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In current work, an effective method is introduced for the optimal cross-section 

distribution in steel moment resisting frames under severe earthquakes by means of 

uniform deformation theory and adaptive method. The main goal is to distribute 

the construction material (weight) along the height of the structure in such a way 

that the lowest damage due to earthquakes is obtained. In adaptive method, 

materials gradually transfer from strong parts to weak parts by an iteration 

procedure during nonlinear time history analysis. In order to demonstrate the 

effectiveness of the proposed method, the optimal distribution of the cross-sections 

is obtained for 5 and 10 story steel moment resisting frames. In order to reduce the 

sensitivity of the optimal response to discrete cross-sections, continuous cross-

sections fitted between DIN-Standard cross-sections have been used in order to 

achieve its optimal state. The steel moment resisting frames are optimized under 

five natural earthquakes. Results indicate that the optimal frames designed by this 

method show not only a more uniform deformation under earthquakes, but also 

less weight in comparison to the original structure designed according to the 

ASCE07-10 code. The reduction in structural weight reaches 40% in some cases 

leading to significant reduction in frame construction costs. 

 

 

1. Introduction 

In the conventional methods of seismic design, 

the distribution of lateral load along the structure 

height is usually determined using linear dynamic 

analysis. However, during severe earthquakes,    

the structure demonstrates nonlinear behavior and 

undergoes large displacements. Therefore, the 

linear response cannot represent the actual 

behavior of the structure during earthquakes, and 

consequently, the lateral load pattern proposed in 

the seismic design codes does not ensure optimal 

use of the materials in the structure. Previous 

studies by Moghaddam and Hajirasouliha [1] have 

shown that it is possible to distribute the structural 

material (weight) along the height of the structure 

such that the lowest damage due to earthquakes is 

obtained. In this regard, the theory of uniform 

deformation has been introduced to determine the 

way resistant factors are distributed within the 

structure. In this method, structural materials are 

transferred gradually from the parts with higher 

strengths to those with lower strengths through    

an optimization algorithm to achieve optimum 

distribution of the lateral load resisting elements 

within the structure. This continues until the 

distribution of deformation within the structure 

becomes uniform. It has been shown that seismic 
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performance of a structure designed by this 

approach is optimized in the sense that the 

maximum capacity of the structure has been used 

[1]. Therefore, the above-mentioned optimization 

method has been utilized for the optimal seismic 

design of steel moment resisting frames and its 

effectiveness has been assessed and proven. 

Researchers have proposed different optimiz-

ation method for steel structures in recent decades. 

In these research, different optimization procedure 

such as dual method [2-3], evolutionary method 

[4], Lagrange method [5], and genetic algorithm 

[6-7] were used, and seismic excitation was 

modeled as a static force applied on the structure 

according to seismic codes. Then, cross sections of 

elements were designed optimally by means of 

optimization methods in linear systems. Thus, in 

these research, the dynamic effect of the seismic 

excitation and also nonlinear behavior of the 

frames was neglected, while in performance-based 

design for nonlinear structures, the use of seismic 

static force is an inefficient way and the structural 

performance parameter in earthquakes should be 

controlled directly. 

On the other hand, researches represent that 

nonlinear static displacement control analyses 

(pushover) with a constant load pattern is not a 

reliable way for predicting damage in frame during 

earthquakes [8]. In this study, optimum seismic 

design of steel moment resisting frames by means 

of uniform deformation theory in time history 

analyses was investigated. The results show that 

with a proper distribution of material height-wise 

of the frame, damages in sever earthquakes could 

be in a restricted level and also the weight of the 

frames decreases by 40% weight of the customary 

designed according to static force of seismic  

codes. 

 
2. Uniform Deformations Theory and the 

Adaptive Method 

Moghadam and Hajirasouliha investigated the 

effect of distribution of resisting components 

within the structure on its seismic performance [1]. 

They modified the method presented by Karami 

Mohammadi et al [9] to resolve the fluctuations in 

the convergence procedure, and proposed a new 

method for the optimal seismic design of building 

structures. In this method, to achieve optimal 

distribution of resisting components within the 

structure, structural materials are transferred 

gradually from the parts with higher strengths to 

those with lower strengths through an optimization 

algorithm. This continues until the distribution of 

the deformation (or generally the damage) 

becomes totally uniform throughout the structure. 

