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ABSTRACT

Available online at: http://www.iiees.ac.ir/jsee

It has been revealed that both elastic and plastic components of the granular soils
behavior are affected by the stress induced anisotropy as a result of the history of
previous shear loadings. While the influence of fabric anisotropy on the plastic
elements of the elasto-plastic constitutive models has been extensively studied in
the literature, the anisotropic elastic response is usually neglected mainly because
of avoiding complication. Herein, a simple anisotropic elasticity theory is pro-
posed. To this aim, the fourth order elasticity tensor is related to a second order
fabric-dilatancy tensor describing magnitude and direction of induced anisotropy.
Proper constitutive equations for calibration of the proposed elasticity theory
using data of triaxial and simple shear tests are presented. Then, the introduced
elasticity theory is implemented within an advanced sand constitutive model. The
model predictions are compared with the experimental data of independent
research teams. It is shown that the modification of the basic platform by the
proposed anisotropic elasticity theory leads to improvement of liquefaction
predictions.
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1. Introduction

Occurred on June 20, 1990 in northern areas of
Iran, the disastrous Manjil Earthquake (M = 7.3) is
still considered among the strongest registered
seismological events of the region. After the earth-
quake, the signs of earthquake induced liquefaction
were extensively observed in the fluvial plain of the
Sefidrood River. In two particular areas in Astaneh
city (amax /g ≈ 0.15-0.20), severe damage to wooden
framed brick residential houses due to liquefaction
has been reported. In these areas, very loose sand
layers (NSPT = 3-10 at depth of about 7m) were found,
which were very prone to liquefaction under seismic
loads. In Roodbaneh, a small local town about 7km
east of Astaneh, the main road through the town
and the roadside houses were suffered from the
liquefaction induced lateral spreading (horizontal
movement about 200cm together with 50cm settle-
ment). Besides, the liquefaction in Roodbaneh induced

a small-scale slide as a result of the low value of
the mobilized shear stress in the liquefied stratum. A
detailed investigation of the geotechnical aspects of
the Manjil Earthquake can be found in Ishihara et al
[1]. Loose saturated granular soils are very common
in costal urban and industrial areas in both north and
south of Iran. In addition, from a seismological view,
both regions are very active. Hence, the possibility
of injuries due to liquefaction induced phenomena
indicates further studies on the mechanisms of
liquefaction and their remedy.

Understanding the mechanical behavior of granu-
lar soils subjected to shear stress and the related
constitutive modeling are of great interest in soil
mechanics and geotechnical engineering. As a con-
sequence, this issue has been the subject of many
sophisticated studies in the past decades, e.g. [2-19].

Been and Jefferies [2] suggested that the current
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state of granular soils can be measured by two state
variables: (a) a state parameter which takes into
account the combined influence of density and mean
principal effective stress, and (b) a fabric state
parameter which quantifies the micro-scale charac-
teristics of granular media based on the geometrical
factors such as the orientation of voids, normal
vectors to the contact planes between grains, and
the preferred orientation of grains. A glance at the
literature indicates that this suggestion has been the
cornerstone of many innovations in the field of
constitutive modeling in the recent decades. Using
the state diagram, Been and Jafferies [2] introduced
a state parameter based on the distance of the
current soil state from a conjugate state on the criti-
cal state line with the same value of mean principal
effective stress. Since then, it has been shown that
the proposed state parameter of Been and Jefferies
[2] may not be unique and other effective state
parameters have been introduced, e.g. [12, 16, 20,
21, 22]. Following the suggestion of Muir Wood et al
[23], a number of state-dependent constitutive
models were created, e.g. [11, 12, 21, 24]). By
incorporating state parameters in their formulation,
these constitutive models are capable of providing
reasonable predictions for the mechanical behavior
of sands over wide ranges of states by using a unique
set of parameters. The other major advancement has
been achieved in the last decade by considering the
influence of fabric anisotropy in sands constitutive
modeling, e.g. [14, 18, 19, 25, 26]. In these models,
some ingredients of the previous generation of
constitutive models were related to fabric tensors to
improve their predictive capacity to consider various
aspects of the anisotropic behavior of granular soils.
The fundamental studies using photo-elastic materi-
als and Discrete Element Method have indicated
that the history of previous shear loadings (specially
the last one) may leave remarkable anisotropy in
granular media, e.g. [27-31]. The anisotropy leads
to the strong tendency of granular soils to contract
(say to pore pressure build up) in unloading parts of
the butterfly loop in constant volume stress paths.
The butterfly loop is generally where the sand state
steps in liquefaction and post-liquefaction state.
Hence, any success in constitutive modeling of sands
in the butterfly loop conveys a victory in liquefaction
modeling. By using a fabric-dilatancy tensor,
Papadimitriou et al [25] introduced a modified
plastic hardening modulus to simulate this particular

