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In this paper, automatic detection and picking of the S-wave, in the problem of
passive seismic monitoring has been studied, and a method is proposed for detecting
S-phase onset time based on the eigenvalue analysis. By calculating eigenvalues
of the time domain covariance matrix of the earthquake record, a characteristic
function is defined, in which applying an adaptively determined  threshold value,
the S-phase onset time is picked. The proposed method is capable of successful
determining S-phase onset time in local and near regional seismograms. Motivation
towards this research has been the growing number of operating seismic stations in
Iranian Broadband Network (BIN) and the necessity of providing earthquake pa-
rameters information fast and precisely. In addition, a doing well S-phase picking
algorithm can be used to increase the number of determined S-phases in databases
in which tomography studies are carried on. We tested the proposed method on 185
earthquakes recorded in the BIN, and evaluated the performance of the algorithm.
We also examined the other algorithm of S-phase detection based on Autoregressive
(AR) modeling of the seismograms on the same data, and compare the output of two
algorithms. This comparison implies that the results of the proposed method are
better than the AR based algorithm on our database.
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1. Introduction

Automatic earthquake signal phase picking is of
great importance in earthquake data processing.
Modern digital seismic networks, which are operat-
ing continuously all over the world, produce huge data.
The manual processing of the increasing amount of
such data is very time consuming and requires con-
siderable work force. Therefore, from early days of
digital seismology, a considerable effort has been done
in order to automate different steps of earthquake
signal processing. Consequently, nowadays, real-time
automatic procedures that include both data acquisi-
tion and data processing modules are commonly used

in every earthquake data processing centers, e.g. the
Earthworm System [1], which is supported by the
USGS, is operating in most US seismic networks.
The event and phase detector algorithms used in
real-time procedures are usually based on the STA
(short term average) / LTA (long term average)
algorithm (e.g. [2-3]). The fundamental of this method
is to compute the average amplitude of the signal, or
an improved version of it, in two running time
window, one with a short duration, and the other
with longer duration. The phase detection is then
achieved when the STA/LTA becomes larger than a
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predefined threshold level. The STA/LTA based
algorithms may be sufficient for rapid earthquake
location estimation. However, for precise location of
the earthquakes and further seismological studies,
such as tomographic studies, more accurate phase
picking algorithms are needed.

Seismic phases are detectable by exploring the
variation of local properties of the seismograms,
such as the frequency content, amplitude, statistical
properties and polarization. In order to detect
seismic phases using automatic algorithms, such
variations should be investigated on the seismogram
or on a characteristic function (CF). The concept of
the CF is first introduced by Allen [2], and is a time
series that efficiently characterizes the seismogram,
and responds to the desired changes as rapidly as
possible while preferably enhances them. The
performance of a phase picker algorithm relies
strongly on the CF, so it should be defined very
carefully depending on the properties of the analyz-
ing seismograms and the desired seismic phase. The
absolute amplitude, power, polarization indicators
and the envelope function of the seismogram are
usually selected as a CF both for P- and S-phase
onset detection [2-8]. While the automatic methods
of P-phase detection picking are more likely to
perform successfully, the scenario for S-phase is
usually more complicated. The S-phase detection and
phase picking, which we consider in this paper,
needs to be done against the background of the
P-phase coda. The S-phase commencement on the
seismogram is often emergent and buried in the
P-phase coda; though at very short distances, the
S-phase onset can be impulsive and have high ampli-
tude relative to the P-phase coda. Furthermore,
converted S-to-P or P-to-S phases at a sediment-
bedrock interface may be misinterpreted as the first
S-phase onset time [9]. For example, Sp precursor,
S-to-P conversion, appears on the seismogram
ahead of S by a time proportional to the depth of
the interface and the Vp/Vs ratio in the crust [10].
Hence, even manual S-phase picking is often uncer-
tain for many seismogram signals. Accordingly,
S-phase onset time will not be reported for many
seismograms, e.g., during 2008, the total number of
P (Pn and Pg) and S (Sg and Sn) phases reported
by the ISC bulletin were about 273000  and 118000
phases, respectively [11]. However, S-wave arrival

time is very important to have a robust and reliable
earthquake location. At least one S-phase reading is
required at a station within approximately 1.4 focal
depth's distance from the source to derive a focal
depth that is accurate to within approximately

