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ABSTRACT

Available online at: http://www.iiees.ac.ir/jsee

Based on Housner's assumption, the average input energy from earthquakes to
a building modeled as a single degree of freedom (SDOF) system, is related
mainly to total mass of the building. Thus, based on the above premise for low
damping and relatively long period systems, the seismic input energy per unit
mass of the system (SDOF or MDOF) is mainly related to the ground motion features.
The present study attempts to analytically reveal the range of validity of these
assumptions in linear systems and to find an optimal stiffness distribution over
the height of high-rise shear linear buildings to minimize the seismic input energy.
To accomplish this objective, it is shown from the spectral standpoint that input
energy spectra generally is a function of the natural period of vibration, so the input
energy is further related to the stiffness of structure, the mass, damping ratio and
ground motion characteristics. Subsequently, it is demonstrated that for low to
moderate height (up to 20 stories) shear type structures, the optimal distribution of
stiffness obeys a parabolic form, while for taller structures, this form is a bell-shaped
function.
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1. Introduction

Housner was the first one who used the concept
of input energy as seismic design criteria [1]. He
presented his pioneering study in the 1st WCEE in
1956. The three main conclusions of his research
are of special concern in this study:
1) The seismic energy input to a SDOF structure

with specified damping, looking from “spectral”
or “average” standpoint, is basically constant and
independent on its period, especially for low
damping ratios.

2) Seismic design of structures can be understood
as satisfying the following inequality: Energy
absorption capacity > seismic input energy. On
the other hand, the amount of energy input to an
elastic system is the upper bound of energy input
to hysteretic systems with the same linear prop-
erties. Therefore, seismic design of structures
does not mean that it provides too strong elements

with the capability of converting kinetic energy
of structure to elastic strain energy; and as an
alternative, it is adequate to supply sufficient
“capacity” of energy absorption via plastic defor-
mations in structural elements.

3) Seismic energy input to a MDOF system basi-
cally depends on its “total mass”; therefore, it is
equal to energy input to an equivalent SDOF
system with the same mass and main period of
vibration.
Based on Housner’s study, Akiyama published

his highly important book of “Earthquake Resistant
Limit State Design for Buildings” in 1985. He
expanded Housner's assumptions and pointed out
their limitations and strong points [2].  He developed
input energy spectrum for different site soils. Those
spectrums are basically constant with respect to the
period of vibration except for the periods smaller
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than the predominant periods for the ground. As
Housner, Akiyama attempted to simplify seismic  de-
sign of structures by presuming and demonstrating
that “input energy to structures is related mainly to
earthquake excitation but scarcely to structural
features”. Most of researchers adapted this assump-
tion and equation proposed by Kuwamura and
Galambos [3], Fajfar et al [4], Uang and Bertero
[5], and Kuwamura et al [6] to establish the earth-
quake input energy which are merely based on the
ground motion characteristics.

Parallel to the research projects in estimating
the energy “demand”, other researchers focused on
the mechanism of dissipation of the input energy in
structural elements by the hysteretic action.  Ang and
Park [7] related their damage index to the energy
dissipation via hysteretic loops. This means that
reduction in the hysteretic dissipation of the input
energy which is a fraction of the total input energy
reduces the structural damage. Thus, it raises an
important question:

Is it possible to minimize the seismic input energy
to structures by a specific design pattern?

To answer this question, the classical approach
to the “input energy demand” problem must be
reexamined; the task which is the main purpose of
this study.

Various aspects of seismic input energy and its
calculation, such as absolute and relative energies,
and time interval for integration of related equations
have been discussed in the literature [3, 5, 8]. In this
research, several basic assumptions and definitions
which are widely utilized in the literature are adopted,
as follows:
1) Relative, rather than absolute input energy is

studied.
2) Input energy is defined as the energy imposed to

the structure by strong ground motion from the

of ground motion is considered as seismic input
energy. Thus, the seismic input energy to a SDOF
system with mass m, frequency ω and damping
ratio ζ is defined mathematically as [2]:

dtyymmE
dt

g &&&∫−=ζω
0

1 ),,(                                      (1)

Where gy&&  and y&  are ground acceleration and
system relative velocity, respectively. For a system
with unit mass, Eq. (1) can be written as:

dtyyE
dt

g &&&∫−=ζω
0

1 ),,1(                                          (2)

It is helpful to use an equivalent velocity VE [2],
defined based on the input energy, as:

m
EVE

12
=                                                        (3)

where E1 is input energy to the SDOF.
By applying the aforementioned assumptions, in

the proceeding sections of this paper, several input
energy spectra are primarily obtained; subsequently,
the possibility of existence of an optimal stiffness dis-
tribution is mathematically demonstrated.

2. Input Energy Spectra

Based on the definition of the input energy,
provided in the previous section, several input
energy spectra have been obtained by utilizing ten
typical earthquake ground motion records as illustrated
in Table (1). All of these records have been extracted
from PEER STRONG MOTION DATABASE.

