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ABSTRACT: Damage prediction of buried pipeline under earthquake
environments is the first stage for the seismic risk analysis. In this
paper, we use a Knowledge Discovery in Database (KDD) method for
the pipeline damage prediction even though many studies have
been performed so far with the aid of empirical, statistical, and/or
theoretical methods. By employing the KDD method, much higher
accurate damage prediction could be done for better understanding of
pipeline damage distribution. Related factors were analyzed by a
GIS based model of the Kobe water buried pipelines in the 1995 Kobe
Earthquake, and a decision tree of pipeline damage classification was
developed based on the Classification and Regression Tree (CART)
method. A verification of the method was focused to the modeled area,
and accuracy of the proposed prediction method was confirmed in
comparison with an actual damage as well as predicted ones by
commonly used formula of damage estimation. Results of the
developed KDD model showed that the model could predict correctly
the number of damage in pipeline network. The proposed method by
KDD turned out the distribution of damage better than other damage
estimation methods.

Keywords: Seismic damage prediction; Buried pipeline; Knowledge

Discovery in Database (KDD)

1. Introduction

Seismic risk analysis of a buried pipeline system is a
methodology developed to minimize the probability of
system breakdown and reduce the losses from
damage due to future earthquakes. Seismic risk
analysis requires the evaluation of pipeline damage
under earthquake environments. For instance, a
comprehensive investigation of water pipeline
damage after the 1995 Kobe Earthquake undertaken
by the Japan Water Works Association has been
described by Shirozu et al [1]. An estimation formula
of seismic damage for pipelines was also proposed
based on the detailed investigation of the buried
pipeline damage in the Kobe Earthquake by Takada
et al [2]. Takada also employed this formula to
estimate the physical damage and interruption
effects in Tehran water pipeline system [3]. Another
example of the usage of the estimation formula is
due to failure of the pipeline system in the 1976
Tangshan earthquake [4].

A high accurate damage prediction methodology
must be capable of better understanding the
distribution of pipeline damage due to earthquakes.
On the other hand, KDD has recently become a very
valuable data analytic process for detecting the
association of different related factors in large data
sets such as damage prediction in structural
mechanics [5]. Javanbarg et al [6] employed KDD
technique for damage analyses of two suffered
areas in the 2003 Tokachi-Oki and the 2004 Niigata
Chuetsu Earthquakes. By analyzing the factors
affecting pipeline damage, they found that the
preliminary factor of mining pipe damage was not
seismic intensity, but geomorphology under a certain
level of ground motions. In those areas, however,
there were not enough data of predictors affecting
the damage distribution. Accordingly, due to the
comprehensive data sets of the 1995 Kobe Earth-
quake, in this study, the focus is addressed on
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prediction of pipeline damage distribution in Kobe
City based on the KDD technology.

2. KDD Theory [7]

Knowledge discovery from data refers to the
process of extracting interesting, non-trivial,
implicit, previously unknown, and potentially useful
information or patterns from data. Here, we explain
a summary of the KDD theory from reference [7].
There are two keys to success in KDD. First is to
come up with a precise formulation of the problem
that we are trying to solve and the second key is to
use the right data.

The Knowledge Discovery in Databases process
is comprised of a few steps leading from raw data
collections to some forms of new knowledge. The
iterative process consists of the following steps:

° Data cleaning: a phase in which noise data and
irrelevant data are removed from the collection.

° Data integration: at this stage, multiple data
sources, often heterogeneous, may be combined
in a common source.

° Data selection: at this step, the data relevant to
the analysis is decided and retrieved from the
data collection.

° Data transformation: also known as data
consolidation, is a phase in which the selected
data is transformed into forms appropriate for
the mining procedure.

° Data mining: is the crucial step in which
clever techniques are applied to extract patterns
potentially useful.

° Pattern evaluation: in this step, strictly
interesting patterns representing knowledge
are identified based on given measures.

° Knowledge representation: the final phase
in which the discovered knowledge is visually
represented to the user. This essential step uses
visualization techniques to help users understand
and interpret the data mining results.

These kinds of patterns can be discovered
depending on the KDD tasks employed. By and large,
there are two types of KDD tasks; descriptive
KDD tasks that describe the general properties of
the existing data, and predictive KDD tasks that
attempt to do predictions based on inference on
available data.