It has been shown that the seismic performance of 

such structure is optimal, in which the maximum 

capacity of the structure is gained. Despite relative 

discrepancies between the optimization algorithms 

employed for different structural systems studied 

by Moghadam and Hajirasouliha [1], they all have 

the following fundamental steps: 

1. First, the structure is designed according to an 

arbitrary distribution pattern for the behavioral 

parameters of the structure, based on which the 

preliminary design of the structure is done. 

These behavioral parameters can be the rigidity 

or strength of floors in shear structures, cross-

section of truss members in truss structures, 

cross-section of braces in concentric braced 

frames, reinforcement percentage of the 

members in reinforced concrete moment 

resisting frames, cross-section of beams and 

columns in steel moment resisting frames, or 

any other factor that controls the behavior of 

the structure. Hajirasouliha and Moghadam [10] 

showed that the initial trial of the distribution 

pattern of the behavioral parameters does not 

have any effect on the final result. 

2. The structure obtained in the previous step is 

subject to design loads. These loads can be 

either static or dynamic. Next, through 

performing proper iterative analyses, the 

behavioral parameters of the structure are 

scaled such that the structural design 

requirements are met, while maintaining their 

distribution pattern. The resulting structure at 

this stage is acceptable from a design 

perspective, yet might not be optimal. As this 

procedure continues, the damage demands of all 

structural components are obtained, and 

accordingly their coefficient of variations (Cov) 

are determined. If the calculated Cov is small 
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enough, the distribution of the (lateral) resisting 

components within the structure is considered 

to be optimized and the optimization procedure 

is terminated; otherwise, this procedure 

continues until an optimized distribution is 

obtained. 

3. At this stage, the distribution of the lateral   

load resisting elements is modified according  

to the theory of uniform deformations. 

Simultaneously, the materials are transferred 

gradually to more critical regions from those 

that have not reached their full capacity. For 

this purpose, sections in which the damage 

demand parameter is lower than the limit 

(performance criteria) are specified, and their 

strength is reduced simultaneously. Investig-

ations have shown that in order to achieve a 

proper convergence to the optimal response, 

these changes should be applied gradually [1]. 

To this end, to modify the behavioral 

parameters of the structure, the Eqs. (1) and (2) 

are used: 

 

1[( ) ] [( ) ] ( )SC i n SC i n iP P SC 
    (1) 

i
i

ti

dm
SC

dm
   (2) 

where, (PSC)i is the behavioral parameter of the ith 

member (the cross-section of members in truss 

structures, rigidity and strength of floors in shear 

structures, etc.), SCi is the convergence coefficient 

of the ith member, dmi is the damage demand 

parameter required by the ith member (maximum 

displacement, maximum ductility factor, damage 

index, etc.), dmti is the objective damage demand 

parameter of the ith member, and n represents the 

iteration step number. β is also called convergence 

coefficient ranging from 0 to 1. Selection of the 

proper convergence coefficient highly influences 

the convergence of the problem and achieving 

optimal response. In this regard, by conducting 

numerous analyses on several structural systems 

and under different loading conditions, this 

coefficient has been determined for each case. 

Using Eqs. (1) and (2), a new pattern is 

obtained for the distribution of lateral force-

resisting elements within the structure. The 

optimization procedure is repeated from the second 

step so that another acceptable response is 

obtained. It is expected that Cov of the damage 

demand parameter of the elements at this stage is 

reduced significantly in comparison to the previous 

state. This trend continues until the Cov of the 

damage demand parameter becomes small enough 

so that a rather uniform distribution is achieved. 

The structure obtained at this stage is known to be 

practically optimal, in which the maximum 

capacity of materials has been used in it. 

Although the preliminary method of Moghadam 

and Karami Mohammadi [11] uses a similar 

framework as the above-mentioned method, they 

are different in the sense that in the former, the 

gradual modification of the behavioral 

characteristics of members is not carried out 

systematically at stage 3, and the modifications are 

solely performed for the most critical member at 

every step. In other words, the level of changes in 

the behavioral parameter of the critical member 

across all steps is a percentage of its value in the 

previous stage. It has been shown that the 

preliminary method exhibits slow convergence and 

low accuracy that causes fluctuations in the 

convergence trend. In addition, the modified 

method presented by Hajirasouliha and Moghadam 

provides the possibility to choose different 

objective damage parameter for each structural 

element, allowing for seismic designs to achieve 

any desirable damage distribution pattern; while in 

the preliminary adaptive method by Moghadam 

and Karami Mohammadi, this was not possible [1, 

11]. The advantages of the new adaptive method 

presented by Hajirasouliha and Moghadam include 

simplicity, the ability to automatize the method 

using rather simple programs, high convergence 

rate, suitable accuracy, lack of fluctuations in     

the convergence trend, allowing for achieving a 

unique response, allowing for seismic design to 

achieve any desire damage pattern, allowing for 

considering different load combinations in the 

structure design and simple development of the 

method for multi-criteria optimization [1]. 
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3. The Optimization Algorithm of Steel Moment 