All records have been normalized to 1.0g.
Figures (1) to (3) indicates equivalent velocity VE
spectra versus period of vibration for ζ = 0, 0.05, and
0.10, respectively. Design input energy spectrum

Table 1. List of records used to obtain input energy spectra.
beginning (t = 0) of motion to the end of it (t = td).
Note that definitions of “beginning” and “ending”
moments of ground motion are not unique in the
literature; however, this issue is not significant in
this research. In this study, the “beginning” and
“end” of motion are assumed to coincide with the
beginning and the end of the record. Furthermore,
it is demonstrated that the maximum input energy
can be attained not necessarily at the end of
motion [5]. However, as mentioned earlier, the
input energy of the system at the ending moment



JSEE / Vol. 13, No. 1, 2011 27

An Optimal Distribution of Stiffness Over the Height of Shear Buildings to Minimize the Seismic Input Energy

Figure 3. Input Energy spectra for ζ=10%.

Figure 2. Input Energy spectra for ζ=0.5%.

Figure 1. Input Energy spectra for ζ=0%.

(DIES) proposed by Akiyama [2], is further illustrated
in the figures. It should be mentioned that the pre-
sented DIES values are for highly stiff site soil and

damping ratio of %10. Individual input energy
spectra for each record are displayed in Figure (4)
for damping ratio of 10%.
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Figure 4. Input energy spectra of the considered earthquakes for ζ=10%.

Two important conclusions can be taken from
these figures. First, the low decay rates of the
average spectrum with increase in the period of
vibration, especially in the practical range of periods
of high-rise buildings, nearly 0.8 to 5.0 seconds. For
example, it can be seen in Figure (3) that the amount
of input energy at T = 5.0 sec is half of that at T = 0.9;
however, typically, spectral pseudo acceleration at
T = 5.0 sec is less than one-fifth of the corresponding
value at T = 0.9 (considering UBC97 design spectrum).
The second important observation is the highly
low sensitivity of the input energy to the damping of
structures. Thus, the DIES can be assumed to be
essentially constant over a wide range of periods,
which is in agreement with Housner's pioneering
statements. However, it is important to note that the
issue is examined from the design spectrum point
of view. This means that the results are valid for
average values obtained from former earthquakes,
not for an individual record.  In addition, it should be
noted that in order to obtain the input energy spectra

in this study, records were selected regardless of
their site specification features, which does not
affect the outcome of the study. However, several
discrepancies can be observed between DIES
and the average spectra as mentioned by other
researchers [9].

It is worthy to know that most of the newly
proposed elastic input energy spectra by researchers
have the same spectral shape and character as
illustrated by the average spectrum in Figures (1)
to (3) [9-12].

3. Equation of Motion and Input Energy to Multi-
Story Buildings

In the present study, a schematic illustration of
the simplified model of multi-story buildings is
demonstrated in Figure (5).

The equation of motion of the system in Figure
(5) can be written as:

}]{[}]{[}]{[}]{[ rMyyKyCyM g&&&&& −=++                (4)
or:
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Figure 5. The structural model used in this study.

}]{[}]{][[}]{][[}]{][[ rMyzKzCzM g&&&&& −=++ ΦΦΦ (5)

where:

}]{[}{ zy Φ=

][]][[][ IMT =ΦΦ ( ][Φ  is orthonormalized and  [I] is
the unit matrix.)
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It is evident that the input energy to this system
can be written as:
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Now, decupling Eq. (5) results in:
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Eq. (10) can be interpreted as equation of motion
of a SDOF system with unit mass subjected to
ground acceleration ,gy&&  magnified by }.]{[}{ rMT

iφ
It is evident that magnifying the excitation by

}]{[}{ rMT
iφ  leads to magnification of the input

energy by ,})]{[}({ 2rMT
iφ  thus considering Eq. (2)

the input energy to the system presented by Eq. (10)
can be written as:
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By comparing Eqs. (7) and (11) the following
equation can be written as:

∑
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However, as indicated previously, in a wide range
of relatively long to very long periods ),1(1 iiE ζ−ω−
has no notable variation and can be taken as con-
stant, so Eq. (12) can be written as:
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Based on Eq. (13), it can be claimed that E is
considered as a constant value and the summation
term in this equation should be constant as well. In
fact, it can be stated that as the mode shapes of
any system are “bases” of a “vector space” V, and
each vector, including {1} in this space can be
written as a linear combination of “bases”, which is
presented as:

∑ ==φ∈∃∈∀ }{}]{[}{}{ vaaRa Vv iii Φ

Thus, if {v}={l} then }{}]{[ va =Φ  and one can
write:
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Now the following equation can be written as:
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However, ][]][[ MTΦΦ  in the right hand side
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of Eq. (16) should be a unit matrix because
],[]][[][ IMT =ΦΦ  and by pre-multiplication of

both sides by ][Φ , one can obtain the desired result.
Thus, Eq. (16) can be rewritten as:
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And finally, Eq. (13) can be written as:

),,(),,1( 111111 ξω=ξω= totaltotal mEEmE               (18)

This means that the seismic input energy to a
MDOF system is the same as input energy to a SDOF
system with the same mass, main frequency and
damping, provided that the following conditions are
met:
1) Input energy is calculated at a specified instant

of a record for all modes, nearly at the end of
record.

