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ABSTRACT: An approximate method is proposed to estimate the
seismic response of nonlinear nonstructural components attached to
nonlinear building structures. The method is based on a previously
developed procedure for the analysis of linear secondary systems
mounted on a linear primary structure, the introduction of simplifying
assumptions similar to those made in the derivation of the equivalent
lateral force procedure for the seismic analysis of conventional
buildings, and the use of strength reduction factors to account for the
nonlinear behaviour of nonstructural component and supporting
structure. Its application to any given nonstructural component only
requires knowing the geometric characteristics, weights, and target
ductilities of the nonstructural component and the structure to which
it is connected, in addition to the fundamental natural period of
the structure and the elastic response spectrum specified for the
design of the structure. Presented also are a numerical example
that illustrates the application of the method and the results of a
comparative numerical study that is carried out to assess the method’s
adequacy. Based on its simplicity and rationality and the results from
the comparative study, it is concluded that the proposed method
represents a simple but effective procedure for the seismic design of
nonstructural components in buildings.
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1. Introduction

Many methods have been proposed during the last
three decades for the seismic analysis of nonstructural
components attached to building structures. These
methods have been developed in recognition of the
vulnerability of nonstructural components to the
effects of earthquakes and the importance of their
survivability from a safety and an economic point of
view. For the most part, however, they have been
limited to linear nonstructural components mounted
on linear structures [1] .  Most of the available
methods, therefore, cannot be used directly to
estimate the maximum response of a nonstructural
component under an extreme seismic event since,
by design, its supporting structure is supposed to
incur into its nonlinear range of behaviour in such a

case. They cannot take into account, either, the
often advantageous fact that many nonstructural
components or their anchors are capable of resisting
large inelastic deformations. Furthermore, the use of
linear methods in the analysis of nonstructural
components may lead to unrealistic designs. As
pointed out by Kawakatsu, et al [2], Viti, et al [3],
Lin and Mahin [4], Aziz and Ghobarah [5] , Segal
and Hall [6], Toro, et al [7], Sewell, et al [8], Igusa
[9], Schroeder and Bachman [10], Singh, et al [11],
Adam and Fotiu [12] and Adam [13], the nonlinear
behaviour of a structure and a nonstructural
component may significantly affect the response of
the nonstructural component. The effect is mainly
in the form of a reduction over the corresponding
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linear response, but also in the form of an amplifica-
tion in those cases for which a linear nonstructural
component is tuned to a higher mode of the structure,
the natural frequency of the structure in this mode is
an odd integer multiple of its fundamental natural
frequency, and the seismic input is narrow-banded
and centered around the fundamental frequency of
the structure [8, 11].

It is the purpose of this paper to introduce an
approximate but rational method for the seismic
analysis of nonstructural components that accounts
for their nonlinear behaviour and that of their
supporting structures. Also presented here is a
numerical example that illustrates the application of
the method and the results of a numerical comparative
study that has been performed to assess the method’s
adequacy.

2. Derivation

The proposed method is based on the integration of
a simplified procedure for the analysis of linear
nonstructural components attached to linear structures
with an approach that accounts in an approximate
but simple way the nonlinearity of the structure and
that of the nonstructural component itself. The
simplified procedure for linear systems, in turn, is
based on a previously developed response spectrum
method for the analysis of linear secondary systems
mounted on a linear primary structure, and the
introduction of simplifying assumptions similar to
those made in the derivation of the equivalent
lateral force procedure for the seismic analysis of
conventional buildings. The aforementioned
response spectrum method is described in detail
elsewhere [14]. It is derived by applying the
conventional response spectrum technique to the
combined system that a light secondary system
forms with the structure to which it is attached, and
by formulating equations that give the maximum
response of such a combined system in terms of
ordinates from a ground response spectrum. By
considering small damping and mass ratios and
neglecting second-order terms, these equations are
then simplified to derive approximate relationships
that explicitly give the maximum response of the
secondary system. In the application of the response
spectrum technique, however, the modal properties
of the combined system are expressed first in
terms of the independent dynamic properties of the
two subsystems through a modal synthesis [15]. The
derived expressions are therefore written in terms of

the mode shapes, natural frequencies and damping
ratios of the structure and the secondary system
when they are independently considered. Also, the
complex mode shapes and natural frequencies of
the combined system are used to account for the fact
that the combined system under consideration is
nonclassically damped.

In the application of the response spectrum
method in question, one determines first the Np

unit-participation-factor mode shapes {Φ}i  , circular
natural frequencies ωpi  , generalized masses M*

i
,

and modal damping ratios ξpi of the structure when
independently considered, and the Ns unit-participa-
tion-factor mode shapes {φ}j , circular natural
frequencies ωsj, generalized masses m*

j, and modal
damping ratios ξ sj of the nonstructural component
system when considered fixed at its points of
attachment to the structure. Here, Np denotes the
number of degrees of freedom of the independent
primary system and Ns the number of degrees of
freedom of the secondary system when, once again,
it is considered fixed at its points of attachment to the
structure. A mode shape with a unit participation
factor is attained by simply multiplying the same
mode shape when normalized in any arbitrary way
by the participation factor that results from consider-
ing the arbitrarily normalized mode shape.

