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Selection of Ground Motion Prediction Equations (GMPEs) within the Seismic 

Hazard Analysis (SHA) is an important and timely research line of inquiry. A set of 

22 regional and worldwide GMPEs have been selected in this research for the 

purpose of classification. They are classified into clusters in which each cluster is 

defined to have the most dissimilarity with the other clusters as well as having the 

most similarity within the cluster. The C-mean clustering algorithm is modified and 

adapted in order to be applicable in the current study. In addition, six groups are 

defined for different focal mechanisms and soil types. Then, the GMPE clustering 

is performed for each group and the obtained clusters are proposed and discussed. 

The results confirm that the obtained spectral ordinated from GMPEs of different 

clusters can meaningfully differed from each other. 
 

 

1. Introduction 

Ground Motion Prediction Equation (GMPE) is 

the key element within any seismic hazard analysis 

(SHA). Different GMPEs have been revised by 

enrichment of earthquake catalogues in which a 

wide variety of GMPEs are now available [1-2]. 

However, any GMPE depends strongly on the 

selected ground motion database. In other words, 

employing non-local GMPEs may be a challenging 

task [3]. Additionally, selection of a suitable 

GMPE is usually performed without enough 

attention to the compatibility of the chosen GMPE 

on historical site database. Therefore, the selection 

of appropriate GMPEs for regions, which suffer 

from the lack of available GMPEs, is usually a 

serious challenge. Therefore, the fuzzy C-mean 

clustering approach [4] is adapted and employed  

in this study in order to classify the available   

well-known GMPEs into different clusters. A set 

of models can be divided into a number of subsets, 

i.e. clusters [4], in which each cluster members 

have the most dissimilarity with the other cluster 

members and having the most similarity within the 

given cluster [5].  

Clustering approaches are categorized into the 

hard and soft clusters. In hard clustering approach, 

each data is assigned to only a specific cluster 

whereas in the soft (fuzzy) clustering approach 

each data has a certain membership value for each 

cluster [5]. Additionally, fuzzy clustering approach 

does not employ any category label that is a unique 

characteristic in this sort of approaches [6]. In 

other words, in contradiction of the classification 

in which the given data are classified into pre-

defined classes, clusters are not defined in priori in 

fuzzy clustering approach. Therefore, fuzzy 

clustering approach is a sort of un-supervised 
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classification [5], which makes it suitable for the 

purpose of the current study. It is worth 

mentioning that the idea of GMPE clustering is a 

novel approach in which this study is the first 

attempt in this issue.  

The fuzzy clustering approach is introduced in 

the upcoming section. Then, the fuzzy C-mean 

clustering approach is adapted in order to be 

applicable in the case of GMPE clustering. A set of 

22 GMPE’s are introduced later and employed 

within the adaptive fuzzy C-mean clustering in 

order to obtain different clusters. A validity 

measure for the number of clusters is discussed and 

the best number is chosen. Finally, the spectral 

accelerations based on different clusters are 

obtained and discussed. 

 

2. Fuzzy Clustering 

The concept of fuzzy clustering, in order to 

construct a set of unknown border clusters, has 

been proposed first by Zadeh [7]. Each data in 

clustering process is assigned to a cluster by           

a membership value based on the following 

criteria: 
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where N, C and uij are, respectively, number of data, 

number of clusters and membership value of the jth 

data for the ith cluster. According to Eqs. (1) and (2), 

each data gets a membership value between 0 and 1 

in the case of each cluster. Hence, the summation of 

all membership values for a specific data is equal to 

unity. Eq. (3) guarantees that there will not be a null 

cluster among all clusters [5]. 

The Fuzzy C-Mean (FCM) clustering is one of 

the most popular methods within the fuzzy 

clustering methods. As proposed by Bezdek in 

1981 [8], a centre point is assigned to each cluster 

in which the distance of each data from this point 

is defined as the corresponding membership value. 