5.1± km [12]. Moreover, determination of shear
wave velocity is a key parameter to calculate
Poisson's ratio that is important in petrological
aspects [13-14]. Therefore, we need to have S-phase
onset time in dataset in which seismic tomographic
studies are done. The problem we are dealing with
in this paper is to detect the S-phase automatically
and to pick its arrival time, once the P-phase arrival
time is already available with high precision via
manual processing or automatic procedure (e.g. [15]),
and the preliminary location of the seismic event is
also available. We need the event location to be
known, in order to discard false detection of other
secondary phases instead of the first arriving
S-phases. This task simply is done by comparing a
rough estimation of receiver-to-source distance,
having the S-P time, with which existed in the
catalogue.

Automatic S-phase picking algorithms usually
rely on inherent difference of P- and S-phase
characteristics as described thoroughly in [16-17].
The S-phase is always delayed as compared to the
P-phase arrival time at the station, and the amount of
the corresponding delay depends on the epicentral
distance and the earth velocity model. We have ben-
efitted from this property in our S-phase detection
method. Theoretically, first emerging P-phase
particle motion aligns in the direction of the pro-
pagation path, while S-phase oscillates in a plan
perpendicular to the wave propagation direction, called
the S-plane. Any S wave signal consists of SH and
SV components, which may or may not be well-
correlated at zero lag. Within the solid earth, the
particle motion of these components will be linearly
polarized and perpendicular to the ray direction.
Because of reflections at the earth surface, this
property can not be easily observed on the recorded
seismogram unless the wave arrives close to the
vertical direction. However, if the SV wave arrives
at the surface post-critically, then both the horizontal
and vertical components are shifted in phase [18],
then the registered signal is no longer linearly polar-
ized. Discriminating between P- and S-wave groups
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can be done using so called polarization analysis,
both in time and frequency domains, which tradi-
tionally known as the essential tool for identifying
the presence of S-phase on the earthquake record.
Traditional approaches to the polarization analysis
are very well known in seismology and have been
discussed in various papers (e.g. [6, 17, 18, 19, 20]).
For large epicentral distances, where P-phase
energy dominantly appears in the vertical component
and S-phase appears in the horizontal components,
the S-phase detector can be defined based on the
propagation of energy in the horizontal plane based
on polarization analysis. In this case, using STA/LTA
detection procedure, S-phase or other secondary
phases can be detected [21]. For example, Earle and
Shearer [5] have applied an STA/LTA detector on
the envelope function of the seismograms to derive
travel time curves using automatically picked phases.
Combination of the polarization analysis and the
wavelet transform has been proposed in many
studies (e.g. [6, 22, 23]). In [23], this approach has
been verified using regional seismograms recorded
more than 900 km far away epicenter. Autoregressive
(AR) modeling of the earthquake record has been
investigated for estimation of P- and S-phase onset
time, and online system of earthquake location [22,
24, 25]. It has been observed in [24] and [25] that
although for P-phase onset determination based on
the AR modeling, using single vertical component is
sufficient, for accurate estimation of S-phase, using
two or three components, seismic data is a better
choice. In this case, every component can be
processed separately and the earlier time can be
considered as the onset time. In addition, AR models
derived from every component can be analyzed
jointly to determine S-phase onset time [24].
Kuperchoch [26] used the AR forward prediction
of S-wave by applying an AR model to both hori-
zontal components. Afterward, comparing the
predicted waveforms with the incoming ones, a
prediction error is determined which provides a
CF, to which S-phase detection is done through an
iterative procedure.

In the current study, we aim to introduce a method
to determine S-phase onset time automatically for
local (less than 100 km) and near regional seismo-
grams (100-400 km). The method is based on the
eigenvalue analysis of the time domain 3D covari-

ance matrix and Akaike's Information Criteria (AIC)
[27]. However, a 2D covariance matrix based on
horizontal components is also applicable.  Motivation
towards this research has been growing the number
of operating seismic stations in Iranian Broadband
Network (BIN) and necessity of providing fast and
precise information of the earthquake parameters.
Implementing an automatic detection procedure on
BIN in combination of manual processing of data
may lead to fast processing and dissemination of the
earthquake data.