When the secondary system is attached to the
structure at two locations, one calculates, additional-
ly, the displacements of the nonstructural component
when one of its points of attachment is considered
free and subjected to a unit force in the direction of
the excitation, while the other point of attachment
is held fixed. On the basis of these calculated
displacements, one also defines a vector {φ} c,  a
displacement fcc, and a vector {d f}. {φ}

c
 contains

the aforementioned displacements, f cc is the
displacement corresponding to the point subjected
to the unit force, and {d f} contains the corresponding
distortions in the elements of the system, after they
are normalized with respect to the displacement
fcc. Furthermore, one calculates for each of the
component modes the values of β j and Φ0( i, j) ,
which are parameters defined by
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where R1j and R2j are the reactions at the ends of
the independent secondary system when it vibrates in
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its j th mode shape; and Φm( i) and Φn (i) are the
values in the mode shape {Φ}i of the structure
corresponding to the degrees of freedom to which
the secondary system is connected.

In the application of the method, one also
considers that the combined primary-secondary
system is a system with Np + Ns  degrees of freedom,
that the natural frequencies of this combined system
are approximately equal to those of its independent
components, and that its modes of vibration may be
classified into three types: (a) a resonant mode when
the natural frequency in this mode is a natural
frequency that is common to the two independent
components, (b) a nonresonant mode with a primary
system frequency when its natural frequency
corresponds to a frequency of the independent
primary system, and (c) a nonresonant mode with a
secondary system frequency when its natural fre-
quency corresponds to a natural frequency of the
independent secondary system. For each pair of
resonant modes and each nonresonant mode of the
combined primary-secondary system, one thereafter
calculates a vector of maximum secondary-system
modal distortions and combines these vectors on the
basis of the square root of the sum of the squares to
estimate the corresponding maximum distortions. The
formulas employed to calculate such vectors of
maximum modal distortions, denoted here as {Xs}r,
are as follows:

Corresponding to a pair of resonant modes,
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and for any circular natural frequency ωr and
damping ratio ξ

r

s
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in which s represents ground motion duration.
For a nonresonant mode with primary system

frequency,
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and “sgn” is a function that reads as “the sign of.”
Finally, for a nonresonant mode with a secondary

system frequency,
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In all the equations above, {dφ}j represents a
vector of modal distortions whose elements are the
distortions in the secondary system when its displace-
ment configuration corresponds to that of {φ}j, its
jth  mode shape when independently considered;
subscripts I and J respectively identify the parameters
of the independent primary and secondary systems
in the modes whose natural frequencies are the
closest or coincide with the natural frequency of the
combined system mode under consideration; and
SD(ω

k
, ξ

k
) signifies the ordinate corresponding to a

natural frequency ω
k
 and damping ratio ξ

k
 in the

displacement response spectrum of the specified
earthquake ground motion.

On the basis of the formulas presented above
and by introducing approximations similar to those
introduced in the derivation of the equivalent lateral
force procedure for the analysis of building structures,
a less accurate but much simpler procedure may be
developed as follows:

Assume, first, that the response of the combined
system is approximately given by the response in
the two modes that correspond to the fundamental
modes of the independent primary and secondary
components, and that the natural frequencies in these
two modes are the same; that is, assume that these
two modes are in resonance. Assume, furthermore,
that for the purpose of computing the spectral
displacements SD(ωm, ξm) and SD(ωn, ξn ), ωm =
ωn =  ωo,  and ξm  =  ξn  =  ξo .  Introducing these
assumptions and approximations into either Eq.
(2)  or Eq.  (3), the maximum distortions in the
elements of the secondary system may then be
approximated as
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0
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0
(1,1) is given by Eq.  (1), D is defined

by Eq.  (7), SD(ω
o
, ξ

o
) is the ordinate in a specified

displacement response spectrum corresponding to a
natural frequency ω

o
 and a damping ratio ξ

o
, and α

11

is given by the left-hand side expression in Eq.  (5)
when |),(||| 0 JIsJpI      JI γ≥ξ−ξ Φ and m = n =1, and by

the right-hand side expression in this same equation
when |),(||| 0 JIsJpI        Ji γ≤ξ−ξ Φ  and I = J = 1.

Eq.  (18) offers a simple expression to compute
the distortions in the elements of the secondary
system in terms of the modal distortions in its first
mode and a spectral displacement. For design
purposes, however, it is desirable to define the
response of the secondary system in terms of forces
and ordinates from an acceleration response spectrum,
as it is traditionally done for the seismic design of
the structure. To accomplish this, then, one may note
that the shear forces acting on the elements of the
secondary system are equal to the distortions in the
system times their respective stiffness coefficients,
and that the lateral force exerted on any of its masses
is equal to the sum of the shear forces acting on
the elements connected to that particular mass.
Accordingly, Eq.  (18) may be alternatively written
as
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where {Fp} is a vector that contains the lateral forces
acting on the masses of the secondary system and [k]
denotes the stiffness matrix of this secondary system.
However, by virtue of the relationship between the
spectral displacement SD(ωo , ξo) and the spectral
acceleration SA(ωo, ξo) and the fact that [k]{φ}1 =
ωo

2 [m]{φ}1, where [m] denotes the mass matrix of
the secondary system, Eq. (19) may also be expressed
as
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Consequently, the lateral seismic force in the jth

mass of the secondary system may be considered
given by

g
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where φj1 denotes the value corresponding to the jth

mass of the secondary system in its fundamental (unit
participation factor) mode shape, w

pj
 represents the

weight of this mass, SA(ωo, ξo ) is the ordinate
corresponding to ωo and ξo in a given ground
acceleration response spectrum, g is the acceleration
of gravity, and C

p
 is an amplification factor given by

 D =C   p
0

11)1(2
1 Φ

α−                                        (22)