The membership value is closer to unity for the 

cases that the given data is close enough to the 

centre point [8]. It is worth noting that the final 

clustering depends only on the data distribution 

and is independent of the cluster centres. In other 

words, after defining the number of clusters, the 

cluster centres as well as the membership values 

are calculated without any influence of the user. 

This characteristic is the most important scheme of 

the FCM approach, which makes it suitable for the 

current study. On the other hand, some 

modifications of the original version of the FCM 

are necessary in order to be applicable in the 

GMPEs clustering. These modifications are 

mandatory since each GMPE has its own input 

variables that may be different with the other 

models. Additionally, for a specific physical 

phenomenon, e.g. distance, different definitions are 

available in the literature. Therefore, the next 

section is discussed on the details of the adapted 

FCM clustering approach in the current study. 

 

3. Adapted Fuzzy C-Mean Clustering 

Algorithm 

In order to define different GMPEs, SA matrix 

is introduced here as written in Eq. (4). 
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(4) 

where Sa1 to SaN are spectral acceleration obtained 

from N (given) GMPEs. Mw, T, RJB, VS30,  , h,   

are, respectively, moment magnitude, period, 

horizontal distance to the surface projection of the 

rupture (Joyner-Boore distance), time-averaged 

shear-wave velocity over the top 30 meters           

of the subsurface, source-to-site azimuth,         

hypo-central depth, rake angle. Moreover,            

SaN 30( , , , , , , )n n n n n n n
W JB SM T R V h   is the spectral 

acceleration corresponding to Nth model which has 
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been calculated by using the following values: 

30, , , , ,n n n n n n
W JB SM T R V h and λn. 

Now a SA matrix is in hand, by using Eq. (4), in 

which each row corresponds to a specific GMPE 

and each column corresponds to a specific input 

variable for different models. It is worth 

emphasizing that RJB is selected in all models for 

the distance variable. Other definitions for the 

distance variable are transformed to the RJB 

definition by employing the transformation 

relationships [9]. The transformation relationships 

are also used to transform all the models outputs to 

the geometric mean of the two horizontal 

components [10]. In the case that a specific 

variable value is not valid for the defined range    

of a given GMPE, Not a Number (NaN) is placed 

in the corresponding cell in the SA matrix. It  

means that in the case of that cell, there is no value 

for the specific model.  

The adapted FCM clustering algorithm, which 

has been employed in the current study, is 

introduced as the following steps: 

 After defining the number of clusters, the 

membership matrix is randomly calculated as 

written in Eq. (5). 
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where uCN is the membership value of Nth data for 

Cth cluster centre. 

 Eq. (4) is re-written as Eq. (6) for the purpose 

of simplicity. The cluster centres is calculated 

by using Eq. (7). As some of the cells in the SA 

matrix is NaN, the corresponding is set to zero 

when using Eq. (7). Additionally, in the case of   

in Eq. (7), the membership value corresponding 

to NaN case is also set to zero. 
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 (7) 

 The similarity is defined in this step as the 

Manhattan distance [5], which is written in    

Eq. (8). 
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here ),(
cNManw

CSaD  is the distance of Nth model with 

Cth cluster. When either i
NSa  or i

CC  in Eq. (8) is 

NaN, then, wi is set to zero. Otherwise wi is set to 

unity. Therefore, the similarity matrix is calculated 

as written in Eq. (9). 
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(9) 

where NC  cell in the matrix corresponds to the 

distance between Nth model with Cth cluster centre. 

The objective function is defined as the sum of the 

distances as written in Eq. (10).  
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where Dij corresponds to the ith row by jth column 

in D matrix.  

As the U matrix is calculated randomly, it 
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should be corrected in an iterative process by the 

goal of minimization of the objective function. 

This is achieved by updating the U matrix by 

employing Eq. (11). The old U matrix, then, is 

replaced with the new U matrix and all the steps 

are repeated. This iteration process is repeated until 

the difference between the objective function with 

the previous objective function becomes less than a 

predefined tolerance, i.e. 10-5 in the current study. 