2. Autoregressive Modeling and AIC Criteria

Autoregressive (AR) modeling has been used in
many automatic phase picking procedures to obtain
accurate estimation of P- and S-phase onset time [22,
24, 25, 26, 28, 29]. A brief introduction to the AR
modeling and its rule in seismic phase picking is
presented in what follows.

Assume a segment of seismogram that includes
a seismic phase onset time whose precise time is
unknown; the rule of the AR modeling is to deter-
mine the precise phase onset time, in other words,
an optimum division point in this segment. This
process involves calculating the AR model of the
seismogram segment, xn , n = 1, ..., N where N is the
length of the segment, in two intervals; one, i = 1, is
selected before the start of the phase and consists of
seismic background noise only, and the other, i = 2, is
selected after phase arrival time, which includes
seismic background noise as well as seismic signal.
It is required that xn   includes a sufficiently long
segment before and after the real onset time to
make an effective AR model fit for both intervals
separately. It has been assumed that both intervals
can be modeled as stationary processes with
uncorrelated Gaussian noise. In both intervals, i = 1,
2, the data can be fitted to an autoregressive model
of the fixed order M, but independent coefficients,
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spectively. The AR coefficients in Eq. (1) are used to
model the data simultaneously in intervals  ],1[ KM +
and ].,1[ MNK −+  While 1+K  is the boundary
between segments (i.e. the phase arrival). The
approximate likelihood function L for this modeling
procedure is:
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The maximum value of the logarithmic likelihood
function for both models as a function of K, separat-
ing point of two intervals, is obtained as:
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where, C is a constant. By maximizing the joint
likelihood function Eq. (4) as a function of K, the
best feasible estimate of K is calculated. Accordingly,
in phase picking problems, Kx  is interpreted as the
optimal phase onset time.

Eq. (4) is the first term in Akaike's Information
Criteria, which is defined as:

AIC =
         -2 log (maximized likelihood function) + 2 M

The first term of Eq. (5) measures the misfit of
the AR model and the second term, implies the
unreliability of the fit [27]. In the phase picking
applications, the order of the AR model, M, consid-
ered as a fixed parameter. Therefore, the only
variable term of Eq. (5) is the first term. The above
described optimization method is referred as AR-
AIC. Ideally, AIC function will linearly decrease from
M + 1 to Kx  then increase from 1+Kx  to N-M.
Therefore, it results a “V ” shape function with the

(2)

(4)

(5)

minima at Kx , where Kx  is the onset time.
The AR coefficients in Eq. (1) are estimated

usually by Yule-Walker approach [30], Burge
algorithm [31] or the least squares approach. In this
paper, we have used a MATLAB function based on
the Burge algorithm to calculate AR coefficients. The
order of an AR model can be estimated by partial
autocorrelation function (e.g. [30]) or the application
of AIC [27]. If a small AR model order is used in the
process, the main statistical properties of the original
signal will be ignored; while a big model order causes
the modeling of the noise associated with data. Based
on [26], we assumed the order of AR model to be 4,
in this study.

Three different, but fairly similar, approaches have
been proposed for phase onset picking based on AR
modeling [29]. Figure (1), shows the three approaches
which are introduced briefly here. In first approach,
Figure (1a), the whole time interval is described by
two AR models. One model, F, is calculated in the
interval 1 to K - 1 and the other one, B, is calculated
from K to N.  K is the division point of two intervals,
which is variable and N is the length of the segment.
In the second approach, Figure (1b), the F model, in
forwards direction, is calculated on the arbitrary
interval 1 to l and the B model, in backwards direc-
tion, is considered on the interval N - l to N. Using F
and B model coefficients, the error prediction series
on the interval 1 + M to N - M and N - M to 1 + M, are
calculated, respectively. The parameter M is the
model order. After that, using the variance of the
prediction error, AIC function is calculated at each
point. In the third approach, Figure (1c), the AR model

Figure 1. Three approaches used in the AR-based onset
time estimation methods, F model refers to forwards
model and B model refers to the backwards [29].
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(F-model) is obtained once in the first part of the time
series. The prediction error series is obtained for the
other points. For different K from 1 + M to N - M, the
AIC function is calculated.