To derive a simplified expression for the parameter
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Φ0 that appears in Eq. (22), it may be noted, first,
that according to Eq .  (1): (1)  βj always varies,
depending on the relative value of the reactions
R1j and R2j, between 0 and 1; (2) βj represents a
weighing parameter that makes Φ0 vary between
the values for Φm  and Φn, the modal amplitudes
corresponding to the two points of the structure to
which the secondary system is attached; and (3) βj

is always equal to 0.5 for symmetric secondary
systems. Thus, it is reasonable to adopt the average
value of 0.5 for this parameter. As a result, Φ0 may be
considered equal to the average of the structural
modal amplitudes Φm and Φn. That is,
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Second, note that by definition Φ0 denotes an
amplitude in a mode shape of the structure when
this mode shape has been normalized in a way to
attain a unit participation factor.  As such, it may be
expressed as Φ0 = Γ1Φ '0, where Φ '0 represents the
same amplitude as Φ0 does but when the mode
shape {Φ}1 is normalized in any arbitrary way, and
Γ1 is the participation factor corresponding to this
mode shape. Also note that from the definition of
participation factor and the concept of effective
weight [16] which for the fundamental mode of the
structure may be assumed conservatively equal to
its total weight, it is possible to approximate this
participation factor as

)1('
1

1

ii

N

=i
W

W
 = 

p
Φ

Γ

∑                                                (24)

where W is the total weight of the structure; Wi is the
weight concentrated at its i th floor; Φ  

'
i(1) is the

amplitude in the fundamental mode shape of the
structure corresponding to the ith floor when this
mode shape is normalized in any arbitrary way; and
N

p
 is the total number of floors in the structure. If it is

assumed now that the fundamental mode shape of the
structure varies linearly with height, such that
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Np (1) denotes the modal amplitude corre-

sponding to the top of the structure in such a mode
shape, and h i and hNp are the elevations above
ground of its ith and top floors, respectively, then,
by virtue of Eqs .  (23),  (24) and (25), Φ0 may be
approximated as
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where hav represents the average of the elevations
above ground of the points of the structure to which
the secondary system is attached and, as before, Wi

and hi respectively denote the weight and elevation
of the ith floor of the structure.

To derive now a simplified expression for the
parameter D in Eq. (22) and defined by Eq . (7), one
can resort first to the common approximation of
substituting the generalized mass of a structure in
its fundamental mode by its total mass. In this way,
the mass ratio γ11, see Eq . (8), may be considered
approximately equal to the ratio between the total
weight of the secondary system,  w

p
, and the total

weight of the structure, W;  that is, γ11 = wp/W.
Second, one can set the damping ratio of the
structure in its fundamental mode equal to 5 per cent,
as it has been traditionally assumed in the seismic
design of buildings. By the same token, it is
reasonable and conservative to assume the damping
ratio for the secondary system equal to zero, as
damping in nonstructural components is usually
negligibly small. As a result, D may be considered
approximately equal to

| - W
w|   = D p

0 0.00252Φ                                     (27)

As in the case of the structure, a simplified
expression for the modal amplitude φ j  1  may be
obtained by assuming that the fundamental mode
shape of the secondary system varies linearly along
its length. In the case of the secondary system,
however, it is necessary to make a distinction between
those systems with a single point of attachment and
those with two. For a secondary system with a single
point of attachment, it may be assumed that its
fundamental mode shape varies linearly from zero at
its fixed end to a maximum value at the level of its
top mass, see Figure (1a). On the other hand, for a
secondary system with two points of attachment, it
may be assumed that its fundamental mode varies
linearly from a zero at the level of its fixed ends to a
maximum value at the point in which it attains its
maximum displacement when each of its masses is
subjected to a force equal to its own weight, see
Figure (1b). In such a way, and in similarity with Eq.
(26), the modal amplitude φj  1 may be approximated as
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Figure 1. Assumed mode shapes for components with (a) one
and (b) two points of attachment.
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where, as before, wp denotes the total weight of the
secondary system, and lj represents the distance to
the j th mass of the secondary system measured
from its lower end if this mass is located below the
secondary system’s point of maximum deflection, or
from its upper end if it is located above, see Figure
(1). In the case of a mass located directly on the
point of maximum deflection, measure lj from the
support that is farther away from that mass.

Finally, simplified expressions for the factor α11

and the amplification factor C
p
 may be obtained as

follows. Consider first the expression in the left-hand
side of Eq. (5), which defines α11 when ≥ξ−ξ || 11     sp

.|)1,1(| 110 γ       Φ  According to Eqs. (9) and (10), one
has that
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Upon substitution into Eq .  (22), one obtains,
thus, the following approximate expression for the
amplification factor Cp:
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where, in view of Eq. (10) and after considering the
approximations introduced above,
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in which T denotes the fundamental natural period of
the structure and, as before, s denotes strong motion
duration.  Or, if a strong motion duration of 25
seconds is conservatively assumed, ξ  

'
o may be

considered alternatively equal to
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and thus, explicitly,
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It may be seen that this expression is independent
of the mass ratio wp/W and thus, for secondary
systems with a mass ratio of less than 0.0025/Φo

2,
the amplification factor Cp does not vary, at least
within the order attained with the introduced approxi-
mations, with such ratio.

