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ABSTRACT: Tuned liquid column dampers (TLCD) considerably
increase the effective damping of vibration prone civil engineering
structures in horizontal motion. A single-degree-of-freedom (SDOF)
basic system with a TLCD attached is analyzed under horizontal and
vertical base excitations in order to prove its sensitivity with respect to
the vertical parametrical forcing. The main result is cast in a sufficient
condition for the linearized damping coefficient of the fluid motion to
ensure its stability under the most critical, time harmonic forcing
conditions. The output of computer simulations when varying the
damping of the TLCD tuned with respect to frequency only, are verified
experimentally by means of a novel model setup. The scaled Friuli
1976 earthquake is applied horizontally and vertically to an
SDOF-shear frame with optimally tuned TLCD. A three-DOF-bench-
mark structure, equipped with two passive TLCD in parallel
connection, optimally fine-tuned in state space, is analyzed by
nonlinear computer modeling. Two different relevant earthquakes are
alternatively applied in both, horizontal and vertical directions. In all
cases it is verified, that sealed TLCD, (with the air-spring effect
taken into account) are stable, since the optimal linear damping
coefficient exceeds by far the required cut-off value of parametric
resonance: the vertical component of the earthquake load remains
ineffective. Hence, taking into account this sufficient condition with
the maximum vertical ground (floor) acceleration assigned and
the maximum amplitude of the fluid motion estimated, saves the
consideration of the vertical seismic activation at all.

Keywords: Vibration absorber; Horizontal-; Vertical excitations;
Parametric resonance; Cut-off damping; Bernoulli equation; Tuned mass
damper (TMD)-analogy; Den Hartog tuning; State space optimization
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1.  Introduction

Newly developed lightweight building materials and
sophisticated numerical algorithms allow the design
of tall and highly flexible civil engineering structures.
These structures are vulnerable to dynamic loads, such
as wind gusts or earthquakes. Hence, the mitigation
of structural vibrations has been a major concern
amongst structural engineers. One of the effective
means to reduce the dynamic response is the applica-
tion of dynamic vibration absorbers. The tuned
mechanical damper, TMD, is one of the most popular

passive control systems and has been broadly
studied and applied to many engineering structures
[1]. Its substitution by the innovative tuned liquid
column damper, TLCD, which has been developed to
the practical design stage during the last decade, see
[2-6], is most promising. TLCD is a damping device
in the extremely low frequency range that relies on
the motion of a liquid mass in a rigid U-shaped tube.
Its range of applicability can be extended to about 4.0
to 5.0Hz, if the air spring effect in the sealed U-shaped
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tube is utilized. For extremely low frequencies,
however, the air chambers are connected and air
can flow freely to balance the pressure. The motion
of the main system (of the relevant floor of the
building) induces a phase-delayed relative motion of
the liquid mass and, hence, interaction forces (and
moments) to counteract the external force. Further-
more, a built-in orifice plate may become necessary,
to induce additional turbulent damping and dissipation
of kinetic energy in a controlled manner. For optimal
tuning of the TLCD the natural circular frequency ω

A

and the linearized damping coefficient ζ
A
 have to be

suitably chosen, in analogy to the conventional TMD,
for the latter see Den Hartog [7]. Computationally,
the tuning of the TLCD is always performed in two
steps. At first, the linearized computer model is tuned
with respect to a selected mode of the main system
using the simple analogy to TMD-tuning. Hochrainer
[5]  extensively discussed this simplifying step .
Subsequent improvements of the performance in an
MDOF -system are achieved by considering the
neighboring modes as well in the state space
representation, by minimizing the weighted squared
area of the frequency response function, see again [5].
The second fine-tuning renders the optimal
parameters quickly when Den Hartog's parameters
are selected for the initial values of the numerical
search process. Slightly modified parameters result,
and, e.g., two TLCD in parallel connection, counter-
acting a single selected mode, turn out with different
tuning parameters. This second step leads to an
increase in the robustness of the proposed damping
device. Final adjustments are easily performed in the
course of in-situ testing. The TLCD ideally suited to
excite the main structure in a controlled manner to
measure its basic frequency, which enters in-situ fine
tuning. In many respects TLCD exceed by far the
capabilities of other vibration absorbing devices.
Their main advantages comprise of low cost of
design and maintenance, easy application to new
buildings or in retrofitting existing structures, little
additional mass since water is stored in buildings for
fire protection or water supply and a simple tuning
mechanism since the natural frequency and damping
ratio can be adjusted by pressurizing the air chambers,
adjusting their volume, and selecting a proper orifice
plate.

While tuned liquid dampers (TLD) based on the
sloshing fluid in the moving container are applied as
well to reduce the vibrations at a well separated

frequency, their reaction to disturbances is found
rather uncontrolled, contrary the sealed tuned liquid
column damper (TLCD) is self controlling to overloads
and the fluid motion is controlled in any respect.