2.1. KDD Terminology

In predictive models, the values or classes that we
are predicting, are called the response, dependent or
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target variables. The values used to make the
prediction are called the predictor or independent
variables. Predictive models are built, or trained,
using data for which the value of the response
variable is already known. This kind of training is
sometimes referred to as supervised learning, because
calculated or estimated values are compared with
the known results.

2.1.1. Classification

Classification problems aim to identify the
characteristics that indicate the group to which each
case belongs. This pattern can be used both to
understand the existing data and to predict how
new instances will behave. KDD creates classification
models by examining already classified data (cases)
and inductively finding a predictive pattern. These
existing cases may come from a database, such as GIS
database.

2.1.2. Regression and Decision Tree

Regression uses existing values to forecast what
other values will be. In the simplest case, regression
uses standard statistical techniques such as linear
regression. The same model types can often be used
for both regression and classification. Decision trees
are a way of representing a series of rules that lead
to a class or value. The decision tree analyzes (mines)
a set of data values and generates a decision tree
that can be used to predict the value of a target
variable based on the values of a set of predictor
variables. Like a real tree, a decision tree has a
root, branches, and leaves. A prediction is made
by entering the tree at the root and following
the branches left or right based on values of the
predictor variables until a leaf is reached. Each leaf
shows the most likely value for the target variable
given the set of predictor values that led to the leaf.
There are two steps to making productive use of
decision trees; 1) building a decision tree model,
and 2) using the decision tree to draw inferences
and make predictions.

2.1.3. Rule Induction

Rule induction is a method for deriving a set of rules
to classify cases. Although decision trees can
produce a set of rules, rule induction methods
generate a set of independent rules which do not
necessarily (and are unlikely to) form a tree. Because
the rule inducer is not forcing splits at each level,
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and can look ahead, it may be able to find different
and sometimes better patterns for classification.
Unlike trees, the rules generated may not cover all
possible situations. Also unlike trees, rules may
sometimes conflict in their predictions, in which case
it is necessary to choose which rule to follow.

In order to apply the KDD method for pipeline
damage prediction, the classification and regression
tree (CART) was employed as the KDD model to
predict pipeline damage due to the 1995 Kobe Earth-
quake. In particular, we used the KDD techniques of
decision trees. The CART methodology is a relatively
new approach to the problem of predicting a
response (target) variable on the basis of several
predictor variables. A very interesting advantage of
CART is the possibility to deal with large numbers of
both categorical and numerical variables. Another
advantage is that no assumption about the underlying
distribution of the predictor variables is required
(even categorical variables can be used). Eventually,
CART provides a graphical representation, which
makes the interpretation of the results easy.
Therefore, CART could be a very interesting method
to predict the distribution of damage within a pipeline
database.

2.2. Classification and Regression Tree [8]

Classification and Regression Tree analysis is a
statistical method that explains the variations of target
variable using a set of explanatory variables, so-called
predictors. In other words, CART analysis is the
organization of data in given classes. Classification
approaches normally use a training set where all
objects are already associated with known class
labels. The classification algorithm learns from the
training set and builds a model. The model is then
used to classify new objects. For instance, in the case
of pipeline damage analysis under earthquake
environment, the model can analyze vulnerability of
the pipeline network due to the predictors such as
ground condition, geomorphology, liquefaction,
seismic intensity, pipe diameter, pipe material and
pipe length.

2.2.1. Tree-Growing Process

CART works by splitting the data into mutually
exclusive subgroups, called nodes, within which the
objects have similar values for the target variable.
The process starts from the root or parent node,
which contains all objects of data set. CART uses a
repeated binary splitting procedure, which means that

the parent node is split in two nodes, called child
nodes. The process is repeated by treating each child
node as a parent node, see Figure (1). Each split is
defined by a simple rule, usually based on a predictor.
For categorical variables, a split is defined by relating
one or more levels of the variable to a specific node.
Trees are grown by selecting the splits in such a way
that so-called homogeneity and the impurity of the
target variable within each node is maximized and
minimized, respectively. To achieve this, CART looks
at the possible splits for all variables included in
the analysis. The resulting splits are compared and
eventually, the best splits are chosen by evaluation of
the impurity of the formed nodes, based on the
statistical criteria. This procedure is repeated consecu-
tive split made in the tree. The splitting procedure is
continued until no further split can be performed, i.e.
all child nodes are homogenous, or contain one or a
user-defined minimal number of observations. The
tree thus obtained is called the maximal tree and the
terminal nodes, so-called leaves, represent the final
groups formed by the tree.
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Figure 1. Tree-growing process in CART.