Consider now the expression in the right-hand
side of Eq.  (5), which defines the factor α11 when

.|)1,1(||| 11011 γ≤ξ−ξ      sp Φ  By substitution of that
expression into Eq. (22), one obtains

])2([2])2(1[2

1
2

)
)2(1

1(2
1

2'2

0

2
'

0

0

2

             

  

  

 

  

o
o

o

o

p

DD
 + 

 DD
 + 

1
 =C  

ξ+
=

ξ′
ξ

=

ξ′

−

ΦΦ

Φ

                (36)

which, after substituting the approximations for D
and ξ 
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0 defined by Eqs. (27) and (34), becomes
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Since this formula is only valid for those cases in
which |,)1,1(||| 11011 γ≤ξ−ξ        sp Φ it may be noted that an
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upper limit to the value of Cp is obtained when
w

p
/W = 0.0025/Φ

0
2 and that this upper limit is equal to
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It may be noted, too, that for mass ratios of less
than 0.0025/Φ

0
2, the amplification factor Cp is given

by Eq. (35) and that in this case, as noted previously,
Cp does not vary with the mass ratio wp /W. For
simplicity, therefore, it may be conservatively assumed
that Cp in this latter case is given by the upper limit
defined by Eq .  (38). This way, the amplification
factor Cp  may be defined, independently of the
relationship between |ξp1- ξs1| and ,|| 110    γΦ  by the
following single expression:
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The derivation of the formulas established above is
based on the assumption that the fundamental natural
period of the secondary system is in resonance with
the fundamental natural period of the structure; i.e.,
that the values of these two natural periods are equal
or are very close to one another. Although this as-
sumption offers the advantage of not having to know
the natural periods of the secondary system to carry
out its seismic design, it may be nonetheless overly
conservative for those cases in which the two natural
periods in question are not close to one another.  As a
means to reduce the conservatism involved in those
cases for which the fundamental natural period of the
secondary system is known, Cp may be substituted
by a modified amplification factor Cm equal to the
amplification factor that corresponds to fundamental
mode of the secondary system, when this mode is a
nonresonant one. That is, the amplification factor
given by Eq. (16), which, according to Eq. (17), and
by observing that B

0
(i) ≈ 0 for all i ≠ 1 and δiJ ≈ 0 for

all i if ωpi and ωs1 are not too close to one another,
may be taken approximately equal to
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of, for simplicity, just equal to
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In consequence, the  modified amplification factor
Cm may be considered given by
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where, as before, Φ0 is given by Eq. (26), and Tp and
T respectively denote the fundamental natural
period of the secondary system and the fundamental
natural period of the structure.

Note that this modified amplification factor
accurately reflects the fact that Cm = Φ0 when Tp = 0
(i.e., for rigid secondary systems) and Cm = 0 for Tp =
∞ (i.e., for extremely flexible secondary systems).

The approach followed to account for the
nonlinearity of the structure and the secondary
system is similar to the approach used in current
design practice to consider the nonlinear behaviour of
building structures. That is, the nonlinear behaviour
of the structure and the secondary system is taken
into account by reducing by a strength reduction
factor the lateral strength that is required when the
structural elements of the two sub-systems are kept
into their linear range of behaviour at all times. In the
case of a secondary system, however, such a
strength reduction factor is considered equal to the
product of two other reduction factors. One of these
reduction factors accounts for the nonlinear
behaviour of the structure and the fact that the
motion at the supports of the secondary system is
affected by this nonlinear behaviour. The other
accounts for the nonlinearity of the secondary
system itself and the fact that it is possible to reduce
the lateral strengths of its structural elements when
these elements are capable of resisting inelastic
deformations. The first factor is selected on the
basis of the capacity of the components of the
structure to resist inelastic deformations, while the
second is chosen on the basis of the capacity of
the elements of the secondary system to withstand
inelastic deformations. In essence, this approach is
equivalent to consider one subsystem at the time,
independent of each other. It is adopted after
observing from the results of numerical simulations
that the deformation demands on the elements of a
secondary system are reduced when the supporting
structure is allowed to incur into its nonlinear range
of behaviour, and reduced again when the secondary
system itself is also allowed to go into its nonlinear
range of behaviour. A reduction in response is
considered because in the method being derived it is
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assumed that the fundamental natural frequency of the
secondary system is tuned to the fundamental
natural frequency of the structure, and because it
has been observed that in such a case the nonlinearity
of the structure always leads to a reduction in the
response of the secondary system [8, 11].

As in the case of building structures, it is also
assumed that the aforementioned strength reduction
factors are approximately equal to the average
values that have been obtained for single-degree-of-
freedom systems. This assumption is justified on the
grounds that for the purpose of accounting for
nonlinear effects the structure and the nonstructural
component are being considered as independent
systems and that the reduction factors for single-
degree-of-freedom systems are approximately valid
for multi-degree-of-freedom systems that have
relatively uniform properties and vibrate predomi-
nantly in their fundamental modes. In particular, it is
assumed that the strength reduction factors in
question are those suggested by Newmark and Hall
[17], or when more refined values are warranted,
those proposed more recently by Miranda [18]. The
strength reduction factors proposed by Newmark
and Hall are given by
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in which µ is a predetermined target ductility ratio
and T denotes the initial fundamental natural period
of the system in seconds. In terms of these same
parameters and given site soil conditions, the strength
reduction factors proposed by Miranda are of the
form
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for alluvium sites,
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(43)

where Tg is the predominant period of the ground
motion expected at the site under consideration,
defined as the period that corresponds to the peak
ordinate in the ground motion’s 5% damping linear
velocity response spectra.

In the application of the strength reduction
factors presented above, it is important to keep in
mind that they represent average values obtained
from a statistical analysis with a large number of
ground motions and there is thus an inherent
dispersion associated with them. As such, they are
useful to estimate on the average sense the lateral
strength that is required to keep the inelastic deforma-
tions in the elements of a nonstructural component
within specified limits when subjected to the
earthquake ground motions expected at a given site,
but not to predict the level of the inelastic
deformations generated in them by a single ground
motion.