Most scientific work concentrated on the suppres-
sion of horizontal motions of structures also in case
of earthquake activation and neglected the vertical
component. Hence, the objective of this study is to
develop a more general model of civil engineering
structures with passive TLCD attached and to
investigate any unwanted influence of the vertical
seismic activation on the damping characteristics of
TLCD . It has to be mentioned that parametric
resonance also exists for the conventional pendulum
type TMD whose point of suspension moves
vertically, see, e.g., Ziegler [8]. In order to prevent
parametric resonance even under the most critical
conditions of time harmonic excitation, a sufficient
condition for the linearized damping coefficient of
the TLCD is derived. Various computer models of
optimally and sub optimally damped TLCD attached
to an SDOF-shear frame, are investigated to study
the sensitivity with respect to the vertical excitation.
The outcome of the analysis is verified experimentally
using a newly designed model set up. In addition to
time harmonic forcing under the most critical
conditions of parametric resonance, the scaled Friuli
1976 earthquake is applied assuming one and the
same intensity in both directions. The experimental
results agree well with the computational simulations.
The cut-off damping coefficient of parametric
resonance was verified. Finally, a three- DOF -
structure, based on the benchmark definition paper
by Spencer et al [9], is equipped with two passive
optimally tuned TLCD in parallel connection on top
of the building. Fine-tuning is performed in state
space. Both seismograms, the N-S Friuli earthquake
and the N-S El Centro 1940 earthquake, are applied
in horizontal and vertical directions. Theoretical and
experimental investigations indicate that the vertical
component of the earthquake loading influences more
or less the  TLCD dynamics. However, it is verified,
that in case of sealed TLCD, the common values of
the optimal damping ratio are much larger than the
very small cut-off damping coefficient, and thus, no
undesired worsening effects are observed. Hence,
after verifying the sufficient condition to prevent
parametric resonance for the most critical case, the
vertical component of any earthquake load must not
be considered any further.
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2. Basic System: SDOF-Shear Frame with TLCD
Attached

Modal tuning of a TLCD when attached to an MDOF-
structure can be approximately reflected by the
interaction of an SDOF-shear frame with a TLCD on
top. Substructure synthesis is applied and illustrated
in Figure (1).

inclined pipe section at rest H, the horizontal and
inclined cross-sectional areas AB and AH, respectively,
and the opening angle of the inclined pipe section,

.2/5/ π≤β≤π  The relative and incompressible
flow of the liquid inside the pipe is described by
the liquid surface displacement, u1= u2= u (t). If the
piping system is sealed, the air inside the air chamber
is quasi-statically compressed by the liquid surface
in slow motion. Hence, the pressure difference, ∆p =
p2 -  p1, when properly linearized, influences the
undamped circular natural frequency of the TLCD,
defined in Eq.  (3). Applying the modified Bernoulli
equation along the relative non-stationary streamline
in the moving frame and in an instant configuration,
Ziegler [8] , yields the nonlinear parametrically
excited equation of motion of the TLCD, Reiterer [6],
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where an averaged turbulent damping term, - experi-
mentally verified, - has been added. The head loss
coefficient δL can be increased by properly selecting
a built-in orifice plate. In case of stationary flow, δL is
tabulated for relevant pipe elements and cross-
sections, e.g., sampled, in Ref.  [10]. The geometry
factor κ and the effective length Leff  of the liquid
column, apparent in Eq. (1), are defined by
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see Ref. [5] for detailed derivations. The undamped
circular natural frequency ωA of the sealed TLCD
includes approximately the air-spring effect where
the pressure difference ∆p = p2 - p1 is linearized with
respect to the equilibrium pressure  p0, -an additional
important design parameter, - by considering the first
term of its Taylor series expansion. Assuming a poly-
tropic state change, ,4.11,/2)( 0 ≤≤≈ nHupnup         a∆
results. Consequently, the maximum stroke of air
compression is limited to |  u | <  0.3 Ha  to assure a good
approximation of the eigenfrequency, for details see
again either Ref. [5] or [6],
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In Eq.  (3),  p0, ρ , g and Ha denote the initial
(equilibrium) pressure in the air chamber, the liquid
density, e.g. for water ρ = 1000kg/m3, the gravity
constant g = 9.81m/s2, and the air spring height,

Figure 1. (a) Symmetrically shaped TLCD under combined
horizontal and vertical floor excitations. When sealed,
air chamber volume modeled by AHHa. Free body
diagram of the fluid body. (b) Free body diagram of
the basic SDOF-system with acting interaction
forces (and moment) from the TLCD dynamics.
Seismic excitation indicated. Soil-structure interaction
neglected.

2.1. Free Body Diagram of the Fluid in the TLCD

The TLCD is considered separated from the floor of
the main structure, under combined in-plane horizon-
tal wt and vertical v t floor excitations, see Figure (1a).
After choosing the liquid mass mt, the TLCD design
parameters are the horizontal length of the liquid
column B, the length of the liquid column in the
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respectively. To avoid problems at the fluid-gas
interface related to high speed limits the equilibrium
pressure p0 to about five times the atmospheric
pressure. Consequently, also Ha is an important design
variable, defining the volume of the air chamber in
terms of the cross-sectional area  AH  , see again Eq.
(3). The limit ∞→aH  refers to ∆p = 0  and thus
applies approximately for TLCD with free flow of air
between the air chambers, see again Figure (1a).

The time variant stiffness parameter in Eq.  (1)
contributes parametric excitation caused by the
vertical floor acceleration . tv&&  Consequently, under
special conditions of lightly damped TLCD ,  the
instability phenomenon of parametric resonance is
observed. A detailed study of this phenomenon and a
sufficient condition to prevent parametric resonance
and its possibly worsening effect on the damping
behavior of the attached TLCD is presented in section
2.3.

In the course of the absorber optimization
procedure, the turbulent damping in Eq. (1) has to be
transformed into its equivalent linear one, .2     uAA &ωζ
Demanding equally dissipated energy during one
cycle (over a vibration period T and without any
vertical excitation) for the nonlinear and the linear
TLCD yields the relation
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and, when substituting a time harmonic function, u (t)
= U0 cos ωA t, renders the equivalent viscous damping
coefficient proportional to the amplitude,
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Under these conditions, Eq. (1) takes on its linearized
form,
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The value of  U0, to be substituted in Eq. (5) in
general forced vibrations, is determined by means of
numerical simulations of the linear coupled SDOF-
TLCD system, without vertical excitation, and
commonly chosen as U

0
 = Umax.