This maximal tree usually contains too many
leaves and causes poor predictive abilities for
new samples. Therefore, the selection of an optimal
tree with a good compromise between model fit and
predictive properties is required. Thus, in general,
CART analysis consists of three steps; 1) the
maximal-tree building, 2) the tree pruning which
consists in the cutting-off of nodes to generate a
sequence of simpler (i.e. smaller) trees, and 3) the
optimal-tree selection.

2.2.2. CART Mathematical Algorithm

CART works by choosing a split at each node in a
way that each child node is more pure than its parent
node. Here purity refers to the values of the target
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variable. In a completely pure node, all of the cases
have the same value for the target variable. CART
measures the impurity of a split at a node by defining
an impurity measure (Gini index). There are four
different impurity measures used to find splits for
CART models, depending on the type of the target
variable. In our approach Gini measure was used and
it has been explained in detail in the following section.

In Figure (2), the structure of a node via the
CART analysis is presented; in which ¢ and n are
the node number and the number of cases in target
class, respectively, i and j are categories of target class,
N;(#) and N(r) are the number of category i and j
which take place in node ¢, respectively. The prior
probability (value) affecting the misclassification
rates for category j, m(j) can be considered. If N] is
the number of cases of category ; in the root node,
the joint probability of category j at node ¢, p(j, 1),
can be then defined as the proportion of the number
of category j in node ¢ to the number of category ;
in root node as follows,

.~ TN (@)
pUjt)=—""— 1
N, (1)
Mo (i
Calegory
WA
L]
Figure 2. Structure of the node in CART model.
The Gini index at node ¢, g(¢), is defined as,
8= p(j1)p(il) ?

J#I
where p(i/f) and p(j/7) are class probability
distribution of the target variable or conditional

probability of categories i and j under condition of
node ¢ defined as follows,

p(j.t)
10 )

p(jln)=

where p(¢) is probability of node ¢,

p(t) :Zp(j:t) )
J

When the Gini index is used to find the improve-
ment for a split during the growth, only those cases
in node ¢ and the root node with valid values for the
split-predictor are used to compute N(2) and N,
respectively.

The Gini criterion function Ag(s,?) for split s at
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node ¢ is defined as:

Ag(s,t)=g)—p.g(t))— pre(ty) (5)

Where s is a particular split, g(¢;) and g(¢;) are
the impurity of the left and right child nodes,
respectively, p,, the proportion of cases in node ¢
is sent to the left child node, and py, the proportion is
sent to the right child node. The proportions p, and
pr are defined as:

n= ©
and
) 2

The split s is chosen to maximize the value of
Ag(s,©). This value is reported as the “improvement
degree” in the tree. Therefore steps in CART are as
follows:

1)  Starting from the root node ¢ = 1, search for a
split s among the set of all possible candidates
S that give the largest decrease in impurity:

Ag(s)) =maxAg(s)) (8)

seS
Then split node 1 (z = 1) into two nodes, ¢ = 2
and ¢ = 3, using split s.
2)  Repeat the split-searching process in each of
t=2and ¢ =3, and so on.
3)  Continue the tree-growing process until at least
one of the stopping rules is met.

2.2.3. Accuracy of the Tree

Once a tree has been generated, it is always
important to consider the accuracy of the tree.
Accuracy refers to how well the tree predicts
outcomes or classifies individuals. Conversely, the
inaccuracy of the tree is called the risk. It may then
be possible to estimate the risk of the tree. The
less risk results the more accuracy. Risk can be
calculated in different ways depending on the
nature of the target variable. For instance, the risk
calculation by resubstitution is presented in the
following section.