3. Proposed Method

The proposed procedure involves thus the calculation
of the maximum lateral forces that may be generated
by a specified earthquake ground motion on the
masses of a nonstructural component attached to a
building structure. These forces are determined
according to

V 
lw

l w = F p

jpj

n

j=1

jpj
pj

∑                                               (48)

where Fpj denotes the force acting on the j 
th mass of

the nonstructural component; wpj is the weight of this
j 

th mass; and l j is the distance to the same mass
measured in the case of a single attachment point
from the attachment point, see Figure (1a). In the
case of a nonstructural component with two
attachment points, lj is measured from its lower end
if the mass is located below the point at which the
component attains its maximum deflection when
each mass is subjected to a lateral force equal to its
own weight, and from its upper end otherwise, see
Figure (1b). In the case of a mass located directly
at such point of maximum deflection, lj is measured
from the attachment point that is the farthest away
from that mass. In addition, n represents the total
number of masses in the nonstructural component
and Vp is defined as
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C= V a p
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p
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in which Sa is the ordinate corresponding to the
fundamental natural period and damping ratio of the
structure in the acceleration response spectrum
specified for the design of the structure, expressed as
a fraction of the acceleration of gravity. However,
when the fundamental natural period of the
component is known, Sa represents the average of
the spectral ordinates corresponding to the fundamen-
tal natural periods and damping ratios of the structure
and the nonstructural component. Additionally, R
and Rp are strength reduction factors that account for
the nonlinear behaviour of the supporting structure
and the nonstructural component, respectively,
computed using either Eq. (43) or Eqs. (44) through
(47). R is obtained based on the target ductility ratio
for the structure and Rp based on the target ductility
ratio for the nonstructural component. Finally, wp

denotes the total weight of the nonstructural
component, and Cp is a component amplification
factor calculated according to
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where, once again, wp denotes the total weight of the
nonstructural component, W is the total weight of the
building, T is the fundamental natural period of the
structure, and
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in which Wi and h i respectively denote the weight
and elevation above ground of the building’s it h

floor, hav is the average of the elevations above
ground of the points of the building to which the
nonstructural component is connected, and N
denotes the number of floors in the building. For
those cases in which the fundamental natural
period of the nonstructural component is known,
the amplification factor Cp  may be alternatively
considered equal to a modified amplification factor
Cm given by
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where Tp 
represents the fundamental natural period

of the nonstructural component and, as before, T

denotes the fundamental natural period of the
structure.

The method is intended to be valid for systems
and ground motions that do not deviate significantly
from the major assumptions made in its derivation.
As described in the previous section, these
assumptions are:
1. The response of the combined structural-

nonstructural system is approximately given by
the response in the two modes of the system
that correspond to the fundamental natural
periods of the two independent subsystems.

2. The fundamental natural period of the
nonstructural element coincides with the
fundamental natural period of the structure;
that is, the fundamental mode of the nonstructural
element is in resonance with the fundamental
mode of the structure.

3. The fundamental mode shape of the structure
varies linearly from zero at its base to a
maximum value at its top.

4. The fundamental mode of the nonstructural
element varies linearly along its height. In the
case of a single point of attachment, it varies
from zero at its point where it is connected to
the structure to a maximum value at its other
end. In the case of two points of attachment, it
varies from zero at these two attachment
points to a maximum value at the point where it
attains its maximum displacement when each of
its masses is subjected to a lateral force equal to
its own weight, see Figure (1).

5. The generalized masses in the fundamental
modes of the structure and the nonstructural
element are equal to their respective total
masses.

6. The damping ratios in the fundamental modes of
the structure and the nonstructural element are
equal to 5 and 0 per cent, respectively.

7. The strong part of the ground motions exciting
the base of the structure exhibit a duration of 25
seconds.

4. Illustrative Example

To illustrate its use, the proposed method is
employed to determine the design lateral forces for
the three-mass nonstructural component shown in
Figure (2), when the component is rigidly connected
to the fourth and sixth stories of the six-story
building shown in this same figure. The building is
structured with ordinary steel moment-resisting
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frames and has a fundamental natural period of 0.6
seconds.  A target ductility of 4.0 is considered in
its design.  Its weight per floor is 2,200kN and its
total weight is thus equal to 13,200kN.  The
nonstructural component is an ordinary architectural
fixture which may be modelled as a three-degree-of-
freedom shear beam with four equal segments, each
with a length of 1.65 meters. Each of its three masses
weighs 4.4kN, and hence its total weight is 13.2kN;
that is, 0.1% of the total weight of the building.
Its fundamental period is estimated to be 0.5 seconds
when its two ends are assumed fixed. A target
ductility factor of 2.0 is considered appropriate for
its seismic design. The earthquake input to the
building is defined by the design spectrum shown in
Figure (3).

Figure 2. Building and nonstructural component considered in
illustrative example.

Figure 3. Design spectrum specified for building in illustrative
example.
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Similarly, after substituting into Eq. (50) the given
total weights of the structure and the nonstructural
component and Φ0 = 1.43, one obtains
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which exceeds the limit of )5.01/(200 0      T+Φ =15.6
and thus Cp will be considered equal to 15.6. In this
case, however, the fundamental natural period of the
nonstructural component is known. It is possible,
therefore, to use a reduced value of this amplification
factor by using instead the formula given by Eq.
(52). By considering that for the systems under
consideration T = 0.60s and T