Resisting Frames 

First, the preliminary structural model (that can 

be designed for gravity and seismic loads 

according to ASCE07-10 [12]) is subjected to 

seismic excitation. Accordingly, the plastic 

rotation of the end nodes of frame members is 

determined for the earthquake. The allowable 

rotation is calculated for those nodes according to 

ASCE-SEI41-06 [13]. Then, the beams and 

columns are altered in a way that the largest plastic 

rotation of every member approaches its allowable 

rotation. This means that if the maximum plastic 

rotation of a member is lower than the allowable 

value, the member becomes weak, whereas if this 

rotation is larger than the allowable value, the 

member is strengthened. Therefore, in order to 

design steel moment resisting frames optimally 

based on seismic loads, the following steps are 

considered: 

1. A preliminary structure, previously designed 

using gravity and static seismic loads with a 

desired distribution pattern (here ASCE07-10 

lateral load pattern) is regarded as the starting 

point. Within every iteration, the structure 

should be acceptable to the exerted gravity 

loads. 

2. At this stage, the structure is subjected to 

seismic excitation and for the deformation 

controlled members including beams and some 

columns, maximum plastic rotation of each 

member (Θpi) and the allowable plastic rotation 

of that member (Θall) are determined based on 

ASCE-SEI41-06 regulations considering the 

life safety level (LS) as the objective structural 

performance. For this purpose, the allowable 

plastic rotation for the beams and columns is 

calculated using Eqs. (3) and (4) according to 

ASCE-SEI41-06, respectively. 

6

ye b

yb
b

ZF l

EI
                                                           (3) 

(1 )
6

ye c

yc
c ye

ZF l P

EI P
                                                (4) 

where, E, Fye are the elastic modulus of the 

material and the expected yield stress; Ib, Ic, lb,      

lc and Z are the moment of inertia of the beam       

and column, the beam length, the column height 

and the plastic modulus of the cross-section, 

respectively. P and Pye denote the axial force of  

the column, and the axial force of the yield limit 

expected in the column, respectively. 

3. For brittle and force controlled members     

such as some columns, the force ratio that 

should be smaller than 1 is controlled by Eq. 

(5), according to ASCE-41-06. Furthermore, an 

error function is calculated based on the 

difference between the maximum and allowable 

plastic rotation, and the difference between the 

force ratio and 1 for deformation and force-

controlled members, respectively. If the 

obtained error function is small enough, the 

distribution of resisting elements is assumed 

practically optimal and optimization procedure 

stops. 

1 , 0.85 1u u u u

cl cl y cl

P M P M

P M P M
                          (5) 

where, Pu represents the axial force of the column, 

Pcl denotes the allowable axial force of the  

column, Mu is the applied moment of the column, 

and Mcl represents the allowable moment of the 

column. 

4. At this stage, the cross-sections of members, 

representative of the stiffness and strength of 

frame elements, are modified. Using the theory 

of uniform deformations, the materials should 

be transferred from sections that have not been 

used in their full capacity to feeble parts of the 

structure. For this purpose, the cross-section of 

members whose maximum plastic rotations 

exceeds their allowable value should be 

increased, while the cross-section of members 

whose maximum plastic rotation is lower than 

their allowable value, should be reduced. 

Investigations have shown that in order to 

establish proper convergence, the variations 

within the structure should be gradual. Thus, 

cross-sections of members at every stage is 

modified according to Eq. (6): 

1[ ] [ ]
pi

i k i k
all

SN SN







 
  

 
                                       (6) 
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In this formula, SNi represents cross-section of 

the ith member, k denotes the number of passed 

steps, and α is the convergence coefficient ranging 

from 0 to 1. Numerous analyses have indicated that 

this coefficient should be a small number so that 

the optimization trend continues slowly and 

uniformly. Larger α results in larger variations in 

the cross-sections of members in the next iteration 

and larger convergence rate, and vice versa. 