Normally, the AR model is applicable only for
stationary part of a signal. Accordingly, regarding
that the segment which contains the S-wave group is
not stationary; the third approach is taken in this
paper for S-phase picking.

One approach for S-phase detection based on the
AR modeling is using the sum of the AIC's of two or
three AR models obtained by fitting to each compo-
nent [22]. We have used this approach to make a
comparison between the results of the proposed
method and AR based automatic S-phase picker.

3. Automatic S-Phase Picker and Evaluation

The proposed S-phase picker is based on the time
domain 3D covariance matrix eigenvalue analysis and
the AIC function. The advantage of the proposed
method is that the CF and the detection rules, are not
complicated and do not require many predefined
parameters. Therefore, the algorithm can be imple-
mented easily. We emphasis on the idea of using
eigenvalue sequences to detect S-phases, as Magotra
[32] used to detect S-phase and other secondary
waves in an automatic algorithm of single station
location. Eigenvalues of covariance matrix give a
measure of the localized energy on the direction of
the three principal axes of the polarization ellipsoid.
In this work, we consider only the biggest eigenvalue
sequence, as it is more sensitive to the variation of
the seismic signal energy in the direction of wave
propagation. While the eigenvectors represent an
orthogonal base of the three-dimensional space and
form an ellipsoid that best fits to the data in least
squares sense [32]. If we assume that earth struc-
ture in the vicinity of the receiver is sufficiently
homogeneous that no phase shift is introduced by
local scattering effect, time domain covariance
matrix is calculated via the following equation [33]:
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where, E [ ] refers to the expected value and n, e and
z indicate the north-south, east-west and vertical
components. Every element of the covariance ma-
trix reflects the magnitude of the association between
two components of the seismogram. Therefore, the
corresponding eigenvalues somehow reflect the joint
behavior of all three components. For this reason,
using the eigenvalue sequence is advantageous over
the other energy measurements which regards the
total energy of the seismogram as (n 

2 + e 
2 + z 

2
 ) and

simply show the envelope of the seismograms.
Figure (2) shows an example of seismogram and
corresponding total energy (dark line) and eigenvalue
sequence (light line). As it is obvious in the lower
plot of this figure, eigenvalue sequences are less
sensitive to the small amplitude and less correlated
background of S waveform in comparison with the S
waveform.

The procedure we have proposed is applicable
through the following steps:

Step 1) Prefiltering: As a preprocessing of the data,
the high-pass Butterworth filter of order 2 is applied
on the 3-component seismograms to remove un-
wanted background noise below 2 Hz.

Step 2) Calculating the characteristic function:
The polarization analysis is done on the filtered seis-
mogram using the sliding time windows, which move
one sample to the right. In this study, a moving time
window of 30 samples (~1/2 second) is considered.
It is required that the selected time window be long
enough to include the lowest frequency content of
the signal. Using the biggest eigenvalue of the 3D
covariance matrices a sequence is obtained, which
serves as the CF, in which a picking algorithm is
applied in order to detect the arrival of S-phase wave-
form. As the P-phase onset time assumed to be
known, the CF is calculated within a time window,
beginning from the P-phase onset time and lasting to
the end on the earthquake signal coda, where the
S-phase expected to be detected.

