, such as Heat conduction
[15], Elasticity [16], Stokes flow [17], Acoustic [18],
Astrophysics [19], Molecular dynamics [20], fluid
mechanics [21], etc.

2. Methodology and Implementation Issues

The basic integral form of BIEM is mentioned in
Equation (1). Traditional boundary integral equations

have explained in some reference books in field of
numerical methods in details, and it is not necessary
to describe them here again.
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The sole of fast method consists of two parts.
First one is constructed by meaning of batch waves
that implies source wave's integration instead of
node to node interconnections, and second one is
related to solving equation method. In this section,
the prior one is explained analytically.

2.1. Source Wave Implementation

Despite conventional BEM that solves integral
equations in each time step separately, fast BEM
uses source signal as a sequence of waves with
defined and constant time length; therefore, the
source signal f (t) is divided into z consecutive
sub-signals ),(tfz  Figures (1) and (2).

1,...,2,1,0 −= z  z  as .)()(
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0
∑
−

=
=
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Note that the earliest time of arrival of the actual
signal in the observer point with temporal signature

)(tfz  should meet special situation that is explained
below.

Let SC  and OC  be disjoint circular domains with
radius of R centered at s, o and the distance between
the centers or so −  will be denoted by ).2( RRc >
Besides, assume that SC  includes a part of S
denoted by .0S  In the plane wave expansion for
the fundamental solution of Equation (1), there is an
expression that includes a non-physical ghost and

Figure 1. Sectioning of signal into sub-signals of duration Ts.
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true sub-signal simultaneously. In utilizing this
expansion, it is needed to develop an approach,
which guarantees that the ghost does not pollute the
solution. In order to obtain such an approach, it is
preferable to find density functions u (displacement)
and t (traction) as sums of functions zu  and ),(, tf t z

z

1,...,2,1,0 −= z   z  which have supports in the finite
time intervals ].,( 21

zz TT
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Figure 2. Source and Observer.

Figure 3. Signal and Ghost.
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Here, ( ) ,
2
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ω=Ω  and

1, χ pt  are parameters, which tp  is an integer equal
or greater than 0 and 1χ  is a real number equal or
greater than 1 too. ψ  is band limited by max1 ω⋅χ=ω f

and almost vanishes (or )0≈ψ  for .tpt t ∆⋅>
It is assumed that )(tf  is very smooth, or is band

limited by .maxω  )(tf  is interpolated by using an
approximately time and band limited base function
ψ  and group consecutive M terms together to
define:
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                            (5)

Then )(tf  splits into a sum of approximately time
and band limited functions )(tfz  by using M samples
of )(tf  (Figure 4).

Figure 4. Decomposing of Signal to Sub-Signals.

Here, the time interval zz TT 12 −  is equal for all z.
At this time, ,21 cc >  If it is taken into consideration
that,
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the result would be zz
S TTT 12 −= .

Therefore, if ,gost
Z

trans
Z TT >  all ghost fields'

sub-signals in the observation circle OC  cease to
exist before true signal arrives. In addition,

,)1( S
trans

Z TzT +>  all source potentials related to the
Zth time interval ends before the true signal reaches
any observer (Figure 3).

Now, because of the nature of FMM, the obtained
broken series of time-gated sub-signals should be
interpolated for each arbitrary time step by use of
appropriate interpolation function. There are so much
interpolation functions in time and space, and after
comparing some of them, finally the following
interpolation function (approximate prolate spherical
interpolant) is a variant of the one originally proposed
by Knab [22].
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3. Tree Structure Versus Conventional Mesh
Definition

In conventional boundary element, the exterior
(boundary) surfaces S is divided into SN  segments.
For simplicity, It is assumed that the boundary
elements to be piecewise constant. Although this
assumption has no effect on problem generality, it
places one node on each element that indicates
variation in element properties amplitude. Therefore,
in case of using constant element, the total number
of nodes would be equal to the total number of
elements indeed (Figure 5).

Figure 5. Discretization of boundary S using constant elements.

In the classical boundary integral elements
equation, direct integrations are needed. It should be
noted that the node-to-node (or element-to-element)
interaction between each assumed source and field
point is indispensable. On the contrary, in FMM, an
innovative scenario is happened/exists that all
node-to-node interconnections are replaced with
cell-to-cell interactions by a hierarchical tree
architecture of cells containing groups of elements.

4. Geometry of Hierarchical Tree in 2-D

First, we discretize the exterior surface of
problem S  into SN  elements such as conventional
boundary element. Then, the geometric problem is
circumscribed by a square that covers the entire
boundary of problem, and we call this square is called
the "cell" (a parent cell) of level zero. This cell is
divided into four equal sub-square cells (child cells)
of level one, whose edge length is half of the parent
cell. This process should be continued as such until a
cell contains elements less than a prescribed number
(only for illustration, in Figure (6), this number is
supposed to be 1). A cell having childless is called a
leaf; thus, a quad-tree algorithm will be formed when
this procedure is completed (Figure 6).

In this process, an element is assumed within a
cell, if and only if, the center of the element is inside
that cell. This assumption is independent of element
rank accuracy [23].

It is considered that the edge length of a cell at
level l is given by ,

2l
L  where L is the length of the

edge of the largest cell at level zero [24].

Figure 6. Demonstration of hierarchical tree (cells versus en
closing elements).

5. Hierarchical Tree Structure Implementation

The main parent cell at level zero (largest cell
that surrounds the exterior surface of problem) is
called "cell one", and the four cells at lower level
(level one) are numbered as 2, 3, 4, and 5,
subsequently, according to arranged numbers from
0 to 3 at the right side of Figure (6).