Table (1) shows the number of cases correspond-
ing to both the actual data of target variable and
prediction by CART model. Definitions of parameters
in Table (1) are as follows:

N,:  The number of cases in category i that are
classified as category i
Nt The number of cases in category ; that are
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classified as category i

N, The number of cases in category i that are
classified as category j

Nj;: The number of cases in category ; that are
classified as category j

N;: Total number of cases in category i

N,:  Total number of cases in category j

Table 1. Classification summary and risk prediction of CART

model.
Actual
Categor I j
Prediction gory J
I Nii Nji
J Nij Ny
Total N, | N,

If n(i) and = (j) are considered the prior
probabilities affecting the misclassification rates for
category i and j, respectively, risk is calculated as
the proportion of cases in the sample incorrectly
classified by the tree.

Risk = n(i).Ny I N+ (j).N; I N, 9)

3. Pipeline Statistics

In order to construct the analysis, for the pipeline
damage locations and length of pipes, a report
based on the pipeline damage analysis of 1995
Kobe Earthquake prepared by Japan Water Work
Association (JWWA) was employed [9]. The damage
statistics for five wards of Kobe City (Higashi-
Nada, Nada, Chuo, Nagata and Hyogo wards) is
presented in Table (2). The pipeline length is about
1566km, see Table (3).

Table 2. Number of pipeline damage in five wards of Kobe
City during the 1995 Kobe Earthquake [9].

Diameter (mm)
<75 |100~150{200~250( 300~450 | >500| Total
DIP | 22 532 166 130 24 | 874

Material

CIp 9 226 123 73 16 | 447
VP 24 1 0 0 0 25
SP 0 2 3 4 5 14

Total 1,360

Table 3. Length of pipeline in five wards of Kobe City during
the 1995 Kobe Earthquake [9].

Total
1,566

Diameter (mm)| <75 |100~150 | 200~250 | 300~450 | >500
Length (km) | 18 860 300 254 134

4. GIS Database Construction of the CART
Model

In order to build the CART model, maps of Kobe
buried pipeline including pipeline damage locations
as the target class and predictors such as ground
condition, liquefied area, seismic intensity and
pipe length from JWWA report were digitized and
overlaid via a GIS database. In case of predictors
such as pipe material and geomorphology classes,
Kobe JIBANKUN geo-database was employed [10].
Table (4) shows the classification of the predictors.
As it can be seen for pipe material, two classes
consist of ductile iron pipe (DIP), and others
including cast iron pipe (CIP), vinyl (VP) and steel
pipes (SP) were considered. As mentioned in
section 2.1, predictors should be independent
factors. In order to show the correlation of the
predictors, the correlation coefficient for each
predictor related to others is calculated and presented
in Table (5). The results for ground condition,
geomorphology and liquefaction show high
correlation. However, in CART algorithm the weight
of each predictor is not necessary to be obtained
like statistical methods and the order of the predictors
could be determined by tree growing process.
Therefore, the dependency of each predictor can be
considered in CART, automatically.

Table 4. Predictor variables for pipeline damage by CART model.

Predictor Class Description

1 Stiff

A: Ground Condition Soft
Reclaimed

Mountain and Slope
Terrace and Fan
Valley Plain and Levee
Raised River Bed and Reclaimed Area
0% Liquefied
50% Liquefied
100% Liquefied
5 IMA
57 IJMA
6" IMA
6" IMA
7IMA
<75mm
100~150mm
200~250mm
300~450mm
>500mm
DIP
Others (CIP, SP, VP)
Length<200m per Mesh
200m < length <400m per Mesh

Length > 400m per Mesh

B: Geomorphology

C: Liquefied Area

D: Seismic Intensity

E: Pipe Diameter

F: Pipe Material

G: Pipe Length

WIN[IFP(NPAORRIWOINIP[AOBR(WINIPIWINIP([RWIN[(FRPIWN
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Table 5. Correlation coefficients of predictors.

Predictor I?]et:‘i:;]rgii& CGO:]%L:Egn Geomorphology|Liquefaction
Seismic intensity 1 -0.07 -0.30 -0.54
Ground condition | -0.07 1 0.72 0.72
Geomorphology | -0.30 0.72 1 0.81
Liquefaction -0.54 0.72 0.81 1

A 100x100 meter mesh (target mesh) overlaid
with pipeline path, damage locations, as well as all
the predictor classes. Target class was then classified
into two classes due to precision of damage within
a mesh; 0 related to no damage in mesh and 1 for
damaged mesh. Figure (3) shows the overlaying of
target mesh with damage locations. It can be seen
that in some parts, the density of damage location
is higher than the other parts. By employing the
decision tree produced by CART model, however,
it may clear the effect of each predictor causing
damage in those areas.