behavior. Dafalias and Manzari [18] suggested a
modified dilatancy function that leads to a massive
contraction in unloading portions of the butterfly
loop. In all theoretical works described above [9-19]
and [21-25], it has been assumed that the elastic part
of the behavior remains isotropic even at very large
shear deformation when the fabric of soil becomes
highly anisotropic. This assumption is not realistic,
and experimental studies have shown that the elastic
part of behavior also becomes anisotropic when
geomaterials are subjected to large shear deforma-
tions, e.g., [5, 32-34].

In this study, based on the physical consideration
on sand response subjected to undrained shearing, a
simplified anisotropic elasticity theory is proposed
in section 3. Detailed formulation of the bounding
surface plasticity model of Dafalias and Manzari
[18] in multiaxial stress and strain spaces is pre-
sented in section 4. Then, the introduced elasticity
is implemented within the bounding surface plasticity
platform. Finally, the modified model is evaluated
against monotonic and cyclic data in section 5.

2. Re-Visiting the Isotropic Elasticity Theory and
its Limitations in Modeling of Granular Soils

Assuming a linear dependence between the rates
of stress and the corresponding strain tensors, the
most fundamental constitutive equation in elasticity
theory is:

eεσ && E=                                                             (1)

where σ and ε are respectively the second rank
stress and strain tensors. E, the elasticity tensor, is
a forth rank tensor whose main role is defining
pro-portionality in Eq. (1). Using the representation
theorem for isotropic functions, it has been shown
that the most general form of E for isotropic materi-
als can be represented by [e.g. 35]:

)(21 jkiljlikklijijklE δδ+δδφ+δδφ=                      (2)

where iφ  (i = 1, 2) are material constants. Eq. (2)
indicates that the minimum number of independent
material parameters for constitutive modeling of
the elastic behavior of isotropic continuums is two.
Recalling the conventional forms of isotropic elastic-
ity in continuum mechanics, one can conclude that

iφ (i = 1, 2) should be functions of Lame constants.
For example, replacing φ1 and φ2, respectively, by
(K-2/3G) and G, Eq. (2) is transformed into the
following familiar form:
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)()3/2( jkiljlikklijijkl GGKE δδ+δδ+δδ−=        (3)

where, G and K are, respectively, the elastic shear
and bulk moduli which may be measured using very
small strain (shear strain less than 10-6 in soils)
testing techniques such as resonant column or bender
element.