However, if this coefficient is chosen to be large, it 

is more likely for the optimization algorithm to 

show instability and divergence. This coefficient is 

chosen between 0.005 and 0.04 for members of 

steel moment frames. If the corresponding member 

approaches its allowable limit (for example the 

Θpi-to- Θall ratio is approximately 1), then the 

coefficient of α is chosen to be 0.005 in order to 

prevent the member to diverge from the allowable 

limit. However, if the demand of the corresponding 

member is significantly lower than its allowable 

limit, the power of α is chosen to be 0.04 to 

accelerate the convergence rate. Preliminary 

analyses show that the selection of a constant 

coefficient for the beams and columns in the 5-

story frame can lead to convergence of the 

problem, while in the 10-story frame, divergence 

of the trend is observed and consequently the 

optimization algorithm is interrupted. This is 

because the resulting structure after the first 

iteration is too weak to be subjected to earthquake 

loads (for example, the cross-section of a member 

is too small). Furthermore, as the nonlinear 

analysis of this structure is not able to proceed, the 

optimization algorithm stops. Therefore, variable α 

coefficient has been used to prevent excessive 

variations in the members and in turn improper 

structures. 

5. Next, in order to ensure that the frame can 

endure gravity loads, the frame is re-analyzed 

under gravity loads. If some members cannot 

withstand the gravity load, they will be 

strengthened gradually. 

6. Using modified cross-sections, the optimization 

process is repeated again from the second step. 

It is expected that the error function in the new 

structure is lower than the corresponding value 

in the previous structure. The optimization 

operation is repeated until the error function 

becomes small enough and a relatively uniform 

distribution is obtained for the plastic rotations 

of the members. 

 

4. Case Studies 

To evaluate the optimization algorithm 5 and 

10-story steel moment resisting frames were 

considered. Uniformly distributed dead load of 

35.3 kN/m was assumed to be applied on all beams 

and uniform service live load was considered as 

11.8 and 8.8 kN/m for floors and roof level, 

respectively. Figure (1) shows the 5 and 10 story 

frames [14]. 
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Figure 1. Finite element models for 5-bay moment-resisting 
steel frames with 5 and 10 floors. 

 

To eliminate the over-strength effect in the 

design procedure, conceptual auxiliary sections 

were artificially developed by assuming a 

continuous variation of section properties. To 
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achieve this goal, section dimensions (i.e. total 

height, flange width and web thickness) are 

approximated by exponential equations with 

respect to cross section, as the only effective 

parameter (as shown in Figure (2) for height of 

section). IPB and IPE sections, according to DIN-

1025 standard, were chosen for columns and 

beams, respectively. All structural models should 

withstand the gravity loads. ASCE07-10 has been 

considered for gravity loads and ASCE07-10 

lateral load pattern has been used to achieve a 

preliminary design of the frames. Note that it is an 

arbitrary and unnecessary assumption. The 

AISC360-2010 has been used for force controlled 

members, while the life safety (LS) performance 

level according to ASCE-SEI41-06 has been 

utilized for deformation controlled members. Since 

in the optimization algorithm the aim is to achieve 

the optimal structure, the inter-story drifts are 

neglected in the preliminary design [14]. 

 

 

Figure 2. Exponential equation between H (height of the 
cross section) versus A (cross section). 

 

5. Ground Motions 

To investigate the efficiency of the proposed 

method, five medium-to-strong natural ground 

motion records were obtained from PEER ground 

motion database (Pacific Earthquake Engineering 

Research Center (PEER),  2000)  as listed in 

Table (1). All of the selected records correspond  

to sites of soil profile C according to USGS,  

which is similar to soil type D of ASCE/SEI 7-10 

(American Society of Civil Engineers (ASCE), 

2010) and were recorded in a low-to-moderate 

distance from the fault rupture (between 5 and 15 

km) with rather high magnitudes (i.e. Ms > 6.7). 

These records were used directly without being 

normalized [14]. 
 