Considering the conservation of momentum of
the fluid body, Figure (1a), determines the resultant
interaction forces. The components, acting on the
fluid body, relevant in the horizontal x', and, not to

be considered further, in the vertical z'  directions,
become
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where κ  and 1κ  are geometry factors and L
1
 is a

length, which becomes equal to Leff for constant cross
sectional area. Conservation of angular momentum
with respect to the accelerated point of reference
A, see again Figure (1a), yields the dynamic part of
the undesired moment MA acting on the fluid body,
the static moment is .,     ugmM fstatA κ=  Both moments
and the force zF ′  are commonly neglected in the
structural analysis.

2.2. Substructure Synthesis

The main system with assigned interaction forces
from the TLCD dynamics is considered next, see
Figure (1b), with horizontal ,gw&&  and vertical ,gv&&  ground
accelerations prescribed. The external force resulting
from wind gusts is not within the scope of this paper.
The deformation is given by the displacement w with
any time variant P-∆ effect neglected. The moving
floor mass M includes the dead weight m

D 
= m - mf

of the TLCD and modal masses of the columns.
The field stiffness k, with geometric correction of
prestressing by the dead weight taken into account for
the CC-columns, see, e.g., Ref.  [8] or Clough and
Penzien [11], and light structural proportional
damping r, are the remaining parameters.

Conservation of momentum of the floor mass M
yields the relevant linear equation of motion of the
main system
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where ΩS  and ζS << 1 denote the undamped circular
natural frequency of the shear frame, and the linear
viscous equivalent of its light structural damping,
respectively. Inserting the coupling force xF ′  by
substituting Eq. (7) into Eq. (8) renders, with Eq. (1)
considered, the coupled system of equations of
motion of the resulting two-DOF-system,
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The mass ratio of fluid mass to the mass of the
main system is denoted

.1<=µ M
m f                                                      (10)

In order to provide highest possible transfer of
energy from the main system to the TLCD, the mass
ratio µ  as well as the coupling factors κ and κ  should
be maximized. However, from the practical point of
view the mass ratio is limited to µ = 0.5-3%. The
factors κ and κ  depend on the geometry of the
absorber, given in Eqs.  (2) and (7) and should be
close to one. They turn out equal for constant cross
section of the pipe.

In order to prepare for the equation of motion of
an MDOF-main structure with several, differently
tuned TLCD attached, Eq .  (9)  is rewritten in its
linearized matrix form and, leaving out parametric
excitation, becomes

,~~~
g

f
SSS w

mM
u
w

K
u
w

C
u
w

M      &&
&
&

&&
&&









κ
+

−=






+






+







              (11)

.
0

0~

,
20

02~
,

1
~

2  

     

   

     

     

 

A
S

AA

SS
S

ff
S

k
K

M
C

mmM
M









ω

=









ωζ

ζ
=








κ

κ+
=

Ω

2.3. Parametric Forcing of the Fluid by the Vertical
Excitation: Cut-Off Damping

Under special conditions and for lightly damped
TLCD , the undesired instability phenomenon of
parametric resonance is observed, see Reiterer and
Hochrainer [12]. Considering the linearized Eq.  (6),
the task of this section is to work out a sufficient
condition in the form of a minimum linear damping
ratio ζA in order to prevent any worsening effects
from the vertical excitation. In absence of any
horizontal excitation ,tw&&  and further neglecting the
turbulent and/or any viscous damping term, Eq.  (6)
further simplifies to the time-variant undamped
oscillator equation,
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Assigning a time-harmonic vertical excitation v t =
v t  0cos ωz t, Eq. (12) becomes a special type of Hill´s
differential equation, namely the Mathieu equation
[13],
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Classically, Mathieu equation is the equation of
motion of a plane pendulum with vertically moving
point of suspension, see, e.g., Ziegler [8], which
applies also to the conventional pendulum type of
TMD,  e.g.  discussed by Soong and Dargush [1].
Dynamic stability of its solution has extensively been
studied in the last century, for a recent review see
Nayfeh and Mook [13]. The standard form of Eq.
(13) requires substitution of the non-dimensional time
τ = ωz  t, and, with its appropriate transformation
results in

[ ] ,,0 τ=′=τγ+λ+′′
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where λ and γ are identified as the non-dimensional
stability parameters
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The domains of stability for the solution of the
Mathieu equation are cast in the Ince-Strutt diagram,
Figure (2) , where the stable domains are shaded.
Inspection of Figure (2) identifies the most critical
frequency ratio at λ = 1/4, (the domain of instability
at this value is quite large) and also that damping
strongly influences the occurrence of parametric
resonance: If linear viscous damping of the dynamic
system is taken into account, the domains of stability
increase in the Ince-Strutt map, as indicated by
hyperbolic curves in Figure (2). Hence, with
sufficient damping of the dynamic system understood,
parametric resonance does not occur. Nayfeh and
Mook [13] derived the cut-off value of linear damping
to prevent parametric resonance even under the
most critical conditions at λ  = 1/4. The sufficient
condition to safely avoid parametric resonance even in
this most critical case becomes, finally expressed in
terms of the maximum vertical floor and/or ground
acceleration,
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Hochrainer [5] compared the reduced Eq .  (6)
(putting )0=tv&&  of the linearized TLCD with the
equation of motion of a TMD and identified the
following analogy by defining proper transformations.
In Eqs. (17) and (18), the conjugate TMD mass ratio
µ* depends on the geometry factors κ and , κ  which
are defined in Eqs. (2) and (7), respectively, and was
identified in Ref. [5],

.,)1(1*

*
*

M
m

       
M
m f

    

  
=µκκ−µ+

µκκ
==µ                    (19)