The mathematical form of the stopping criterion is 

written in Eq. (12). 
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where  
JFCMJ  and  

1JFCMJ  are, respectively,  

corresponding to the objective functions of jth and 

(J-1)th iteration.  

    The GMPEs are clustered into a certain number 

based on their prediction capability of the spectral 

values. Each given GMPE has a membership value 

for each cluster. In addition, each cluster centre is 

accounted as the representative of the corresponding 

cluster. To clarify, three simple constant functions 

with different domains, as seen in Figure (1), are 

examined with the proposed clustering algorithm. 

The proposed FCM clustering algorithm has been 

applied to the given functions in order to produce 

two clusters. The results are shown in Figure (1) in 

which four different regions are distinguished. The 

following characteristics are discussed based on 

Figure (1). 

 At the first region, only one function is defined. 

Hence, all the clusters centres are identical with 

the defined function. 

 At the second region, the function y2=0 has 

NaN values. Therefore, the clusters centres are 

identical with the other functions. 

 At the third region, the y2=0 function has 

numeric values, in contrast to the previous 

region. Hence, the clusters centres are closer to 

this function compared with the previous case. 

 

 

Figure 1. Performance of the proposed FCM clustering algorithm. (a) Introduction of three hypothetical functions y1, y2, y3. 

(b) Clustering of the three hypothetical functions into two clusters using the proposed FCM clustering algorithm. 
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 At the forth region, all the functions have NaN 

values. This results in NaN in cluster centres.  

    The behaviour that is discussed in the four 

regions confirms that this adapted FCM algorithm 

is suitable to be applied to a set of GMPEs which 

is discussed in the following section.  

 

4. Fuzzy Clustering of GMPEs 

A wide variety of GMPEs are selected from 

1997 to 2012 [2] that include 22 worldwide and 

regional models. Three different limitations are 

taken into consideration in the model selection as 

the followings: 

1. The transformation relationships [9-10] should 

be applicable to any of the selected GMPE. 

2. All the models use the moment magnitude as 

one of the inputs. Any model which uses other 

magnitude definition is eliminated. The only 

exception is Ghodrati et al [11] which is one of 

the Iranian well-known models. Ghodrati et al 

[11] model uses surface magnitude which was 

transformed into the moment magnitude by 

employing the transformation relationships [1]. 

3. Any GMPE corresponding to the near-field 

region is eliminated. 

By considering the three above criteria, 22 

models were selected which are shown in Table 1. 

Each model and the corresponding input variables 

are shown in Table (1). It is worth noting that 

NGA-WEST2 models were not available in the 

time of the current research. Therefore, these new 

models are left for future researches. 
 

Table 1. Selected GMPEs with the range of input parameters. 

Ref. 
Definitions of Horizontal 

Component of Motion 
  

Depth 

(km) 
VS30 

(m/s) 
Distance 

(km) 
Mw Model No. 

Worldwide Shallow Crustal 

[12] GMRotI50a -90°, 0°, 90° 2-31 180-1300 0-200 5-8 Boore & Atkinson 08 (Crustal) 1 

[13] GMRotI50 -90°, 0°, 90° 0-30 150-1500 0-200 4-8.5 Campbell & Bozorgnia 08 (Crustal) 2 

[14] GMRotI50 -90°, 0°, 90° 0-30 0-1000 0-200 5-8.5 Abrahamson & Silva 08 (Crustal) 3 

[15] GMRotI50 -90°, 0°, 90° 0-19 150-1500 0-200 4-8.5 Chiou & Youngs 08 (Crustal) 4 