Step 3) First estimation of S-phase onset: The CF
remains small for seismic noise or P-phase which
appears before the S-phase group, but increases
strongly as S-phase arrives and efficiently tracks the
variation of the energy in the 3-component seismo-
gram. The global maximum of the CF is mostly
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related to the S-phase waveform. For shallow events,
the global maximum of the CF may be related to the
surface waves. The S-phase onset determination on
the CF is done using an iterative scheme. The initial
estimation of the S-phase onset time is obtained by
applying an adaptively selected threshold value on
the CF. The first point before the global maxima of
the CF in which the value of the CF drops below the
threshold value, THR (= 0.15max (CF)), is regarded
as the first estimation of the S-phase arrival time.
The coefficient 0.15 is determined experimentally.
This value is selected regarding the values of the CF
in an interval between P-and S-wave group for sev-
eral signals. While the first estimation of S-phase onset
time, SInitial , is provided, the algorithm selects 12
seconds of CF around it and carries on towards the
final S-onset time picking. However, invalid picks
are discarded by checking the preliminary phase de-
tection and predicted S-phase arrival time using the
earth velocity model. Invalid early picks are usually
due to secondary P-phases (e.g. Pg), and late picks
belongs to the surface waves, which can easily be
discriminated from S-phases.

Step 4) Second estimation of S-phase: The AIC
function is applied on the selected time window of

Figure 2. An example of a seismogram (high pass filter, 2 Hz) and corresponding total energy (dark line) and biggest eigenvalue
sequence (light line). The total energy time series has been smoothed by averaging in 30 sample time windows. Moving
time window of 30 samples are also used in eigenvalue analysis. In the upper plot, both total energy and eigenvalue
sequence are normalized to the maximum of the Z component. Sampling interval is 0.02 s.

CF to highlight the boundary between S-phase and
its background. Accordingly, we obtained the second
estimation of S-phase onset time. The AIC function
originally used to calculate an optimal order for an
AR model, the criterion can be used to denote the
dividing point of two adjacent time series with
different underlying statistics. The AIC function can
be used for CFs, which should not be necessarily
defined using AR models [26, 34].
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where, N is the length of the CF within the time win-
dow. We used above equation to calculate AIC, for
every assumed K, division point, from the selected
time window of the CF around first estimation of the
S-phase. The S-phase onset time is assigned to the
global minimum of the AIC-function. The application
of above mentioned procedures are shown in follow-
ing examples.

Figure (3) shows 3-component seismogram of a
3.5 magnitude earthquake, which is recorded in the
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GHIR station in local distance (64 km), on 01.01.2005
at 01:31:31. The CF is shown at the top of the figure.
As it can be seen, the maximum of the CF, points to
the S-phase group. S-phase onset time, as the opera-
tor picked is shown in the figure by a dash line. In
this case, the first estimation of the S-phase onset
time is 3 samples after the manually picked onset
time. The selected time window which is needed for
further analysis is shown on the figure as well.
Figure (4) shows the AIC function (Left) as well as
the zoomed version of the analyzing window of CF
(Right). The global minimum of the AIC function

Figure 3. A 3-component seismogram (high pass filter, 2 Hz) of 3.5 magnitude earthquake, recorded in the GHIR station in local
distance (64 Km) (case no. 1, Table 1). The horizontal axis shows the number of samples. Sampling interval is 0.02 s.
The CF (top) shows abrupt increase in the S-phase waveform. The maximum of the CF belongs to the S-phase wave-
form. The dash line implies the S-phase onset as determined by the operator. The rectangular on the plot shows the
selected window for further analysis. Sampling interval is 0.02 s.

Figure 4. The AIC function (Left), analyzing window of CF (Right). The global minimum of the AIC function refers to the second
estimation of the S-phase onset time. Sampling interval is 0.02 s.

refers to the second estimation of the S-phase onset
time in the proposed procedure. In this case, the
difference (toperator- talgorithm ) of automatically deter-
mined S-phase onset and the manual one is 14
samples.

In Figure (5), another example for showing the
performance of the proposed algorithm on a local seis-
mogram is shown. The 3-component seismogram
belongs to a 3.2 magnitude event recorded in BNDS
station on 04.01.2005, at 16:58:59. The epicentral
distance is 166 km. In the CF time series (left), the
global maximum is situated in the S-phase waveform.
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The CF increases while the S-phase appears on the
related seismogram. Figure (6) illustrates the auto-
matic second estimation. To do this, the AIC function
(Left) and the CF around the first estimation of S-
phase onset (Right) are shown. The global minimum
of the AIC indicates the second estimation of S-phase
onset. In this case, the differences of the first esti-
mation and second estimation regarding the manual
picks are -49.5 and 17.5 samples, respectively.