It is evident that every TLCD setup behaves like a
TMD with absorber mass m* attached to a moving
floor mass M*. The remaining mass m

f 
- m* has to be

regarded as dead weight and thus, is added to the floor
mass M*. Thus, defining the equivalent TMD mass
ratio µ*, Eq.  (19), renders the optimal values of the
tuning parameters of the equivalent TMD-problem, δ*
and .*

 Aζ  Subsequently, the inverse transformation to
the TLCD-problem is applied, see again Hochrainer
[5] , rendering the optimal frequency ratio slightly
modified and keeping the optimal linear damping ratio
unchanged,
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4. Bi-Axial, Time Harmonic and Transient
Excitations of the Basic SDOF-System

The basic SDOF-system of Figure (1) is excited to
steady state vibrations under the most critical forcing
conditions and the influence of parametric excitation
by the vertical motion is studied in a computer model
and verified experimentally. Determination of the

Figure 2. Parametric forcing of the linearized absorber model: domains of stability (shaded) and instability in the Ince-Strutt diagram,
,22

Aλζ=δ  Klotter [14].
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Note the reduction of the cut-off value by the air
spring effect in sealed TLCD. If the optimal linear
damping coefficient of the TLCD is larger than the
cut-off value ζA,0, no worsening effect of its damping
behavior of the horizontal vibrations occurs. The
condition is subsequently confirmed experimentally
and by numerical simulations. The vertical excitation
can be safely neglected in Eq.  (1) if the inequality
(16) holds true.

3. Den Hartog (Modal) Tuning in Analogy to
TMD: Horizontal Vibrations

For modal (SDOF) tuning of a classical TMD, the
design parameters, denoted by a star, *** / SA  Ωω=δ  and

*
Aζ  have to be suitably chosen. Classically Den Hartog

[7], for time harmonic force excitation and undamped
main system, ,0* =ζS  derived these relations. Thus, in
case of base acceleration, the non dimensional total
acceleration of the floor mass, ,/1 gww &&&&+  is minimized
by these TMD parameters, see, e.g., Ref. [1],
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Slightly different parameters result for small mass
ratios, when minimizing the relative floor acceleration,
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cut-off value of damping of the TLCD is the main
goal. Further, the turbulent damping of the fluid
motion has to be verified. The basic SDOF-system
with an optimized TLCD attached is exposed to the
bi-axial transient forcing by the strong motion
seismogram of the N-S  Friuli 1976 earthquake,
verifying the sufficient condition based on the cut-off
damping.

4.1. Test Structure

A front view of the small scale testing facility in the
Authors' laboratory is shown in Figure (3), consisting
of a plane SDOF-pendulum with vertically moving
suspension. The dynamic vertical forces are reduced
since the dead weight is counter-balanced by a pulley
mechanism. The lower rigid bar represents the floor
of the main SDOF -structure. The open TLCD
(free flow of air) consists of a Plexiglas pipe with
rectangular cross section filled with colored water.
Horizontal excitation is provided by an electromagnetic
shaker of Br üel&Kjaer, Type 4808, connected to the
lower rigid bar by a coil spring whose stiffness models
the elastic columns of an equivalent SDOF-shear
frame, shown in Figure (1b). The amplitude is limited
to .004.00      mwg ≤  A second actuator of the same type,
forces the vertical motion with its stroke magnified
by a simple lever construction to v g0 = 0.016m.
Software LabView 7.0 provides the time-harmonic
signals. Contact-less optical laser transducers,
Type optoNCDT 1605, measure displacements as
shown in Figure (3). The vertical acceleration is

recorded by the piezoelectric accelerometer of
Brüel&Kjaer Type4367. The latter is connected to a
charge amplifier and an implemented integrator, to
transform the measured accelerations into equivalent
displacements. All measured signals are recorded by
means of the software BEAM-DMCplusV3.7 through
the board of Digital Amplifier System DMCplus
(Hottinger Baldwin Messtechnik, HBM). A novel
sensor, consisting of two pairs of wire electrodes
whose resistance depends on the water level,
measures the motion of the liquid surface, Reiterer
and Hochrainer [15]. To compensate for several
nonlinearities, the electrodes are in series connection.
For further processing, the electronic signal is
band-pass-filtered, in order to reduce the static drift
and any high frequency noise. The measured signal
is recorded again by the software BEAM-
DMCplusV3.7, whereby the measured changes of
resistance are transformed into the equivalent
displacement of the liquid surface by means of a
nonlinear transfer function, obtained by calibrating the
fluid motion in the TLCD.

The parameters of TLCD and SDOF basic-system
are selected according to the laboratory model. The
ratio of fluid mass m

f
 to the moving floor mass of

the main system M is chosen rather high, µ = mf  /M =
0.071. Hence, with floor mass M = 2.96kg, the water
mass is mf   = 0.21kg. The dimensions of the open
TLCD in Figure (1a) are: β = π/4, AH = AB = 0.0005m2,

mLL       eff 42.0,84.0 1===κ=κ  in Eq.  (3) , rendering
f

A
 = ωA /2π = 0.90Hz. The TLCD is tuned to frequency,

by adjusting the natural frequency of the SDOF -
basic system which is simpler done in the laboratory.
Selecting Eq.  (18), Eq .  (20) yields the optimal
frequency ratio δopt= ωA / ΩS,opt = 0.94  and hence,  fS,opt

= fA / δo p t= 0.96Hz. The optimal equivalent linear
damping becomes ζA,opt = 0.11.

Free vibration tests of main system and TLCD
were performed to determine and verify the natural
frequencies and damping coefficients. Damping
is stepwise increased to the final optimal value. The
lightest linearized viscous damping terms, ζA = 0.045
and ζS = 0.01, have been observed by inspection of
the decay rates of free vibration in laboratory testing.
ζA is the mean value of a number of free vibration
tests within an amplitude range of  U0 = 40-60mm.