[16] AMxyb -90°, 0°, 90° 0-30 450-900 0-200 4.5-7.7 Idriss 08 (Crustal) 5 

Worldwide 

[17] GMc -90°, 0°, 90° 0-10.13 200-1500 0.1-200 5.6-7.9 Kuehn 09 6 

European & Middle East 

[18] Envxyd -90°, 0°, 90° 1-30 180-1000 0-100 5-7.6 Ambraseys 05 7 

[19] GM -90°, 0°, 90° 0-30 0-1000 0-100 5-7.6 Akkar & Bommer 10 8 

Italy 

[20] Envxy -90°, 0°, 90° 1.5-30 180-1000 1-100 4-6.9 Bindi 10 9 

Japan 

[21] GM -90°, 0°, 90° 0-25 0-1000 0-300 5-8.3 Zhao 06 (Crustal) 10 

[21] GM -90°, 0°, 90° 10-50 0-1000 0-300 5-8.3 Zhao 06 (Interface) 11 

Turkey 

[22] Envxy -90°, 0°, 90° 0-111 200,400,700 0-250 4-7.5 Kalkan & Gulkan 04 12 

[23] GM -90°, 0 5-25 0-1000 5-300 5-7.4 Ozbey 04 13 

[24] GM -90°, 0°, 90° 0-50 180-1000 0-200 5-7.6 Akkar & Cagnan 10 14 

Iran 

[25] GMRotI50 -90°, 0°, 90° 5-22 0-1000 0.5-100 5-7.4 Ghasemi 09 15 

[11] Envxy -90°, 0°, 90° 5-59 0-1000 5-200 4-7.7 Ghodrati 10 (Alborz) 16 

[11] Envxy -90°, 0°, 90° 5-59 0-1000 5-200 4-7.7 Ghodrati 10 (Zagros) 17 

[26] GMRotI50 0°, 90° 7-27 175-1000 15-135 5-7.3 Saffari 12 (Central Iran) 18 

[26] GMRotI50 0°, 90° 7-27 175-1000 15-135 5-6.5 Saffari 12 (Zagros) 19 

[27] GM -90°, 0°, 90° 0-30 175-1000 1-200 4.4-7.5 Zafarani 12( Zagros) 20 

Himalaya 

[28] GM 0°, 90° 5-50 0-1000 0-100 5-7 Sharma 09 21 

Eurasia 

[29] Bothe 0° 3-30 0-1000 0.5-235 5.5-7.4 Fukushima 03 22 
 

a: The geometric mean determined from the 50th percentile values of the geometric means computed for all non-redundant rotation angles and all periods 

less than the maximum useable period. 
b: Arithmetic mean of spectra of x and y components 
c: Geometric mean of spectra of x and y components 
d: Envelope of x and y spectra: At each period the maximum spectral ordinate from all possible orientations of the horizontal axis is chosen. This is the 

common understanding of the “larger component” definition. 
e: Both horizontal components of a record are considered and treated as two independent realizations of a random process. This definition was used, in 

particular, when ground-motion data were still very sparse. 
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The input variables ranges are defined as shown 

in Table (2) for Mw, T, RJB, VS30,  , h and  . The 

authors tried to create a balance between the ranges 

of the considered input variables with the 

computational efforts of the clustering algorithm. 

The input SA matrix dimension is 22 x 179928 that 

reveals the serious difficulties in the computational 

aspects of the current research. 

 

Table 2. Introduction of the range of input variables. 
Range Parameters 

M=4:0.25:8
 

Moment Magnitude 











275151251019080

70605040302010

......

.......
T  

Period (s) 

Rjb=25:25:150; Distance (km) 
Vs=[175 275 375]; 

Vs=[400 550 700];
 

Shear-Wave Velocity 

(m/s) 

}180 ,120 ,60 ,0,60 ,120 ,180{  
 

Azimuth (Degree) 

h= 5:5:30
 

Focal Depth (Km) 

  90 ,0 ,90
 

Rake Angle (Degree) 

 

Two soil types are defined in this study, i.e. 

Soft soil is corresponding to 175<Vs30<375 and 

the firm soil is corresponding to 400<Vs30<700. 