6. Optimization Analyses 

   First, the preliminary design is obtained based on 

typical loadings of ASCE07-10 and according to 

the AISC360-10 specifications [15]. Then using a 

program previously written in MATLAB and by 

employing OpenSees to conduct the nonlinear 

analyses, the optimization algorithm starts. During 

the optimization procedure, the structure is initially 

analyzed under the earthquake loadings using 

OpenSees [16]. Afterwards, the analysis results are 

exported to MATLAB to provide OpenSees with a 

new structure (if any changes are required for the 

cross-sections) for analysis after assessing its 

structural performance. This procedure continues 

until achieving the optimal structure, where in 

every step the structure undergoes gravity load to 

ensure its adequacy. In order to investigate the 

efficiency of the presented optimization design 

method, 5 and 10-story steel moment resisting 

frames were optimally designed undergoing five 

natural earthquakes. The obtained results suggest 

that for all considered cases, the proposed 

algorithm results in reduction in structural weight 

as well as improved structural performance under 

seismic excitation. These results are shown in 

Figures (3) and (4) for the 5 and 10-story frame 

under Imperial Valley earthquake. 

 
Table 1. Characteristics of ground motions [14]. 

EQ. # Earthquake 
Record/ 

Component 
Station Magnitude (Ms) 

PGA 
(g) 

PGV 
(cm/s) 

PGD 
(cm) 

16 Duzce, Turkey 1999 DUZCE/DZC270 Duzce 7.3 0.535 83.5 51.59 

17 Imperial Valley 1979 IMPVALL/HE04140 955 El Centro Array #4 6.9 0.485 37.4 20.23 

18 Loma Prieta 1989 LOMAP/G03000 47381 Gilroy Array #3 7.1 0.555 35.7 8.21 

19 Cape Mendocino 1992 CAPEMEND/PET090 89156 Petrolia 7.1 0.662 89.7 29.55 

20 Northridge 1994 NORTHR/NWH360 24279 Newhall - Fire Sta 6.7 0.59 97.2 38.05 
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 (a)                                                                                                 (b) 

          

(c)                                                                                                 (d) 

Figure 3. The results of the optimization of 5-stroy frame in Imperial Valley Earthquake, (a) changes of the structural weight 
across different steps, (b) variations of the error from the allowable value, (c) maximum inter-story drift of the 
frame every 10 steps, (d) the maximum inter-story drift of the frame. 

 

             

(a)                                                                                                 (b) 

         

(c)                                                                                                 (d) 

Figure 4. The results for optimization of 10-stroy frame in Imperial Valley Earthquake, (a) changes of the structural weight 
across different optimization steps, (b) variations of the error from the allowable value, (c) maximum inter-story 
drift of the frame every 10 steps, (d) maximum inter-story drift of the frame. 



 

Hassan Moghaddam and Seyed Mojtaba Hosseini Gelekolai 

20                                                                                                     JSEE / Vol. 19, No. 1, 2017       

 

   As shown in Figures (3a) and (4a) the 

variation in structural weight becomes negligible 

and tends towards a constant value. This is the 

optimum weight of the structure for that specific 

earthquake that depends on the earthquake 

intensity and characteristics. The negligible 

variation in the structural weight at the end of      

the diagrams shown in Figures (3a) and (4a) are 

due to the fact that the algorithm still tries to 

optimize the structure in the following iterations, 

but is only able to change the cross-sections to a 

little extent. Therefore, at the final iterations the 

structural weight fluctuates around the optimal 

cross- sections of the frame. These fluctuations can 

also be observed in terms of error variations 

(Figures (3b) and (4b)). The error function 

decreases from 0.75 to 0.1 at the end of the 

optimization procedure and it means that the 

performance criteria of the frame’s elements 

approach LS limitation boundary of ASCE-SEI-

4106. 

Figure (3b) illustrates that the first frame’s 

weight designed according to ASCE07-10 is 19.8 

(ton), then at the end of optimization the weight 

decreases to 11.8 (ton). It means that the procedure 

reduces the weight by 40% and also the frame is in 

the Life Safety level according to ASCE-SEI-4106. 

Besides for 10-story frame, Figure (4b) shows that 

the frame’s weight decreases from 45.7 (ton) to 

29.2 (ton) (i.e. the frame’s weight can be reduced 

by 36% of the first weight). 

 Figures (3c) and (4c) show that at the final 

iterations, the inter-story drifts also exhibit small 

variations due to slight change in the size or layout 

of the cross-sections. Therefore, the inter-story 

drift at the final steps also fluctuate a bit around the 

optimal inter-story drift. Results also show that as 

the structural weight reduces, the inter-story drift 

becomes more uniform. Therefore, the final 

structure has less weight and shows a better 

structural performance in an earthquake event. 