The cut-off value of parametric resonance, defined
in Eq. (16), relevant for the laboratory testing is
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0,                  (21)Figure 3. Front view of the experimental model set-up, equiva-
lent to the basic SDOF-system.
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The results of the numerical simulations are
compared with the experimental output in section 4.2.

4.2. Experimental and Numerical Results of Steady
State Vibrations. TLCD Tuned to Frequency.
Verification of Cut-Off and Turbulent Damping

The experimentally and numerically obtained results
in a time window under time harmonic critical forcing
are shown in Figures (4a) and (4b). The vertical
forcing frequency ωz = 2ωA  (stability parameter λ =
1/4), and the amplitude vg  0 = 0.016m  are kept constant
within the range of simulations. The bold line
represents the steady state vibration without any
vertical excitation and the thin line indicates the
influence of the assigned vertical excitation. It is
important to emphasize that the chosen combination
of the values  f z = 1.80Hz and vg0 = 16mm leads to
parametric resonance for the light damping assigned,
as predicted by Eq.  (21). The beat phenomenon
discussed in Ref.  [16] can be seen in Figures (4a)
and (4b) that shows an excellent agreement between
experimental and predicted theoretical results, with
averaged turbulent damping δL =  1.33 considered.
However, the solution of the linearized equation of
motion with equivalent linear damping ζA = 0.045 kept
constant, grows beyond bounds. Thus, the linearized
model turns out to be insufficient for numerical
simulation, see Figure (4c), and note the different scale
in Figure (4b). In order to obtain good agreement
between numerical and experimental results, the
simulated TLCD must be always considered with an
averaged turbulent damping assigned. Consequently,
the various linear viscous damping coefficients are
transformed to their turbulent equivalent, by means of
the relation given in Eq. (5), δL = 3 π ζA / 4 U0 where U0

is determined by numerical simulations of the
linearized coupled system without vertical excitation,
considering the steady state vibration at a discrete
horizontal forcing frequency ωx, and subsequently by
choosing U0 =  Umax. The Dynamic Magnification
Factor (DMF) for the parametrically excited coupled
main system/TLCD is determined at discrete values
of the horizontal forcing frequency fx,i. Thereby, the
frequency dependent turbulent damping term δL,i has
to be varied over the frequency range of interest. In
order to determine the appropriate values defined in
Eq. (5), U0,i must be specified as the maximum value
of the vibration amplitude, i.e., U0,i  = Umax,i  calculated
in the linearized model without vertical excitation
under steady state conditions. DMFi at the forcing

Figure 4. Steady state response of the basic SDOF-system.
Horizontal and vertical forcing frequencies,  fx = 1.00
Hz and fz = 1.80Hz . TLCD tuned to frequency. Light
turbulent damping 33.1=δ→ L  constant. (a) Experi-
mental results. (b) Numerical results, light turbulent
damping (c) Numerical results for equivalently linear
damped TLCD 045.0=ζ→ A = constant. Insufficient
modeling.

frequency fx,i is defined by

,
0

  

g

imax,
i w

w
DMF =                                                 (22)

where wmax,i  is defined by the steady state response of
the nonlinear, parametrically excited coupled system.
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Figure 5. Dynamic magnification factor (DMF) of the basic SDOF- system, ./ 0  gaxm ww
  Data likewise to Figure (4), fx swept. (a)

Experimental results. (b) Numerical simulation. TLCD tuned to frequency with light turbulent damping adjusted at discrete
frequencies to the steady state amplitude, ,,0, iiL U→δ =ζ→ A( 0.045 assigned). (c) Experimental and numerical results.
Optimally tuned TLCD. In the simulations turbulent damping adjusted at discrete frequencies to the steady state amplitude,

,,0, iiL U→δ  =ζ→ optA,( 0.11 assigned).

An excellent agreement between experimental results
and those derived by computational simulations is
observed in Figure (5). For light damping, Figures (5a)
and (5b) show that parametric resonance approxi-
mately doubles the resonant peaks. However, as
predicted by Eq. (21) for the optimally damped TLCD,
no influence of parametric resonance is observed for
the range of vertical excitation amplitudes considered,
as shown in Figure (5c). Analogous to Den Hartog´s
solution, the frequency response function exhibits
two fixed-points at the same height and in addition, as
an effect of the optimal damping of the TLCD, the
tangents are horizontal indicating minimization of the
extreme values. Hence, it can be concluded that
parametric resonance only influences lightly damped
TLCD and disappears in the case of optimal and
sufficient damping, within the considered range of
vertical excitation amplitudes. Prediction of Eq. (21) is
verified.

4.3. Transient Bi-Axial Forcing of the Basic SDOF-
System by the Friuli 1976 Seismogram. TLCD
Optimally Tuned. Verification of Cut-Off
Damping

The scaled European N-S Friuli 1976 earthquake
(station name: Tolmezzo-Diga Ambiesta, Italy)
downloaded from the Internet Site for European
Strong Motion Data [17] is plotted in Figure (6). The
duration of strong motion phase takes only a few
seconds, from about t = 3 to t = 8s and the main
energy is supplied in the low frequency range, from
about f  = 2 to f  = 5Hz. Since the natural frequencies
of the tested system are  f S = 0.96Hz and f A =
0.90Hz, the time history of the considered quake
is adjusted to the laboratory model. For further
processing the given sampling rate ∆ t = 0.01s is
doubled which results in increasing the duration of
the strong motion phase. The N-S Friuli seismogram
is applied in both directions, horizontally as well as
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vertically with one and the same strength. Again
nonlinear turbulent damping is taken into account in
the equation of motion of the TLCD, which ensures a
stable motion even in case of light damping. Estimat-
ing Umax = 80mm yields together with ζA,opt = 0.11  the
nonlinear optimal turbulent damping coefficient, Eq.
(5), δL = 3.24.