p
 = 0.5s, such a reduced

amplification factor results as
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which is less than the valued of Cp determined above.
It may be noted, too, that from the given design
spectrum and for the fundamental natural periods of
the structure and the nonstructural component,
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Finally, note that, if Eq.  (43) is used, the strength
reduction factor for the structure, R, is in this case
equal to 4.0 since for the structure µ = 4.0 and T ≥
0.5s. Similarly, the strength reduction factor for the
nonstructural component, Rp, is equal to 2.0 since for
the nonstructural component µ = 2.0 and T ≥ 0.5s.
Upon substitution into Eq.  (49) of the total weight
of the component and the values of Cm, Sa, R, and
Rp determined above, one obtains, thus,
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For the calculation of the design lateral forces, it
may noted that in the case under consideration the
average of the elevations above ground of the
nonstructural component’s two attachment points is
equal to 16.5m. Hence, substitution into Eq. (51) of
this value and the floor weights given above leads to
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To determine now the value of the lateral forces
on the masses of the nonstructural component using
Eq. (48), it may be observed that it is necessary to
obtain first its point of maximum deflection under
lateral forces equal to the weight of its masses and
define the distances lj  that appear in this equation. In
the case under consideration, however, the nonstruc-
tural component is symmetric in mass and geometry
and thus such a point of maximum deflection is
located at its geometric centre. By inspection,
therefore, it may be determined that l1 = l3 = 1.65m
and l2 = 3.3m, where l

1
, l

2
, and l

3
 correspond,

respectively, to the lower, middle, and upper masses.
As a result, the desired lateral forces are equal to
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5. Comparative Study

To assess whether or not nonstructural components
designed with the proposed method would resist a
critical earthquake ground motion, a comparative
analysis is performed with two different nonstructural
components mounted alternatively on a 10-story
building and a 13-story one.  In this analysis, the
deformation ductility demands imposed on the
resisting elements of the considered nonstructural
components when the base of their supporting
building is excited by a severe ground motion are
compared against the deformation ductility capacities
assumed in the components’ design. To this end, the
shear force capacities (yield strength) of the elements
of the non-structural components are considered
to be equal to the shear forces that act on the
components’ resisting elements when the components’
masses are subjected to the equivalent lateral forces

computed with the proposed method. Two different
cases are considered in the determination of such
shear force capacities. In the first case, the
components are assumed able to resist deformation
ductilities of up to two, while in the second case these
ductilities are assumed to be up to six. The ductility
demands are obtained by means of a nonlinear
time-history analysis in which nonstructural
component and supporting structure are considered
together as a single unit. The beams and columns of
both buildings are assumed to possess elastoplastic
behaviour with yield moments defined by their
ultimate moments. Similarly, it is assumed that the
nonstructural components behave as elastoplastic
shear beams rigidly attached to their supports and yield
shear strengths equal to their shear force capacities.
Each building is considered with a damping matrix
proportional to its own stiffness matrix and a
damping ratio of five per cent in its fundamental
mode. The seismic design of the 10-story building is
carried out considering a target ductility of 4.0,
whereas that of the 13-story building is performed
considering a target ductility of 6.0.  In each case, a
component is considered satisfactorily designed if
the deformation ductility demands imposed on its
resisting elements by the ground motion selected for
the analysis are equal or less than the deformation
ductility capacities assumed in its design; that is, a
deformation ductility capacity of 2.0 in the first case
and 6.0 in the second case.

The characteristics of the two buildings consid-
ered are depicted in Figures (4) and (5). The first
building represents an actual reinforced-concrete
office building located in the soft-soil area of
Mexico City. The building experienced significant
damage during the September 19, 1985 earthquake
[19] and incurred thus into its nonlinear range of
behaviour during this earthquake. Its floor system is
formed with a 100mm reinforced concrete slab
supported by reinforced concrete beams and girders.
The materials used in the building’s design are
concrete with a nominal 28-day strength of 24MPa
and reinforcing steel with a nominal yield strength of
400MPa. The dead and live loads considered in
its design yield a load per floor of 2,031kN for floors
1 to 9, a roof load of 1,591kN, and a total building
weight of 19,870kN.  The properties of its beams and
columns are listed in Table (1). On the basis of the
effective moments of inertia given in this table, the
first three natural frequencies of the building are



20 / JSEE: Spring 2005, Vol. 7, No. 1

R. Villaverde

Figure 4. Ten-story building in comparative study and attach-
ment configuration of nonstructural components.

Figure 5. Thirteen -story building in comparative study and at-
tachment configuration of nonstructural components.

0.542, 1.439, and 2.421Hz. The second building
corresponds to an existing commercial building
located in Sherman Oaks, California. This building
was instrumented by the California Division of
Mines and Geology and acceleration records were
obtained at its base and several other locations
during the 1994 Northridge, California earthquake
[20]. It reportedly suffered some structural damage
during this earthquake [21], which is an indication
that the building incurred into its inelastic range of
behaviour during this event. Its floor system consists
of a 102-mm reinforced concrete slab supported by
reinforced-concrete beams and girders. Its beams
and columns have the dimensions and properties
listed in Table (2). The  concrete and reinforcing steel
used in its design have strengths of 27.5MPa and
412MPa, respectively. Using the dead and live loads
assumed in its design, the building is considered
with a load per floor of 820kN for floors 1 to 12, a
roof load of 760kN, and a total building weight of
10,600kN. The first three natural frequencies of
the building, calculated on the basis of these loads
and the effective moments of inertia listed in Table
(2), are 0.415, 1.29, and 2.34Hz.

The two nonstructural components studied are:
(a) a single-mass system with a single point of
attachment; and (b) a three-mass system with two
points of attachment. They are considered with the
masses and stiffnesses listed in Table (3)  and
connected to the buildings in the way shown in

Note: b = width; h = height; Ieff = effective moment of inertia; My= yield moment

Table 1. Properties of beams and columns in 10-story building.