]
ImLEEnEN;
wINErTAF

.hl L
2

Figure 3. Overlaying of target mesh with pipeline and
damage locations.

In order to clarify the class of predictors, the
mesh was overlaid with related raster maps. The
classification of target mesh due to the ground
condition, geomorphology, liquefied area, and seismic
intensity are presented via Figures (4) to (7),
respectively. In Figures (4) and (5), ground condition
and geomorphology have been classified to three
and four classes, respectively. The stiff condition is
related to the mountainous area in the northern
part, soft condition is regarded with plain in the
middle part, and the reclaimed area is situated in
the southern part including both man-made Rokko
Island and Port Island areas. Figure (6) induces a
liquefied area that is mostly related to the reclaimed
and coastal land. From Figure (7) it can be seen that
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the seismic intensity shows higher values in the
soft ground condition and middle part of Kobe City.

In case of classifying the target mesh due to the
pipe diameter, in precision of two or more classes in
one mesh, the number of pipes with the same class
diameter was derived in each mesh and the class
diameter with majority of number of pipes was then
selected as the identification of the mesh diameter
class.

Chgured Condilien
-

0 .00 RS0 0. 000 Meiere

Figure 4. Classification of target mesh due to the ground
condition.
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Figure 6. Classification of target mesh due to liquefied area.
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Figure 7. Classification of target mesh due to seismic intensity.

In order to deal with pipe material, four kinds of
meshes were addressed, see Figure (8). In case
of meshes, which include DIP, the material
class was considered DIP (for example mesh K in
Figure (8)). In case of meshes with precision of
CIP, SP or VP, (mesh L), they were considered as
others. In case of meshes which consist of both
DIP and other materials, depending on the majority
of other material (mesh M) or majority of DIP
material (mesh N), were considered as others and
DIP respectively. Pipeline length in each mesh was
also calculated and classified in tree classes.

Figure 8. Classification procedure of pipe material.

5. Damage Prediction by Proposed KDD
Method

In order to examine the capability of the proposed
KDD method to damage prediction of the water
pipeline network, it was applied to the Kobe pipeline
network. In Figure (9) target mesh in eastern part
of the Kobe water network and 636 related damage
locations including Nada, Higashi Nada wards and

ki Cakgoiy
11 Mz Damags
B 1 Damaged
Dlanage blatasal
= DIP
= CIP
]
=5P

1000 Wonais

Figure 9. Pipeline damage locations and target mesh in eastern
part of Kobe pipeline network.

Rokko Island are presented. The CART model
was employed for this part of the network. In
Table (6) risk analysis (misclassification matrix) and
improvement degree of tree for the east part of
Kobe water pipeline are presented. The meaning of
the number in Table (6) have been defined in Table
(1). For instance, 118 is the meshes that actually
included damage and the model predicted as the
damaged mesh. As it can be seen, the risk of the
model is about 27%. Therefore, the accuracy of the
model is about 73%. As an evaluation criterion, the
improvement degree of the model is also presented
in Table (6). It is clear that seismic intensity is a
prior factor and the most affective parameter to
pipeline damage. The structure of the CART model
used for this study was an interpretable tree with 5
levels. Among the terminal nodes, 7 nodes were the
desired terminal nodes (nodes that hit the category
J, damaged category) in which, each node included
related meshes. In Table (7), the desired nodes with 5
rules were derived based on the growing tree of the
model and conditional probability in each node was

Table 6. Risk analyses and improvement degree of CART
model for eastern part.

Damage Actual
Category 0 1 Total
. 0 2132 | 285 | 2417
Prediction
1 209 | 118 327
Total 2341 | 403 | 2744
Risk estimate = 0.2746
Predictor | Name of Predictor | Improvement Degree
D Seismic intensity 0.0120
B Geomorphology 0.0061
A Ground condition 0.0060
E Pipe diameter 0.0044
G Pipe length 0.0021
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Table 7. Tree growing criteria and probability calculation of CART model for eastern part of Kobe pipeline network.