Furthermore, the sufficient condition to prevent
the influence of vertical excitation has to be checked,
Eq. (16) with , aH ∞→

,11.009.04 ,0,   

 

     

optA
g

A g
vxma

=ζ<==ζ
&&

                   (23)

where the maximum vertical base acceleration is

Figure 6. N-S Friuli 1976 earthquake (station name: Tolmezzo-Diga Ambiesta, Italy) in time and frequency domain. Source: EU-
funded European Strong Motion Data [17].

Figure 7. Relative acceleration of the floor mass of the basic SDOF-system forced by the N-S Friuli 1976 earthquake. (a) Bi-axial
excitations, identical seismograms applied. Optimally tuned TLCD (turbulent damping =δ→ L 3.24 = constant). Note the
50%  reduction of maximum peak. (b) Responses under bi-axial excitations (note the different scale in Figure (7a) and
under uni-axial horizontal excitation. Cut-off damping verified by inspection.

given  by ,36.0,, gvw axmgaxmg   
== &&&&  see again Figure (6).

Thus, the optimal linearized damping ratio ζA,opt

exceeds the cut-off value ζA,0 and no worsening
effect of parametric resonance is expected.

Simulations of the nonlinear, parametrically
excited system are performed using Simulink's time
integration tool, which is smoothly integrated into
the MATLAB scientific computing environment.
Figure (7a) illustrates the time history response of the
main structure with and without TLCD in nonlinear
modeling attached, under combined horizontal and
vertical seismic excitations.

In Figure (7b), the time history responses of the
coupled system with and without vertical seismic
activation taken into account are shown. Both lines
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nearly coincide and thus confirm, that due to the
vertical base excitation no undesired influence on
the optimal damping behavior of the TLCD is
observable.

5. State Space Optimization of Multiple TLCD
Attached to MDOF-Systems

In case of multiple TLCD attached to MDOF-systems
the tuning process is best performed in two steps.
At first, the linearized computer model is tuned with
respect to a selected mode of the main system using
the TLCD-TMD analogy, as presented in section 3.
Subsequent improvements of the performance
in MDOF -systems are achieved by considering
the neighboring modes as well in a state space
representation, by minimizing the weighted squared
area of the frequency response function (FRF) .
Hence, the coupled equations of motion have to be
transformed to the state space. The N-DOF main
system with a number of  n<<N TLCD installed at
proper locations, is described by the set of matrix
equations, in a hyper matrix formulation,
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set up in extending Eq.  (11). The sparse position
matrix with dimension N x n,
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apparent in Eq.  (24), enters the generalized mass
matrix as well,
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C M
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,
~  and K

~  are mass, damping and stiffness matrix
of the main system and the following diagonal matri-
ces are self explanatory,

[ ]
[ ],2,...,2

~

,,...,~

11

1

         

   

AnAnAAf

fnff

diagC

 mmdiagM

ωζωζ=

=

[ ]
[ ]

[ ].,...,
~

,,...,~

,,...,
~

1

1

22
1

      

      

    

n

n

AnAf

diag

diag

diagK

κκ=κ

κκ=κ

ωω=

                                        (27)

together with the static influence vector ,~
S r  which, for

the single point base excitation is [ ] .1...111 T 
S           i r  ==

vv

Eq. (24) is easily converted to a first order state
space representation by introducing the new state
vector [ ] ,