Note: b = width; h = height; Ieff = effective moment of inertia;
           My= yield moment

Table 2. Properties of beams and columns in 13-story building.

 

  Columns     Beams   

Story 
b 

(m) 
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(m) 

Ieff 

(m4) 

My 

(kN-m) 
Floor 

b 

(m) 

h 

(m) 

Ieff 

(m4) 

My 

(kN-m) 

1-2 0.5 0.9 0.01309 497.0 1-3 0.4 0.8 0.03151 780.9 

3-4 0.5 0.8 0.00953 397.0 4-7 0.4 0.7 0.02549 627.6 

5-6 0.5 0.7 0.00669 255.0 8-9 0.4 0.6 0.01742 463.4 

7-8 0.5 0.6 0.00447 217.0 10 0.4 0.5 0.01330 210.9 

9-10 0.5 0.5 0.00279 180.0 - - - - - 

 

     Columns      Beams   
  Exterior     Interior       
Story b 

(m) 
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(m) 
Ieff 

(m4) 
My 

(kN-m) 
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(m) 
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(m) 
Ieff 

(m4) 
My 

(kN-m) 
Floor b 

(m) 
H 

(m) 
Ieff 

(m4) 
My 

(kN-m) 
1-4 0.61 0.91 0.0388 1480 0.91 0.91 0.0583 3304 1-4 0.61 0.81 0.0273 1485 
5-8 0.61 0.91 0.0388 1480 0.91 0.91 0.0583 3304 5-8 0.61 0.81 0.0273 1192 

9-13 0.61 0.91 0.0388 1480 0.91 0.91 0.0583 3304 9-13 0.61 0.81 0.0273 1128 
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Table 3. Masses and stiffnesses of nonstructural components
in comparative study.

Figures (4)  and (5). Their fundamental natural
frequencies when their ends connected to the
structure are held fixed are equal to 0.5Hz in both
cases. To be consistent with the assumptions made
in the derivation of the method being evaluated,
each component is assumed to have zero-percent
damping.

The ground motion selected for the analysis of
the 10-story building corresponds to the first 80
seconds of the acceleration time history which
results from combining vectorially along the direction
that maximises its peak value the two horizontal
ground acceleration records obtained at the SCT
station during the 1985 Mexico City earthquake. The
peak ground acceleration of the resulting time history,
which occurs at a time of 60.34 seconds, is 0.188g.
The spectral accelerations corresponding to this
acceleration time history and the fundamental
natural frequencies and damping ratios of the
building and the nonstructural components are 0.79g
and 4.02g, respectively. In this case, therefore, the
equivalent lateral forces on the nonstructural
components are  calculated using the average spectral
acceleration of 2.41g. For the 13-story building, the
ground motion used corresponds to the acceleration
time history recorded at the base of the building
(Channel 11) during the 1994 Northridge earthquake
[20]. This time history exhibits a peak ground
acceleration of 0.87g at a time of 3.04 seconds. The
spectral accelerations corresponding to this ground
motion and the fundamental natural frequencies and
damping ratios of the building and the nonstructural
components are respectively equal to 0.215g and
0.287g. Thus, in this case the equivalent lateral
forces on the nonstructural components are comput-
ed considering the average spectral acceleration of
0.251g.

As mentioned before, Newmark and Hall’s and
Miranda’s strength reduction factors represent
average values for a large number of ground motions
and may thus deviate considerably from the values

obtained for individual ground motions (Miranda [18]
reports coefficients of variation as large as 0.6).  For
example, the strength reduction factors that lead to
deformation ductility demands of 2 and 6 in a single-
degree-of-freedom system with a natural frequency
of 0.5Hz and a damping ratio of zero percent are
respectively equal to 5.3 and 13.6 when subjected
directly to the ground motion from the Mexico City
earthquake and 2.1 and 7.9 when subjected directly
to the ground motion form the Northridge earthquake.
In contrast, if computed with Miranda’s formulas,
these strength reduction factors are 2.4 and 8.0 for
the soil conditions of the site where the ground
motion from the Mexico City earthquake was record-
ed, and 2.1 and 6.2 for the soil conditions of the
site where the ground motion from the Northridge
earthquake was obtained. Thus, comparing against a
target ductility ratio the ductility demands imposed
by a single ground motion on a nonstructural
component designed considering average strength
reduction factors is a meaningless exercise. A similar
problem arises in regard to the use of the target
ductility ratios specified for the design of the
supporting structures in the determination of the
shear force capacities of the nonstructural compo-
nents. The problem is that, as shown later on, the
ground motions selected for the analysis generate
in the structures ductility demands that are larger
than the target ductility ratios assumed in their
designs. For the purpose of a comparative analysis,
it makes thus no sense to use the “nominal” target
ductility ratios considered in the design of the
structures in the calculation of the shear force
capacities of the components.

For a meaningful comparison, therefore, in this
comparative study the shear force capacities of the
nonstructural components are computed using the
suggested approximate formulas but considering the
“exact” reduction factors for each of the considered
ground motions. These exact reduction factors are
determined from a nonlinear time-history analysis in
which the shear force capacities of the structural
components’ elements are reduced iteratively from
the peak shear forces acting on them when the
structure and the nonstructural component are both
assumed to behave linearly until the target ductility
ratio is attained. The exact reduction factors obtained
this way are listed in Table (4).  It is important to note
that these exact reduction factors represent the
factors by which the shear forces capacities
calculated on the basis of a linear structure and a

  Masses Stiffnesses  
Component Mass  

No. 
Mass 
(Mg) 

Element 
No. 