2) Input energy spectra are constant all over the wide
range of periods.
As it can be evident from Figures (1) to (3),

constancy of input energy spectra is a simplifying
assumption which apparently is not fully in agree-
ment with reality. In fact, the input energy as
expressed by Eq. (12) depends on the shape of the
spectrum, and thus on the structural features. On the
other hand, calculations of the input energy at a speci-
fied instant of a record, nearly at its end, imply that
the input energy is the sum of instantaneous quantity
in all modes. This fact simplifies the problem, and
in conjugation with the inconstant input energy spec-
trum, it demonstrates the possibility of existence of
an optimal distribution of stiffness along the height
of high-rise buildings to minimize their seismic input
energy.

4. Optimal Distribution of Stiffness

As shown, input energy to a MDOF system is a
function of spectrum and structural properties. If mass
distribution and damping of the system are assumed
to be constant, then distribution of stiffness will be
the unique effective structural property of linear
MDOF systems. For shear structures, the distribu-
tion of stiffness can be defined by a 1×N vector as
k = {ki}, and for any given input energy spectrum,
the seismic input energy to a MDOF system (En)
will be merely a function of the stiffness distribution
vector:

En = En(k)                                                     (19)

The problem now is to find the optimum distribu-
tion of stiffness  so that  its value becomes minimal.
The main constrain for the stories' stiffness values is
obtained from the maximum acceptable story drift.
Knowing the response spectrum, mass and damping
of the system, maximum drift is merely a function of
stiffness distribution:

maxDrift = f (k)                                                (20)

In the context of optimization problem, En is
the objective function, k is design variable and
maxDrift = f (k) ≤ dall is inequality constraint (dall is
the maximum allowable story drift). The employed
approach to solve this optimization problem is
accomplished by applying a program developed in
the MATLAB environment [13] which is illustrated
in Figure (6).

Figure 6. Optimization flowchart.

Various structures with different numbers of
degrees of freedom were studied based on the
aforementioned procedure [14]. In all cases, espe-
cially in structures with high degrees of freedom,
there were different solutions to the problem, all
with nearly the same value for minimum seismic
input energy. However, in all studied structures, an
interesting solution showed up. Based on the solu-
tion, the stiffness distribution should be in such a
way that all stories reach the maximum allowable
drifts limit; hence, it makes the modal displacement
of the structure a linear form. This distribution for
shear structures with low to moderate height (up to
20 stories), in which the first mode governs their
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modal behavior, is best fitted by a parabolic curve,
see Figure (7):

2
0 2/)( xkxk  α−=                                               (21)

For high-rise shear buildings (more than 20
stories), the optimal stiffness distribution looks simi-
lar to a bell-shaped curve and is best fitted by this
curve, see Figure (8):
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Figure 8. Optimal stiffness distribution for high-rise (more than
20 stories) shear structures.

Figure 7. Optimal stiffness distribution for shear structures
with low to moderate height (less than 20 stories).

In Eq. (21) k0 is stiffness of the structure in its
lowest story, and in Eq. (22) α, β, γ, λ are constant
factors, related to the mass of system, input spec-
trum and accuracy of fit.

It is worth mentioning that based on the obtained
results, the absolute minimum energy is achieved
when the structure has the highest possible funda-
mental period; however, this is not practically
possible due to drift limitation.

5. Conclusions

The following outcomes are the main conclusions
of this study:
v The input energy spectrum is ascending in the

range of short periods, and descending in the range
of long periods, and therefore, the equality of the
amount of input energy of a MDOF system, with
that of a SDOF system (Housner's statement) is
not valid in general. However, if the spectral
value of input energy is assumed to be constant
in the whole frequency range, then the Housner's
statement will be valid.

v By selecting a specific distribution of stiffness
along the height of multi-story shear buildings,
from the spectral stand point, it is possible to
minimize the amount of seismic input energy.

v For low to moderate height (up to 20 stories)
shear buildings, one possible optimal distribution
over the height is parabolic. For taller buildings,
this form is a bell-shaped function. These distri-
butions imply linearity of modal displacement of
the building structure and the equality of drifts
in all stories.
It should be noted that the P-Delta effect is

omitted in this study; therefore, further research is
required to include this effect. Finally, it should be
pointed out that the obtained results are restricted to
linear shear buildings, and more general nonlinear
systems will be discussed as the second part of the
study.
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