Additionally, three different fault mechanisms are 

taken into consideration, i.e. normal ( 90 ), 

strike-slip ( 0 ) and reverse ( 90 ). Therefore, 

six combinations of the soil type and fault 

mechanism are available in order to classify the 

considered GMPEs. The number of GMPEs in 

each combination (group) is illustrated in Table (3).  

The next step in the clustering algorithm is the 

decision on the number of clusters which is a 

challenging task. Therefore, the number of clusters 

was varied between 2 to 
GMPEN  achieve the best 

choice in which GMPEN  is the number of GMPEs 

within a given group. For this purpose, the validity 

index (VXB) has been used as written in Eq. (13) [30]. 

The result of this index is shown in Table (4). It is 

worth noting that high values, in Table (4), are 

corresponding to the better validity indices. Hence, it 

is concluded that three clusters in the case of Group 

No. 1, five clusters in the cases of Groups Nos. 2, 3, 4 

and 5, and four clusters in the case of Group No. 6 

are appropriate in the current study.   

 
Table 3. The available GMPEs in each group. 

Case 6 Case 5 Case 4 Case 3 Case 2 Case 1 No. 

   Model    

Boore & Atkinson 

08 (Crustal) 

Boore & Atkinson 

08 (Crustal) 

Boore & Atkinson 

08 (Crustal) 

Boore & Atkinson 

08 (Crustal) 

Boore & Atkinson 

08 (Crustal) 

Boore & Atkinson 

08 (Crustal) 
1 

Campbell & 

Bozorgnia 08 
(Crustal) 

Campbell & 

Bozorgnia 08 
(Crustal) 

Campbell & 

Bozorgnia 08 
(Crustal) 

Campbell & 

Bozorgnia 08 
(Crustal) 

Campbell & 

Bozorgnia 08 
(Crustal) 

Campbell & 

Bozorgnia 08 
(Crustal) 

2 

Abrahamson & Silva 

08 (Crustal) 

Abrahamson & Silva 

08 (Crustal) 

Abrahamson & Silva 

08 (Crustal) 

Abrahamson & Silva 

08 (Crustal) 

Abrahamson & Silva 

08 (Crustal) 

Abrahamson & Silva 

08 (Crustal) 
3 

Chiou & Youngs 08 
(Crustal) 

Chiou & Youngs 08 
(Crustal) 

Chiou & Youngs 08 
(Crustal) 

Chiou & Youngs 08 
(Crustal) 

Chiou & Youngs 08 
(Crustal) 

Chiou & Youngs 08 
(Crustal) 

4 

Idriss 08 (Crustal) Idriss 08 (Crustal) Idriss 08 (Crustal) - - - 5 

Kuehn 09 Kuehn 09 Kuehn 09 Kuehn 09 Kuehn 09 Kuehn 09 6 

Ambraseys 05 Ambraseys 05 Ambraseys 05 Ambraseys 05 Ambraseys 05 Ambraseys 05 7 

Akkar & Bommer 

10 

Akkar & Bommer 

10 

Akkar & Bommer 

10 

Akkar & Bommer 

10 

Akkar & Bommer 

10 

Akkar & Bommer 

10 
8 

Bindi 10 Bindi 10 Bindi 10 Bindi 10 Bindi 10 Bindi 10 9 

Zhao 06 (Crustal) Zhao 06 (Crustal) Zhao 06 (Crustal) Zhao 06 (Crustal) Zhao 06 (Crustal) Zhao 06 (Crustal) 10 

Zhao 06 (interface) Zhao 06 (interface) Zhao 06 (interface) Zhao 06 (interface) Zhao 06 (interface) Zhao 06 (interface) 11 

Kalkan & Gulkan 04 Kalkan & Gulkan 04 Kalkan & Gulkan 04 Kalkan & Gulkan 04 Kalkan & Gulkan 04 Kalkan & Gulkan 04 12 