Stiffness 
 (kN/m) 

1-mass  1 0.00450 1 0.04440  
 1 0.00300 1 0.05584 
 2 0.00150 2 0.03722 

3-mass 3 0.00100 3 0.01861 
   4 0.00931 
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linear nonstructural component need to be reduced
to obtain a ductility demand on the element subjected
to the largest deformation equal to the target ductility.
Note also that they are equivalent to the product
RR

p
 that appears in Eq. (49).  Furthermore, note that

the reduction factors for the Mexico City earthquake
are what it seems exaggeratedly large because for
this ground motion: (a) the actual reduction factors
deviate considerably from the average reduction
factors (as reported in the previous paragraph), and
(b) the actual ductility demands on the analysed
structure are much larger than the nominal target
ductility ratios assumed in its design (as reported in
the following paragraph).

The results of the study are summarised in
Tables (5)  and (6). Table (5)  lists the shear force
capacities and deformation ductilities obtained for the
resisting elements of the nonstructural components
when these are connected to the 10-story building.
Table (6) lists the corresponding parameters when
the nonstructural components are attached to the
13-story building.  Worthwhile to note for the
interpretation of these results is the fact that both

Table 4. Exact strength reduction factors considered in com-
parative study.

Note: µ = component target ductility demand.

Table 5. Shear force capacities and deformation ductility demands in elements of nonstructural components in 10-story building.

Table 6. Shear force capacities and deformation ductility demands in elements of nonstructural components in 13-story building.

buildings undergo significant yielding in the per-
formed time-history analyses. The 10-story building
experienced yielding in all its beams and all its
columns up to the 9th story, with rotational ductility
demands of up to 9.5 in its beams and 12.5 in its
columns, and story deformation ductility demands
of up to 22.7.  Similarly, the 13-story building
experienced yielding in all its beams up to the 11t h

story and all its columns up to the 3rd story, with
rotational ductility demands of up to 3.1 in the beams
and 4 .9 in the columns, and story deformation
ductility demands of up to 11.2.

The results presented in Tables (5) and (6) reveal
that the ductility demands imposed on the resisting
elements of the nonstructural components by the
selected ground motions are in every case less than
or approximately equal to the target deformation
ductilities considered in their design. These results
indicate thus that the proposed procedure in
combination with the calculated exact strength
reduction factors properly accounted for the
post-yield deformations in the buildings and the
nonstructural components and led in each instance
to adequate designs. They also indicate that the
proposed procedure may be useful to determine, on
the average sense, the design lateral strengths of
nonstructural components on buildings when used
in conjunction with average strength reduction
factors such as those proposed by Newmark and
Hall [17] and Miranda [18].

Nonstructural  Mexico City Earthquake Northridge Earthquake  
Component µ = 2 µ = 6 µ = 2 µ = 6 

1-mass 133.5 693.0 5.2 12.3 
3-mass 41.0 174.0 6.1 13.7 

 

  Components with Target Ductility of 2  Components with Target Ductility of 6  
Component  Element  Shear Force Capacity 

(kN) 
Ductility Demand  Shear Force Capacity 

(kN) 
Ductility Demand  

1-mass 1 0.00815  1.9  0.00157 6.7 
 1 0.01597  1.4  0.00377 5.2 
 2 0.00743  2.1  0.00175 4.3 

3-mass 3 0.00111  2.1  0.00026 4.6 
       4 0.00396  1.4  0.00093 3.4 

 

  Components with Target Ductility of 2  Components with Target Ductility of 6 
Component Element  Shear Force Capacity 

(kN) 
Ductility Demand Shear Forc e Capacity 

(kN) 
Ductility Demand 

1-Mass 1 0.01182 1.4 0.00503 4.4 
 1 0.01068 1.3 0.00476 3.0 
 2 0.00497 1.5 0.00221 3.7 

3-Mass 3 0.00075 2.1 0.00033 3.8 
       4 0.00265 1.8 0.00118 3.6 
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6. Summary and Conclusions

An approximate method that accounts for the
nonlinear behaviour of building and nonstructural
component has been proposed for the seismic
analysis of nonstructural components in buildings.
The method is based on a simplified procedure for
the analysis of linear primary-secondary systems
and the use of strength reduction factors to account
for the nonlinearity of the two subsystems. It is
simple to use since the only information required for
its application to any given nonstructural component
is the geometric characteristics, weights, and target
ductilities of the nonstructural component and its
supporting structure, in addition to the fundamental
natural period of the structure and the response
spectra specified for the design of the structure. A
numerical example that illustrates the use of the
method and a numerical comparative study that
verifies its adequacy have also been presented. Based
on its simplicity and rationality and the results from
the comparative study, it is concluded that the
proposed method represents a simple but effective
procedure for the seismic design of nonstructural
components in buildings.

The adequacy of the method, nevertheless, needs
to be investigated further considering nonstructural
components with different characteristics, mounted
on different buildings, and subjected to different
ground motions. The adequacy of the recommended
strength reduction factors also deserves a careful
examination. It has been assumed here that the
strength reduction factors for single-degree-of-free-
dom systems are also a good approximation for
multi-degree-of-freedom nonstructural components
subjected to motions filtered by the dynamic
characteristics of their supporting structures, but it
is not known at this point how good this approxima-
tion is. In any case, it is important to keep in
mind that the intended purpose of the proposed
method is not to predict accurately the seismic
response of nonstructural components, but, rather,
to obtain in a straightforward manner conservative
estimates of the forces they may be subjected to
during a severe earthquake. It is through these
estimates that a designer may assess how seriously
a nonstructural component may be affected by an
earthquake and decide whether or not a refined
analysis is warranted.
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