SamPe | Rule 1| Rule2 | Rule3 | Rule 4 | Rule 5 insgéet N | N | =) Ef;a(’{) E’;Og) E:%O)
49 | D>35| D>45|E<45| A>L5 |E<25 0783 | 56 | 65|03 | 0.258 | 0.329 | 0.006
47 | D>35 D>45|E<45|A<15|G<15 017 | 2 | 6 | 03| 0100 | 0.588 | 0.294
46 | D>35 D<45 G>25|A<25|B>25| 0313 13| 03| 0138 | 0.440 | 0.073
40 |D<35 B>25| E>25 | D>15 | C>25| 0226 14|03 0128 | 0566 | 0.094
36 |D<35 B>25|E<25| D>25 | C>25 | 0.361 28| 03| 0.053 | 0.146 | 0.029
33 |D<35 B>25|E<25|D<25|C<25 0421 | 31 55|03 0.169 | 0.401 | 0.013
26 | D>35|D<45 G>25 | A>25 | - | 0348 | 11 |24 | 03] 0137 | 0393 | 0035

calculated by the equations induced in section 2.2.2.
With respect to the fact that each node includes a
number of meshes, the probability of each mesh,
p(j) is calculated based on Eq. (10) and presented in
Table (7).

p(jl1)

P(]) = Nj(l)

(10)

With respect to the tree growing procedure
presented in Table (7), it is worthwhile to return to
the rules and criteria in each node to state some of
the main points;

° In all nodes, due to the priority of the rules,
seismic intensity is the prior predictor (factor)
to pipeline damage.

° For the JMA seismic intensity more than 6+,
pipe diameter is the second factor that
influences damage; meanwhile, in case of JMA
seismic intensity equal to 6+, pipeline length
is the next predictor.

° For the JMA seismic intensity less than 6+,
geomorphology is the second factor affecting
pipe damage.

The prediction of KDD technique greatly depends
on the feature chosen. A more meaningful attribute
produces better results. By employing the tree
growing criteria of the eastern part, shown Table
(7), damage prediction is constructed for the
western part of the network and the prediction
results of damaged meshes as well as risk summary
calculated by Eq. (9) are presented in Table (8). The

Table 8. Prediction results and risk summary for eastern part
of Kobe pipeline network.

Actual Number of Damage
Prediction | Category| 0 1
by Model | ¢ 2581 | 287
1 772 156
Total 3353 | 443

Risk Estimate = 0.3555
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risk has been estimated 35% which means 65%
accuracy of the model. Comparison between results
in Tables (6) and (8) shows that the accuracy of
Table (6) is higher than Table (8). In Table (6),
classification of the damaged meshes in the eastern
part based on the actual damage locations was used;
meanwhile, in Table (8) we applied the decision tree
criteria of the east part to the west part in order to
predict the damage distribution.

Figure (10) shows damaged mesh distribution for
the western part of Kobe water pipeline network.
Locations of the actual and estimated pipeline damage
by KDD method show a rough agreement.

The related probability level of damage for each
mesh is shown in Figure (11). The probability of
damage can be considered as the damage rate, in
which it is equal to number of damage per lkm of
pipe length. On the other hand, in case of segmented
pipelines such as DIP, CIP, SP and VP, the damage
rate in mesh can be defined as the number of damage
divided by the number of joint/5m segment of pipes in
each mesh. Thus, the number of damage in each
100x100 meter mesh can be equal to probability of
damage multiplied by the length of 5-meter segmented

pipes.
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Figure 10. Actual damage locations and damage distribution
in western part of Kobe pipeline based on prediction
by present KDD method.
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Ny =p(j)-L/5

where N, and L are the number of damage and
length of pipeline in each mesh, respectively.

Therefore, the damage in the western part has
been calculated in total 745 locations, see Figure
(12), considering the presented calculation in Eq.
(11), while the actual damage for the western part
is 723 locations. As it can be seen, the proposed
KDD method could predict the number of damage
correctly. From Figures (11) and (12), it can be seen
that the distribution of damage concluded by KDD
method has a rough compatibility with actual damage
distribution.