- Ozbey 04 Ozbey 04 - Ozbey 04 Ozbey 04 13 

Akkar & Cagnan 10 Akkar & Cagnan 10 Akkar & Cagnan 10 Akkar & Cagnan 10 Akkar & Cagnan 10 Akkar & Cagnan 10 14 

Ghasemi 09 Ghasemi 09 Ghasemi 09 Ghasemi 09 Ghasemi 09 Ghasemi 09 15 

Ghodrati 10 (Alborz) Ghodrati 10 (Alborz) Ghodrati 10 (Alborz) Ghodrati 10 (Alborz) Ghodrati 10 (Alborz) Ghodrati 10 (Alborz) 16 

Ghodrati 10 (Zagros) Ghodrati 10 (Zagros) Ghodrati 10 (Zagros) Ghodrati 10 (Zagros) Ghodrati 10 (Zagros) Ghodrati 10 (Zagros) 17 

Saffari 12 (Central 
Iran) 

Saffari 12 (Central 
Iran) 

- 
Saffari 12 (Central 

Iran) 
Saffari 12 (Central 

Iran) 
- 18 

Saffari 12 (Zagros) Saffari 12 (Zagros) - Saffari 12 (Zagros) Saffari 12 (Zagros) - 19 

Zafarani 12 (Zagros) Zafarani 12 (Zagros) Zafarani 12 (Zagros) Zafarani 12 (Zagros) Zafarani 12 (Zagros) Zafarani 12 (Zagros) 20 

Sharma 09 Sharma 09 - Sharma 09 Sharma 09 - 21 

- Fukushima 03 - - Fukushima 03 - 22 

The total number of attenuation models in each case. 

20 22 18 19 21 17  
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Table 4. Xie and Beni index to evaluate the validity of 
clusters. 

Case 6 Case 5 Case 4 Case 3 Case 2 Case 1 
The 

Number of 

Clusters (N) 

0.2761 0.2629 0.2662 0.3082 0.3260 0.2827 N=2 

0.2595 0.2864 0.1739 0.4778 0.3636 0.1815 N=3 

0.1346 0.2353 0.1651 0.2957 0.3759 0.2790 N=4 

0.2546 0.1014 0.1576 0.2376 0.1255 0.2206 N=5 

 

The clustering results in each group are shown 

through Table (5) to Table (10) as the main result 

of the modified C-mean clustering algorithm. Each 

table illustrates the clusters GMPEs as well as the 

membership values for a given group. 

2
     1

min

FCM
XB

i j

J
V i j C

N C C

   


 (13) 

To more elaborate with the obtained clusters, 

each cluster centre is taken as the representative of 

that cluster. For example, different cluster centres 

in the case of group No. 1 are shown in Figure (2) 

versus period. The third cluster is remarkably 

different with the other cluster centres as seen in 

Figure (2). These clustering results are applicable 

to a given seismic data in a specific region. The 

observed data are comparable with the cluster 

centres in order to find the best fitted cluster to be 

used in PSHA. 

 
Table 5. Clustering of 17 models in case 1. 

Number of Clusters = 3 

U Attenuation Relationship No. 

Cluster 1 

0.8992 Boore & Atkinson 08 (Crustal) 1 

0.4080 Campbell & Bozorgnia 08 (crustal) 2 

0.8583 Chiou & Youngs 08 (crustal) 4 

0.8829 Akkar & Bommer 10 8 

0.5701 Bindi 10 9 

0.4878 Kalkan & Gulkan 04 `12 

0.6414 Ozbey 04 13 

0.8516 Akkar & Cagnan 10 14 

0.7734 Ghodrati 10 (Alborz) 16 

0.8279 Ghodrati 10 (Zagros) 17 

Cluster 2  

0.4625 Ambraseys 05 7 

Cluster 3  

0.4579 Abrahamson & Silva 08 (crustal) 3 

0.9037 Kuehn 09 6 

0.5903 Zafarani 12 (Zagros) 20 
 

 

Table 6. Clustering of 21 models in case 2. 