T 
     u w u wz &v&vvvv =  and its time derivative
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to render the standard form of control theory. The
system matrix ,

~~~
  RBA+  apparent in Eq. (28), should

be kept separated since, at this stage, only the elements
of A

~  and ,
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are known, whereas R~  contains the unknown linear
TLCD design parameters,

.
~

0
~

0
~

0
~

0~0~0~0~
0~0~~0~
0
~

0
~

0
~

0
~

~
   

f

f

C

K
R





















=
                                           (30)

The steady-state solution in frequency space is

( )[ ] .~~~)(
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In order to find the optimal tuning parameters of
TLCD it is common practice to minimize a suitable
performance index, e.g., defined by the infinite
integral of the weighted sum of quadratic state
variables of the main system ,Szv  in the frequency
domain, see e.g. Müller and Schiehlen [15],
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where P
~  is the solution of the algebraic Lyapunov

matrix equation,
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S
~ is a symmetric, positive semi-definite weighing

matrix, which offers the possibility to emphasize the
importance of selected components of the state space
vector. The matrix solution P

~  of Eq. (33) is numeri-
cally evaluated by means of the software MATLAB.
The minimum search in the Eq. (32) is best performed
by the MATLAB optimization toolbox, "fminsearch",
when substituting Den Hartog´s modal tuning
parameters, as discussed in section 3, as start values.
The modal analysis of the main system with separated
eigenfrequencies understood, is classical and not
further discussed here.

6. A Three-DOF-Benchmark Structure under
Combined Earthquake Loadings

The effectiveness of passive TLCD in vibration reduc-
tion is demonstrated for a plane three-DOF-benchmark
test structure under earthquake loading, which has
also been studied by Hochrainer [5] taking into
account the horizontal seismic activation only.
Subsequently the vertical excitation is considered and
the TLCD is split into two TLCD in parallel
connection. Based on a benchmark definition paper,
see Spencer et al [9], a scale model of the original
structure was built at the National Center of
Earthquake Engineering (NCEER) at Buffalo, N.Y.,
which requires the mass reduction by 1:16 with
respect to the original structure, time shortened by
1:2 and the displacement scale of 1:4, the acceleration
thus, remains unchanged. In the current numerical
study the structural model with a total mass of
2943kg is equipped with two, sealed passive TLCD in
parallel connection on the 3rd top floor, as illustrated in
Figure (8). Splitting a single passive TLCD in two
TLCD in parallel connection requires fine-tuning in
the state space. Modal (SDOF) tuning as discussed
above is performed in a first step.

Hochrainer [5] , provided the ortho-normalized
eigenvectors and the well-separated undamped
natural frequencies,
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of the main test system. The light modal damping
ratios are set to ζ S1  =  1%,  ζ S2  = 2% and ζ S 3  = 3%,
respectively. The attached, necessarily sealed TLCD
will be tuned with respect to the fundamental natural
frequency of the model choosing the mass ratio 2%
with respect to the modal mass of the fundamental
mode, .1531*

1 kgM  =  Thus, the total fluid mass is mf =
30kg.

6.1. Optimal Design of Two, Sealed TLCD, Tuned to
the Basic Mode

Subsequently, the total fluid mass is split in two
TLCD in parallel connection, mf  1  = mf  2 = 15k g.
The following design parameters are chosen, see
Figure (1a): horizontal and inclined lengths of the
liquid column, B  = 1.5m and H = 0.5m, constant
cross-sectional areas AH = AB = 0.012m2, angle of
the inclined pipe section β = 40o. Hence, the effective
length of the liquid column and the geometry factors,
determined in Eqs. (2) and (7), become Leff = L1 = B
+2H = 2.5m and .91.0=κ=κ

In a first step, the optimal absorber frequencies
ωAi and the linearized viscous damping ζAi,i = 1, 2
are determined using the TLCD-TMD analogy
and considering the fundamental modal coordinate
to be optimized. Eq. (19) yields 0081.0*

2
*
1 =µ=µ  to be

Figure 8. Scaled three-DOF-benchmark test structure under
combined horizontal and vertical earthquake loads,
with two, sealed passive TLCD in parallel connection
on the top floor.
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substituted in Eq.  (17). Evaluating Eq.  (20) renders
identical optimal design parameters of both TLCD:
fA1=  fA2= 2.36Hz, ζA1 = ζA2 = 0.055. Improvements
of their performance are achieved by minimizing the
frequency domain based quadratic performance index
in the state space representation. The state vector of
the main system, ,],,,,,[ 321321

T
      S

 
                  wwwwwwz &&&v =  to be

substituted in Eq. (32), contains the TLCD quantities,
e.g., the liquid surface displacement and velocity not
explicitly. However, the damping effect of the modally
tuned TLCD is hidden in the system's dynamics, Eq.
(31), and thus in the structural response vector .Szv

The relevant matrices, BA
~

,
~  and ,

~
 R  Eqs. (29) and (30),

for the plane frame with TLCD on top, Figure (8),
have standard form, explicitly derived in Ref.  [5],
and are not repeated here. Having chosen the
weighing matrix, ,]101010111[

~
      diagS =  the numerical

minimization of the performance index is started
with Den Hartog´s modal tuning parameters. Calling
"fminsearch" within the MATLAB optimization
toolbox renders the new optimal tuning parameters
significantly changed:  fA1= 2.25Hz, ζA1 = 0.039, fA2=
2.46Hz, ζA2 = 0.042. It is noticed that fA1 is smaller
and fA 2 is larger than the fundamental natural
frequency f S1 = 2.38Hz to be influenced by the
TLCD. This fact increases the robustness of the
attached damping device in view of expected changes
of model parameters (mass, stiffness) during the
operating life. The maximum gain through the action
of the two optimally tuned passive TLCD in parallel
connection at the fundamental frequency of the
main structure is indicated with about 30dB  in Figure
(9).

In order to realize the optimal natural frequencies
of the TLCD in practice, the air spring effect can be
activated. Eq. (3) is solved for the height Ha,
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where ∆Le f f defines the difference of the effective
lengths of the liquid column with and without the
air-spring effect taken into account. Subsequently,
assuming the polytropic index  n = 1.2 and assigning
just the initial atmospheric pressure in equilibrium to
each TLCD, p0 = 105Pa , the air chamber heights,
Ha1 = 0.49m and Ha2 = 0.41m result.

6.2. Combined Earthquake Loadings by the N-S Friuli
1976 and the El Centro Seismograms. Verifica-
tion of Cut-Off Damping

Since the system under consideration is still a scaled
model, the time scale of the acceleration input is
increased by a factor of two, i.e., the simulated strong
motion occurs in half of the recorded time. The
N-S Friuli 1976 earthquake, defined in Figure (6) is
considered properly scaled next. The corresponding
cut-off values of the linearized damping coefficients
for the sealed TLCD are determined by Eq. (16),

,042.00019.0
/

14

,039.00023.0
/14

2

2

0
2,0,

1

1

0
1,0,

 
 

    
 

 

    

  

     

    

 
 

    
 

 

    

  

     

    

A

L

g
A

A

L

g
A

nsiH
gpn

g

vxma