(11)

6. Pipeline Damage Estimation Formula

In order to compare the results of the DM model for
pipeline damage estimation with other methods, and
based on the detailed investigation of the buried
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Figure 11. Actual damage locations and damage probability
in western part of Kobe pipeline based on prediction
by present KDD method.
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Figure 12. Actual damage locations and predicted number of
damage in western part of Kobe pipeline by present
KDD method.

pipeline damage in the 1995 Kobe Earthquake, the
estimation formula of seismic damage for pipelines
was proposed as following [2]:

where N, is number of damage locations, S, is an
averaged damage ratio and can be calculated as,

S, =4.11x10"° PGA* for PGA <800gal (13)

and C is a coefficient of pipe material, C, is a
coefficient of diameter, C, is a coefficient of
liquefaction, see Table (9), and L is a total length of
pipeline (km).

In Figure (13), damage distribution in the west
part of the Kobe water pipeline estimated by formula
as well as actual damage locations are compared.
Similar to the results for CART model, the risk
summary calculated by Eq. (9) is presented in

Table (10).

7. Comparison of the Results

The total number of damage for all pipes derived
by KDD method and commonly used estimation
formula of pipeline damage are compared with
actual ones in Figure (14). The results show that
the proposed KDD method could predict the
damage number of pipelines from the earthquake

Table 9. Coefficients in pipeline damage estimation formula

[2].

C, = Coefficient of Material

CP VP DIP DIP CIP SP SGP
(AKT) (S, shy
3.3 1 0.3 0 1 0.3 4
C, = Coefficient of Diameter
100~150mm| 200~250mm 300~450mm | 500~600mm
1 0.9 0.7 05

C, = Coefficient of Liquefaction

No Liquefaction | Medium Liquefaction | High Liquefaction
(0%) (50%) (100%)
1 2 24

Table 10. Estimation results and risk summary for estimation

by formula.
Actual Number of Damage
Prediction | Category 0 1
by Formula 0 1290 82
1 2063 361
Total 3353 443

Risk Estimate=0.4862
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Figure 13. Actual damage locations and estimation of damage
in western part of Kobe pipeline by formula.
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Figure 14. Comparison of damage predicted by KDD and
estimation formula with actual damage.

better than the estimation formula. Comparison of
the risk estimation results presented in Tables (8)
and (10) shows that risk of the damage prediction
by KDD method is less than estimation formula
and the KDD method can predict the distribution
of damage better than the formula. In other words,
according to Table (10) for the estimation formula
the amount of predicted damaged meshes with
actual damage is 361 which is more than 156 number
of damages presented in Table (8). On the other
hand, the amount of misclassification of damaged
meshes in Table (10) is 2063 that is much more
higher than 772 in Table (8), and it causes higher
risk for estimation formula. In addition, comparison
between predicted distributions of damage with
actual damage in Figures (12) and (13) shows that
the formula has lower agreement than KDD method.

8. Conclusions

This paper presented KDD model to predict the
damage number and distribution of damage in the
pipeline network. By using the predictors such as
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ground condition, geomorphology, liquefaction,
seismic intensity, pipe diameter, pipe length and
material, a KDD model considered the pipeline
database features and classified target class as
vulnerable or not vulnerable categories. The results
of this research are as follows:

< The development of the KDD model showed
that the model could correctly predict the
number of damage in the pipeline network due
to the earthquake.

< By employing the KDD method, much higher
accurate damage prediction could be done for
better understanding of pipeline damage
distribution.

%  The accuracy of the proposed prediction
method was confirmed in comparison with an
actual damage as well as predicted ones by
commonly used formula of damage estimation.
Results of developed KDD model showed that
the model could predict the number of damage
better than the formula.

< The prediction of exact location and severity of
the damage in the pipeline network database
can be a considerable challenge. However,
comparison between the distributions of
damage by the proposed KDD method and
damage estimation formula showed that KDD
model has better agreement to actual damage
distribution. Further work needs to be done to
extract features that will result in a more
accurate KDD model.

X The model showed that in case of Kobe water
pipeline damage due to 1995 Kobe Earthquake,
seismic intensity was the prior factor to pipeline
damage.

0
0
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