Figure (7) illustrates another example for a near
regional event. The seismogram is recorded by CHTH
station, from an earthquake with magnitude of 3.2 in
epicentral distance of 210 km, which occurred on
07.05.2006, at 00:48:23.  A zoomed version of the CF
and AIC function is shown in Figure (8). Figure (9)

depicts a stated window around S-phase arrival time
for seismogram shown in Figure (7). The manual
detection, theoretical arrival time, first and second
estimation of S-phase are shown in this figure. In this
case, the differences of the first and second estima-
tion regarding the manual picks are -90.5 and -46.5
samples, respectively.

Figure (7) illustrates another example for a near
regional event. The seismogram is recorded by
CHTH station, from an earthquake with magnitude
of 3.2 in epicentral distance of 210 km, which oc-
curred on 07.05.2006, at 00:48:23.  A zoomed version
of the CF and AIC function is shown in Figure (8).
Figure (9) depicts a stated window around S-phase
arrival time for seismogram shown in Figure (7).

Figure 5. The 3-component seismogram (high pass filter, 2 Hz) of a 3.2 magnitude event, recorded in BNDS station in 2005.01.04,
at 16:58:59. The epicentral distance is 166 km (case no. 6, Table (1)). Sampling interval is 0.02 s. In the AIC plot (top),
the maximum is situated in S-phase group waveform. The S-phase onset as the operator picked shown by dash line.
The dotted line shows the first automatic estimation. The rectangular indicated to the selected window for next step.

Figure 6. The AIC function (Left) and the CF around the first estimation of S-phase onset (Right) are illustrated. The global mini-
mum of AIC, indicates the second estimation of S-phase onset.
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Figure 7. Example of a near regional event (High pass filter, 2 Hz). The seismogram is recorded by CHTH station, from an earthquake
with magnitude of 3.2 in epicentral distance of 210 km (case no. 185, Table 1). Sampling interval is 0.02 s. The S-phase
onset as the operator picked shown by dash line. The dotted line shows the first automatic estimation. The rectangular
indicated to the selected window for next step.

Figure 8. The AIC function (Left) and the CF around the first estimation of S-phase onset (Right) are illustrated. The global minimum
of the AIC, indicates the second estimation of the S-phase onset time.

Figure 9. A zoomed window around S-phase arrival time for seismogram shown in Figure (7). The light dash line (no. 1) indicates
the manual detection (1758.5), the solid line (no. 2) indicates the second estimation of S-phase (1808), the dark dash line
(no. 3) shows the theoretical S-arrival time (1812), and the dotted line (no. 4) shows the first estimation of S-phase (1849)
by the automatic procedure.
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The manual detection, theoretical arrival time, first
and second estimation of S-phase are shown in this
figure. In this case, the differences of the first and
second estimation regarding the manual picks are
-90.5 and -46.5 samples, respectively.

We have examined the performance of the
proposed method, by using a database including
185 seismograms selected from BIN data bank. The
seismograms are recorded in different broadband
stations with 50 samples per second, and belong to
the earthquakes most of which have a magnitude
range from 2.8 to 3.8 and epicentral distance of about
50 to 300 kilometers. The locations of events and

Figure 11. Magnitude of events versus receiver to source distance.

Figure 10. The location map of seismic events (circles) and stations (triangles).

station are shown in Figure (10) and event’s magni-
tude versus receiver to source distance is depicted
in Figure (11). The proposed algorithm has been
applied on this data set, and S-phase onset times are
picked automatically. In order to have insight to
accuracy of automatically picked S-phase onset time,
a comparison has been done between the automatic
picks and manual picks, which are already available
for seismograms. We also applied the algorithm on
horizontal components, to test whether the results are
stable in this case. In addition, we want to know
whether using 3-component is essential or not. The
results are summarized in Table (1). The second
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Table 1. Information of database and results of S-phase onset picking.