Sorting of elements in the cells related to their
own levels is shown in Figure (7), where squares
represent legend numbers that indicate the position
of each filled cell (symbols 0 to 3 in Figure 6), and the
element numbers are surrounded by circles.

There are 15 elements in Figure (6) with one node
at each center. According to Table (1), elements are
sorted in each level by dividing the cells from upper
levels to lower ones based on the legend of Figure
(6) subsequently.

For some special problems with notable differ-
ences between length and width size of geometries,
there are new advanced modified algorithm, such as
adaptive structure. This algorithm can accelerate the
speed of BEM equation solution dramatically [25].
Designing of quad-tree structure needs some new
arrays to determine the position of each cell and
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Figure 7. Demonstration of hierarchical quad-tree structure in 2-D.

Table 1. Element sequences sorting accordance with tree level.

element in the problem explained below:
v Array Loc_tree (i) gives ith cell location within its

corresponding tree level. The parent main cell
(cell 0) is divided by . The numbering of each small
square (cells in lower level) starts from the lower
left corner, first in the x direction, then in the y
direction.

v Array Elem_num (i) gives the number of elements
surrounded by ith cell area.

v Array cell_fath (i) gives the parent cell number
of ith cell.

v Array Start_elem (i) indicates the starting place
of elements included in the ith cell [26].
Now, we state three numerical examples with

more elements and detailed description.

6. Numerical Examples
Example One:

This simple example only tries to illustrate fast
method in straight forward manner with no practical
usage. The first model consists of 20 constant
elements, which are located on perimeter of the
semi-rectangle. All first and end points of the element's
coordinates should be defined as conventional bound-
ary elements, listed in Table (2).

Red nodes indicate the position of the center of
elements, where black nodes specify the first and

Table 2. Middle element nodes coordinate of first model.

end points of the elements (Figure 4). It is supposed
that the predefined maximum number of elements in
a leaf is limited to one, it means that the process of
bi-sectioning of cells is continued until the cells in the
deepest level would have only one element, as shown
in Table (3), and the maximum number of levels is
confined to 4.
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Figure 8. Demonstration of first model of hierarchical quad-tree
structure in 2-D.

Table 3. Values of the arrays of first model in hierarchy tree
structure.

Predefined arrays (Cell_no(i) , Loc_tree(i) ,
Elem_num(i) , cell_fath(i), Start_elem(i)) are calcu-
lated and listed in Table (3).

For instance, cell_No. 1 surrounds the exterior
boundary of the model. Therefore, the cell number is
one, and its position in level 0 is zero (Loc_tree=0).
For first level (level 0), it is supposed that the father's
cell is also one (Cell_fath=1), and all elements are
included (Elem_num=20), which starts with element
number one (start_elem=1).

The process is continued to the second level
(level 2). This level consists of four filled cells that
are numbered from 2 to 5. The positions of these
four cells are sorted by using legend, which is
depicted at the left side of Figure (2) (Loc_num).
Father or parent's cell is one (Cell_fath=1), and the
first element located in each second level of the cell
is numbered as 3, 18, 8, and 1, sequentially The
bi-sectioning of each level is continued until the
number of elements in the deepest level is confined
to one, as mentioned in Table (3).

Example Two:

The second model is depicted in Figure (9) with
2000 constant elements, which are located on
perimeter of the circle. For simplicity, the middle
points of elements are shown with red nodes, and X,
Y coordinates are listed in Table (4).

Figure 9. Demonstration of second model of hierarchical
quad-tree structure in 2-D.
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Table 5. Values of the arrays of Second model in hierarchy tree
structure.

Table 4. Middle element nodes coordinate of second model.

Predefined arrays such as Cell_no(i), Loc_tree(i),
Elem_num(i), etc. are calculated and listed in
Table (5), where the maximum number of predefined
elements in the deepest level (leaf cells) is equal to
40, and the maximum level number is considered as
5. Maximum number of cells in this example is 181,
and the position of those filled cells in Cartesian
coordinate system is 890.

Example Three:

The Third model is displayed in Figure (10) with
308 constant elements, which are located on
perimeter of the semi-four leaf flower. For simplicity,
the first node is located at start point of trigonometry
circle on X axes, and other nodes are arranged

counter clockwise. X, Y coordinates of nodes are
listed in Table (6).

Predefined arrays such as Cell_no(i), Loc_tree(i),
Elem_num(i), etc. are calculated and listed in
Table (7), where the maximum number of predefined
elements in the deepest level (leaf cells) is equal to
40, and the maximum level number is considered as
5. Maximum number of cells in this example is 21,
and the position of those filled cells in Cartesian
coordinate system is 15.
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Table 6. Element nodes coordinate of third model.

Figure 10. Demonstration of third model of hierarchical quad-tree structure in 2-D.

Table 7. Values of the arrays of third model in hierarchy tree
structure.

7. Conclusion

The essential part of new revolutionary changes
in traditional BEM is due to elements interconnec-
tions. In fast method, ones should integrate batch
numbers of elements or nodes to establish new
colony. New interconnections is provided by cell to
cell relation in upper levels. This process continues
until the potential of each tiny part of cells (elements)

will be calculated.
Hierarchical tree structure is a new element

discretization with more complexity in contrast with
the conventional boundary element method. There-
fore, for middle range DOF problem with less than
1000 elements, the conventional method is still more
effective than the new ones.

In contrary, modeling of large-scale surface
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topographies with irregularities causes increased
DOF as well as the rank of sparse and asymmetric
stiffness matrices, which makes the conventional
method completely impractical.

Hierarchical structure, by using some predefined
arrays with new discretization as well as iterative
solvers, accelerates the speed of matrix equation
solutions, especially when the DOF increases
dramatically.
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