However, no constraint has been set to the inter-

story drift in the optimization algorithm. This, 

itself, can be considered as a validation for the 

optimization algorithm. 

According to ASCE-41-06, inter-story drift at 

LS level is determined to be 2.5% and in both 5 

and 10-story frames, this performance criteria is 

satisfied for the optimized structures. For example, 

in the 5-story frame, the drift of the preliminary 

structure designed according to ASCE07-10, have 

been below 2% at each floor and the frame does 

not have a uniform drift across the floors. 

However, after reaching its optimal state, the inter-

story drifts approach 2.5% across all stories and 

the drift distribution becomes relatively uniform 

across the floors. Thus it could be concluded that 

as the structural weight reduces, the inter-story 

drift becomes more uniform; therefore, the final 

structure has less weight and shows a better 

structural performance in an earthquake event. 

However, no constraint has been set to the inter-

story drift in the optimization algorithm. This, 

itself, can be considered as a validation for the 

optimization algorithm. 

The fluctuations in the optimization trend are 

mainly caused by force controlled columns and 

controlling of the entire structure under gravity 

loads, since one member at one iteration might be a 

deformation controlled member; while in another 

one it might be considered as a force-controlled 

member. In this situation, the algorithm tries to 

equate its maximum plastic rotation to the value 

allowed by the code, where the optimization 

parameter (i.e. ratio of maximum plastic rotation to 

the value allowed by the code) is 0.8, for example. 

At the next step, in order to increase the maximum 

plastic rotation of that member, the member’s 

cross-section becomes weaker. When this happens, 

the member might not withstand the forces, thus 

the member is regarded as force controlled 

member. Afterwards, the optimization parameter 

(i.e. ratio of maximum forces applied to the value 

allowed by the code in this step) changes abruptly 

to 1.3 for example. Now in order to decrease the 

ratio of maximum forces applied to the value 

allowed by the code, the member’s cross-section 

becomes stronger. Figure (5) demonstrates a 

sample of this type of variations in the cross-

section of the columns in the first floor of the 10-
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story frame. As it can be seen, due to the symmetry 

in the structure, the trend of C02 and C05 as well 

as C03-C04 and C01-C02 columns is relatively 

similar. Due to the fact that when the cross-

sections become weaker, the column might 

undergo force controlled member’s criteria, thus 

strengthening of the cross-section is required and a 

sudden increase in the cross-section strength might 

be observed. 

 

 
Figure 5. The trend of changes in the cross-section in the 

first-floor columns of the 5-story frame in Imperial 
Valley Earthquake in different steps. 

 

Figure (6) also indicates that the cross-sections 

of the beams tend towards a constant value at the 

end iterations. Since the beams are deformation 

controlled members, the optimization algorithm 

tries to weaken them so that they exhibit more 

plastic rotation. However, the beams should be 

strong enough under gravity loads, so their cross-

section cannot be reduced more than a certain 

level. 

 

 
Figure 6. The trend of changes in the cross-section in the 

first-floor beams of the 10-story frame in Imperial 
Valley Earthquake in different steps. 

Maximum drift ratio among stories in optimum 

frame during earthquake No. 5 is 6% occurs in 4th 

floor, during earthquake No. 4 is 5.2% occurs in 

3th floor, during earthquake No. 2 is 4.2% occurs 

in 5th floor, during earthquake No. 1 is 4% occurs 

in 5th floor and during earthquake No. 3 is 3.3% 

occurs in 5th floor according to Figure (7). 

Therefore, the trend of maximum story drift ratios 

for 5 story frames is EQ.5> EQ.4> EQ.1> EQ.2> 

EQ.3 (although the maximum drift ratio of EQ.2  

at 5th floor is larger than that for EQ.1 (i.e. 4.2 > 4) 

but average of the maximum drift ratios of   EQ.1 

is more than those for EQ.2). Thus it could be 

concluded that the optimum frame for EQ.5 has 

more weight than that for EQ.4, this is an obvious 

observation in Figure (8) in which the optimum 

frame weight in EQ.5 is 14.2 (ton), in EQ.4 is 

14.05 (ton), in EQ.1 is 12.7 (ton), in EQ.2 is 11.8 

(ton) and in EQ.3 is 11.2 (ton). Figure (9) also 

shows the trend of maximum drift ratio of 10-story 

frames as: EQ.1> EQ.5> EQ.4> EQ.2> EQ.3, this 

trend is also verifiable according to Figure (8) in 

which optimum frame weight in EQ.1 is 34.6 (ton), 

in EQ.5 is 33.6 (ton), in EQ.4 is 31.3 (ton), in EQ.2 

is 29.1 (ton) and in EQ.3 is 28.4 (ton). 