JSEE / Vol. 14, No. 3, 2012176

Nasim Karamzadeh, Gholam Javan-Doloei, Peter Voss, and Ali M. Reza

Table 1. Continue...
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Table 1. Continue...

column of the table shows the epicentral distance of
every event while the third column includes its local
magnitude. The signal to noise ratio (SNR) of P-phase
waveform is shown in fourth column. The columns 5
to 7 show the S-phase onset sample as the operator
is picked (S-op), the first estimation of S-phase
(SInitial ) and the second estimation of S-phase onset
time by the proposed algorithm (S-AIC-3), respec-
tively. The eighth column shows the S-phase onset
time as determined using horizontal components (S-
AIC-2).

Time difference between the manual S-phase
onset time and automatically detected ones are
shown in the Figure (12), for both first and second
estimation of S-phase onset obtained from proposed

algorithm.
In order to show the advantage of using AIC

function using presented CF over the AR-AIC
method and to see how the proposed method
performs in comparison with the AR-AIC method,
we also examined the database using AR-AIC on
3-component as well as 2-component seismogram.
The analysis is done in the selected time window
around the first estimation of the S-phase. As an
example, the AR-AIC functions for seismogram
previously shown on Figure (3) are illustrated in
Figure (13). Results obtained for our database are
shown in ninth column of Table (1) for AR-AIC
method using 3-component seismogram, see Figure
(14), and in tenth column for AR-AIC method by
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Figure 12. Time differences between manually and automatically detected S-phase for first (stars) and second (open diamonds)
estimations for the receiver to source distances of the events.

Figure 13. The AIC function obtained for the seismogram shown in the Figure (3) by means of 3-component, global minimum refers
to the S-phase onset.

Figure 14. Time differences between manually and automatically detected S-phase for AR-AIC3 (stars) and S-AIC3 (open
diamonds).

using just horizontal components.
To have a convenient comparison of the results

obtained from different algorithms, the schematic
pie diagrams are prepared as Figure (15). As it can
be seen, the overall results obtained from second
estimation of the proposed method are better than

the other methods, even using 2-component seismo-
gram. However, the best results are achieved using
3-componet seismogram. The results obtained from
the AR-AIC method for 3-component seismograms
are the same as 2-component seismograms with a
few differences of a 1-3 % in every sector.
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4. Conclusions

In this paper, an automatic method for S-phase
picking in local and near regional distances is pre-
sented. The advantage of this method is using a CF
defined as eigenvalues of a 3D covariance matrix.
The CF simply tracks the variation of the localized
energy of the seismogram. In every window, the value
of the CF is related somehow on the total energy of
the seismogram. However, this is not a true measure
of the seismogram energy. This method is also appli-
cable for 2D covariance matrix. As shown in Table
(1), the mean value and standard deviation of the
automatic S-phase onset deviation from manual ones
are -8 and 18 samples, respectively, for second esti-
mation of S-phase onset picking using 3-component
analysis. The automatic S-phase onset times deter-
mined by the proposed method are compared with
those obtained by means of AR-AIC algorithm on
3-component and 2-component seismograms. The
overall comparison shows that the proposed method
produces more accurate picks which looks like the
manual picking. We have investigated the deviations
in results, and found that, in some cases, the devia-
tion is due to the high-pass filter attribute. Therefore,
if filtering is done based on epicentral distance range,
then results may show least deviations.

Figure 15. Pie diagrams for comparing results of different algorithms on our database. The percentages of absolute number of
sample difference of automatically picked S-phase with manual ones are shown for each algorithm. (a) Results of first
estimation, SInitial. (b) Results of the second estimation from the proposed method. (c) Results of second estimation of
the proposed method by using horizontal components. (d) Results of AR-AIC using 3-Component, (e) Results of AR-AIC
using horizontal component.

It should be noted that the deviation from manual
picks do not always imply the automatic false picks.
Due to the complexity of the S-phase waveform, even
manual reading may not always be reliable and
robust. In some cases, they are picked at the early
beginning point of S-phase waveform while for some
cases they are picked more lately. These points
indicate unsustainable approach of manual S-phase
picking. However, the automatic method works
robustly and constantly on the same kind of seismo-
grams.
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