Number of Clusters = 5 

U Attenuation Relationship No 

Cluster 1 

0.5269 Ozbey 04 13 

0.7068 Akkar & Cagnan 10 14 

0.6158 Ghodrati 10 (Alborz) 16 

0.8788 Ghodrati 10 (Zagros) 17 

0.7106 Sharma 09 21 

Cluster 2 

0.9705 Kuehn 09 6 

0.3945 Saffari 12 (Central Iran) 18 

0.3756 Saffari 12( Zagros) 19 

0.4616 Zafarani 12 (Zagros) 20 

Cluster 3 

0.9965 Abrahamson & Silva 08 (crustal) 3 

Cluster 4 

0.4769 Ambraseys 05 7 

0.5530 Bindi 10 9 

0.9274 Zhao 06 (crustal) 10 

0.9237 Zhao 06 (interface) 11 

0.4906 Ghasemi 09 15 

Cluster 5 

0.9066 Boore & Atkinson 08 (crustal) 1 

0.8813 Campbell & Bozorgnia 08 (crustal) 2 

0.5716 Chiou & Youngs 08 (crustal) 4 

0.5022 Akkar & Bommer 10 8 

0.7805 Kalkan & Gulkan 04 12 

0.6473 Fukushima 03 22 

 
Table 7. Clustering of 19 models in case 3. 

Number of Clusters = 5 

U Attenuation Relationship No 

Cluster 1 

0.4018 Akkar & Cagnan 10 14 

0.7572 Ghodrati 10 (Alborz) 16 

0.8748 Ghodrati 10 (Zagros) 17 

Cluster 2 

0.6242 Ambraseys 05 7 

0.5202 Bindi 10 9 

0.9211 Zhao 06 (interface) 11 

0.5975 Ghasemi 09 15 

Cluster 3 

0.9521 Zhao 06 (crustal) 10 

0.4389 Saffari 12 (Central Iran) 18 

0.6736 Zafarani 12 (Zagros) 20 

Cluster 4 

0.9830 Abrahamson & Silva 08 (crustal) 3 

0.3300 Kuehn 09 6 
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Table 7. Continue 

Cluster 5 

0.9024 Boore & Atkinson 08 (crustal) 1 

0.7637 Campbell & Bozorgnia 08 (crustal) 2 

0.7258 Chiou & Youngs 08 (crustal) 4 

0.4586 Akkar & Bommer 10 8 

0.6403 Kalkan & Gulkan 04 12 

0.3495 Saffari 12( Zagros) 19 

0.3887 Sharma 09 21 

 

Table 8. Clustering of 18 models in case 4. 

Number of Clusters = 5 

U Attenuation Relationship No 

Cluster 1 

0.9862 Kuehn 09 6 

0.3280 Ambraseys 05 7 

0.2860 Ghasemi 09 15 

Cluster 2 

0.9817 Abrahamson & Silva 08 (crustal) 3 

0.4140 Zafarani 12 (Zagros) 20 

Cluster 3 

0.5964 Bindi 10 9 

0.9624 Zhao 06 (crustal) 10 

0.9538 Zhao 06 (interface) 11 

Cluster 4 

0.5411 Ozbey 04 13 

0.6499 Akkar & Cagnan 10 14 

0.6564 Ghodrati 10 (Alborz) 16 

0.8738 Ghodrati 10 (Zagros) 17 

Cluster 5 

0.8759 Boore & Atkinson 08 (crustal) 1 

0.8199 Campbell & Bozorgnia 08 (crustal) 2 

0.6577 Chiou & Youngs 08 (crustal) 4 

0.4999 Idriss 08 (crustal) 5 

0.7499 Akkar & Bommer 10 8 

0.4901 Kalkan & Gulkan 04 12 

 

Table 9. Clustering of 22 models in case 5. 