Since stronger earthquakes caused more damage 

and more drift ratios in stories during earthquakes, 

the optimization algorithm tend to increase the 

frames weigh (i.e. strengthen the frames) in order to 

withstand the severe earthquakes and maintain the 

performance level of the frames in LS level range. 

 

 

Figure 7. Maximum drift ratios of stories in optimum frame 
for different earthquakes. 
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Figure 8. Final Error and optimum weight of frames in different earthquakes. 
  

 

 

Figure 9. Maximum drift ratios of stories in optimum frame 
for different earthquakes.  

 
Figure (8) shows the Error function value at   

the final iteration and the optimum weight of 5 and 

10 story frames in different earthquakes. As it can 

be seen in all the cases for 5 and 10-story frames, 

the error function value reaches a small number 

(almost 0.1) and it means that the frame 

approaches to the LS performance level at the final 

iteration, and also the weight of the frame achieve 

its optimal value. The reason why the error 

function did not reach zero, is the fluctuation of  

the cross-sections around the final cross-section   

as well as variation of the category of columns 

from deformation-controlled to force-controlled 

members. 

Average of maximum drift ratio of stories in 

optimum frame for five natural earthquakes versus 

maximum drift ratio of ASCE designed frame are 

shown in Figure (10). Although the drift ratios of 

the optimum frame are larger than drift ratio of 

ASCE designed frame but the structural 

performance level are still in LS performance level 

and the weight of the optimum frame is significantly 

less than those for ASCE designed frame. 

 

 

Figure 10. Average of maximum drift ratio of stories in 
optimum frame for 5 natural earthquakes 
versus maximum drift ratio of ASCE designed 
frame. 

 

7. Conclusion 

In current study, 5 and 10-storty steel moment 

resisting frames were designed according to the 

seismic codes and were afterwards optimized 

under five actual earthquakes. Results indicate that, 
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the proposed method improves the behavior of the 

structure in terms of uniform inter-story drifts and 

reduction in structural weight for all the considered 

cases. It should be noted that in the optimized 

structures the plastic rotation performance criteria 

for the LS level of the ASCE 41-06 are satisfied. 

It has been shown in this study that the method 

tend to increase the weight of the optimum frames 

in severe earthquakes, thus the optimization 

algorithm can easily take into the account the 

intensity of the imposed motion on the optimum 

frame. In this method for each earthquake the 

frames approach to an optimum weight in which 

the structural performance is also equal the one 

that designer was selected to be, so in this frame all 

of the materials are in optimum use in the frame. 

The optimization algorithm can also be used for 

static seismic loads and all other type of loads such 

as temperature, soil pressure, etc. either in static 

case or dynamic case with the corresponding 

constraints and desirable performance. In the 

proposed method, the structural performance was 

chosen to be LS level but one can easily change the 

desirable behavior of the frame to IO level or other 

performance criteria of stories such as drift, 

acceleration, etc. can be used. 

The convergence coefficient, α, is an effective 

parameter in the optimization procedure. If a 

smaller number is chosen, the optimization trend 

moves towards the optimal structure with smaller 

fluctuations and slower rate. On the other hand, if a 

larger number is chosen, the optimization rate 

increases, but the fluctuations may increase to an 

extent that might disrupt the optimization 

procedure. Therefore, for the convergence 

coefficient of α for the steel moment resisting 

frame members, a range between 0.005 and 0.04 

has been proposed depending on the difference 

between the optimization parameter and the 

allowable code based value, so that both the 

optimization algorithm rate is high and the 

divergence of the optimization trend is prevented. 

In this study, the frames approach their optimum 

state in only 20 iteration while other optimization 

algorithm such as genetic algorithm need a lot 

more iteration to approach the optimum frame, 

thus the proposed method is a strong and time-

saving way to optimize the frame under seismic 

excitation. 

One of the most important limitations of the 

proposed method is the sensitivity of the optimal 

response to the ground motion selection. In order 

to overcome this limitation, synthetic earthquakes 

according to the ASCE07-10 code spectrum can be 

used. 
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