nsiH
gpng

vxma

=ζ<=








β

ρ
+

=ζ

=ζ<=








β

ρ+
=ζ

&&

&&

  (36)

and, consequently, no worsening effects on the
optimal damping behavior of the sealed TLCD are
expected. The numerical simulations are performed
using MATLAB /Simulink, considering the TLCD
with turbulent damping, Eq .  (1)  holds true.  The
averaged optimal turbulent damping terms, determined
by Eq. (5), are δL1 = 0.61 and δL2 = 0.65, assigning the
maximum vibration amplitudes (forecast by uni-axially
exciting the linear model) Umax,1 = Umax,2 = 0.15m. The
results for the horizontal top floor displacement
w3, with and without two TLCD with turbulent
damping, under combined and assigned horizontal
and vertical seismic activation by the N-S Friuli quake
are illustrated in Figure (10a). A large reduction of
the maximum vibration amplitude is observed, thus the
passive action of the TLCD seems to be well suited to

Figure 9. Frequency response functions, FRF, of the sum of
weighted absolute state space variables of the three-
DOF-test structure. Uni-axial, horizontal time harmonic
forcing. Damping of the two, optimally tuned TLCD is
considered equivalently linear viscous and indepen-
dent of the forcing frequency. Damping characteristic
zoomed and compared to a single TLCD action.
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counteract the combined earthquake loadings.
Nevertheless, a transient vibration peak remains
nearly unaffected during the early part of the strong
motion phase, see again Figure (10a). A significant
reduction of these early transient peaks requires
active control of the air spring, by proper external
pressure supply from a pressurized gas-reservoir,
rendering the active TLCD (ATLCD). Hochrainer [5]
performed detailed investigations of ATLCD. The
top floor displacements are illustrated in Figure
(10b) with and without vertical seismic activation
taken into account. The time records indicate no
visible influence of the vertical earthquake loading
verifying the condition based on the cut-off damping,
Eq.  (36). The seismogram of the N-S El Centro
earthquake with a peak ground acceleration of

gw xmag  
35.0, =&&  is applied alternatively, again in both,

horizontal and vertical directions, with the same

strengths, illustrated in Figure (11). Since the system
under consideration is still the scaled model, the time
scale of the acceleration input is increased by the
factor of two. The numerical simulations are
analogously performed using MATLAB /Simulink
and considering the TLCD with turbulent damping.
Since the sufficient condition, Eq.  (16), is again
verified, no worsening effect of the vertical excitation
is expected,
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Figure 10. Top floor displacements of the scaled three-DOF-test structure forced by the scaled N-S Friuli seismogram. (a) Bi-axial
excitations, identical seismograms applied. Two optimally tuned TLCD in parallel connection (turbulent damping =δ→ 1L
0.61= constant, =δ→ 2L 0.65= constant). Note the possibly insufficient reduction of the maximum peak in the
transient regime by ≈ 20%. (b) Responses under bi-axial excitations (note the different scale in Figure (10a)) and
under uni-axial horizontal excitation. Cut-off damping verified by inspection.

Figure 11. N-S El Centro earthquake in time and frequency domain. Source: University of Notre Dame, http://www.nd.edu/~quake.
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Figure 12. Top floor displacements of the three-DOF-test
structure forced by the scaled N-S El Centro
seismogram. (a) Bi-axial excitations, identical
seismograms applied. Two optimally tuned TLCD
in parallel connection (turbulent damping =δ→ 1L
0.61= constant, =δ→ 2L 0.65= constant). Note the
much higher reduction of the maximum peak, ≈ 40%,
when compared to Figure (10a). (b) Responses
under bi-axial excitations (note the different scale
in Figure (12a)) and under uni-axial horizontal
excitation. Cut-off damping verified by inspection.

The numerically obtained results of the time
history response of the main system, with and without
two TLCD with turbulent damping attached, under
combined action of the N-S El Centro earthquake are
illustrated in Figure (12a). The efficient gain in
effective structural vibration, which is solely due to
the installation of the two optimally tuned TLCD, is
seen in Figure (12a) by the large reduction of the
maximum vibration amplitudes, also when compared
with Figure (10a). Furthermore, Figure (12b) shows
no identifiable difference in the time history response
of the main system with TLCD and turbulent
damping, with and without consideration of the
vertical excitation, similar to Figure (10b).

In practical applications, Eq.  (35) influences the
air chamber design twofold: the equilibrium pressure

p0  is assigned and the height Ha is determined. The
remaining volume, say AH  (Ha -2Umax) can be
redesigned with a larger cross-sectional area if Ha >
3Umax. In the model benchmark problem considered
above,  ,3    axma  

UH ≈  leaving the design of the air
chambers unchanged.

7. Conclusions

Tuning of the linearized TLCD with respect to a
selected mode of the main system is simple since a
geometric analogy exists to Den Hartog's optimal
parameters of a TMD. Subsequent fine-tuning in
state space is recommended, using the relevant tools
of MATLAB. The outcome of computer simulations
compare well with experimentally derived results if
an averaged turbulent damping of the relative fluid
motion is considered. Using an air-spring effect in
sealed pressurized air chambers can extend the
frequency range of application of TLCD.  For
extremely low frequency tuning, the air chambers of
the U-shaped piping system remain connected, to
allow for a free flow of the air when compressed by
the slow fluid motion.

TLCD considerably increase the effective
structural damping of "horizontal" vibrations, e.g.,
forced by wind gusts or by the horizontal component
of earthquakes. The vertical component of the latter
may however produce unwanted parametric
excitation of the fluid motion. A detailed study of
this effect is performed by computer simulation
and verified experimentally. The cut-off value of the
equivalent linear damping coefficient of the fluid
motion for the most critical case of parametric
resonance has been checked experimentally together
with the sufficient condition of requiring even higher
damping values. If such a condition holds, it was
proven that no worsening effect of the resulting
effective structural damping  is observable under
combined seismic loads. In conclusion, under these
conditions, the vertical excitation can be neglected
at all with respect to the TLCD-performance. The air
spring effect in sealed TLCD reduces the cut-off value
of the linear damping coefficient and renders the
required insensitivity with the optimal damping
applied.

A three story benchmark structure with two sealed
TLCD in parallel connection, tuned to the basic mode
and attached on top, illustrate the benefits of the
proposed analysis and confirmed the sufficient
condition based on the cut-off damping of parametric
resonance. TLCD tuned to higher modes can be either
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located on top or at the floor of the main structure
with maximum drift. An application in combination
with base isolation is discussed in Ref. [18]. Damping
of long span bridges is considered in Refs.  [6] and
[19].
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