Number of Clusters = 5 

U Attenuation Relationship No 

Cluster 1 

0.9504 Kuehn 09 6 

0.3331 Ghasemi 09 15 

0.5310 Saffari 12( Zagros) 19 

0.3772 Zafarani 12 (Zagros) 20 

0.4314 Fukushima 03 22 

Cluster 2 

0.3503 Ambraseys 05 7 

0.7015 Bindi 10 9 
 

 

Table 9. Continue 

0.9463 Zhao 06 (crustal) 10 

0.9325 Zhao 06 (interface) 11 

0.3076 Saffari 12 (Central Iran) 18 

Cluster 3 

0.9869 Abrahamson & Silva 08 (crustal) 3 

Cluster 4 

0.6434 Ozbey 04 13 

0.7039 Akkar & Cagnan 10 14 

0.7309 Ghodrati 10 (Alborz) 16 

0.8549 Ghodrati 10 (Zagros) 17 

0.6033 Sharma 09 21 

Cluster 5 

0.9220 Boore & Atkinson 08 (crustal) 1 

0.9143 Campbell & Bozorgnia 08 (crustal) 2 

0.5657 Chiou & Youngs 08 (crustal) 4 

0.5985 Idriss 08 (crustal) 5 

0.7258 Akkar & Bommer 10 8 

0.7018 Kalkan & Gulkan 04 12 

 

Table 10. Clustering of 20 models in case 6. 

Number of Clusters = 5 

U Attenuation Relationship No 

Cluster 1 

0.9237 Boore & Atkinson 08 (crustal) 1 

0.9173 Campbell & Bozorgnia 08 (crustal) 2 

0.8236 Chiou & Youngs 08 (crustal) 4 

0.5280 Idriss 08 (crustal) 5 

0.5694 Akkar & Bommer 10 8 

0.3637 Zhao 06 (interface) 11 

0.7229 Kalkan & Gulkan 04 12 

0.3605 Saffari 12( Zagros) 19 

0.3916 Sharma 09 21 

Cluster 2 

0.8826 Kuehn 09 6 

0.6741 Ambraseys 05 7 

0.3300 Bindi 10 9 

0.4589 Ghasemi 09 15 

0.4984 Saffari 12 (Central Iran) 18 

Cluster 3 

0.4235 Abrahamson & Silva 08 (crustal) 3 

0.9097 Zhao 06 (crustal) 10 

0.6570 Zafarani 12 (Zagros) 20 

Cluster 4 

0.4963 Akkar & Cagnan 10 14 

0.8794 Ghodrati 10 (Alborz) 16 

0.9012 Ghodrati 10 (Zagros) 17 

0.4963 Akkar & Cagnan 10 14 
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Figure 2. Different cluster centres in the case of group No. 1 and MW = 6, RJB = 150km, VS30 = 375m/s,  = 180°, h = 20m,      

 = -90°. 

 

5. Conclusions 

The GMPEs are widely used within any seismic 

hazard analysis. On the other hand, local GMPEs 

are not available in many regions. That is, a 

systematic clustering algorithm is employed in this 

study in order to join similar models in a same 

cluster. The adapted fuzzy c-mean clustering 

algorithm is utilized to obtain the final clusters 

since this method is only depends on the models 

variation and not on the models centres. Each 

model is assigned to a cluster by a certain 

membership value that is between 0 and 1. A high 

membership value shows significant dependence 

of the selected model to the obtained cluster.  

A set of 22 regional and worldwide GMPEs 

were selected in order to be clustered. Three 

different focal mechanisms and two soil types were 

defined in which six groups were organized. The 

clustering algorithm was performed for each group 

and the resulting clusters introduced. The Xie and 

Beni validity index was utilized in order to decide 

on the best number of clusters. The clusters can be 

employed in order to judge on applicability of 

GMPEs for a specific seismic region.  

It is worth mentioning that the obtained results 

are limited to the given assumptions in this study 

and further investigations are necessary in order to 

shed light to this area of research.  
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