As a result of the incomparable simplicity in both
realization and application, the theory of isotropic
elasticity (Eqs. (1) to (3)) has been widely employed
in engineering sciences, including geomechanical
engineering. The backbone of the isotropic elasticity
theory is based on the experiments on metals,
especially steel; however, a substantial difference
exists between the nature of metals and geomaterials
(e.g., soils). In the recent years, the micromechanical
response of granular media has been extensively
studied in laboratory using photoelastic materials in
conjunction with image analysis, and by numerical
methods such as Discrete Element Method [e.g.,
27-31]. These studies have revealed that when
granular soils are subjected to shear stress, they gain
their strength by creating new force chains as well
as strengthening the existing ones oriented toward
the major principal stress axes. These phenomena
are accompanied by weakening or erasing those
weak force chains in the opposite direction (toward
the minor principal stress direction). It is worth
noting that the applied external loads are transferred
in granular media through the network of the men-
tioned force chains. Having the same trend, it has
been  reported that grains in sheared granular media
re-arrange their contact points in such a way that
the normal vectors to their contact points tend to be
oriented towards the major principal stress direction
[e.g., 27-31]. Rose diagrams drawn based on the
direction of normal vectors to the contact points
between grains indicate that the fabric of initially
isotropic granular materials becomes gradually
anisotropic by applying shear stress. The fabric
evolution is accelerated when the volume change
response becomes dilative (after the initial transient
contraction). Finally, the fabric anisotropy reaches a
saturate state at large shear strains.

The observed behavior of granular materials
from the micromechanical perspective shows that
the fabric of such media becomes anisotropic when
they are subjected to shear stress. As a consequence,
the reliability of the assumption of the isotropic
elastic behavior of granular soils should be re-

Figure 1. Effective stress path a cyclic torsion shear test: (a)
the complete stress paths; (b) an elastic unloading-
reloading cycle in contractive part of behavior; (c) an
elastoplastic loading-elastic unloading cycle in
dilative part of behavior (data from [5]).

evaluated. Surprisingly, experimental works do not
support the assumption of isotropic elasticity for
granular soils under shear [e.g., 5, 32, 33, 34]. To
investigate this issue, the result of an undrained
simple shear test in torsional shear apparatus [5] is
presented in Figure (1). In this test, a number of
small unloading-reloading cycles were imposed on
the sample during the main loading, see Figure (1a).
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The measured behaviors of the sample in two
different states “1” and “2” are considered in parts
“b” and “c” of Figure (1). The sample was in
contractive phase and mean principal effective
stress decreased gradually before the sample was
subjected to a small elastic unloading-reloading
cycle in state “1”, see parts “a” and “b” of Figure
(1). It is observed that the slope of the tangents to
AB and BC with respect to the p-axis is nearly
vertical. The sample has experienced a massive
dilation in elastoplastic loading path, see AB in
Figure 1(c), which followed by an elastic unloading,
see BC in Figure (1c) in state “2”. It is widely
accepted that the unloading behavior of soils
immediately after elastoplastic loading is rather
pure elastic. Hence, the path BC in Figure (1c) is
also representative of the elastic response of the
soil sample. Comparing the paths BC in parts “b”
and “c”, one can find that in part “c” the slope of
the tangent to the elastic path with respect to the
p-axis is not vertical (the same scale is used for the
vertical and horizontal axes of both figures). Now,
we re-visit Eq. (3) in conjunction with Eq. (1) to
discover whether the isotropic theory is capable of
simulating these behaviors or not. For simple shear
loading, the isotropic elastic response results in:

eG 1212 2 ε=σ &&                                                      (4)

03/)( 332211 =ε=σ+σ+σ= e
vKp &&&&&                       (5)

To clarify the outcome of Eq. (5), it must be
noted that drainage is not allowed, and therefore,
the volumetric strain rate becomes zero in undrained
shear. As a consequence, the rate of mean principal
effective stress, ,p&  should be zero under undrained
simple shear loading when the material behavior is
assumed both isotropic and elastic. At each stress
state on stress path, the ratio p&& /12σ  indicates the
instantaneous slope of the tangent to the stress path.
Considering Eqs. (4) and (5), value of the ratio

p&& /12σ  is always infinite for isotropic elastic materi-
als subjected to undrained simple shear, and the
stress paths of such materials should be vertical with
respect to the p-axis. By referring to Figure (1b), it is
observed that the slope of the tangent to the elastic
unloading and elastic re-loading stress paths are
nearly vertical. This means that the initial and induced
anisotropy at state “1” are negligible. In an opposite
manner, a remarkable deviation from the vertical

direction can be observed for the tangent to the
elastic unloading path (BC) in Figure (2c) that cor-
roborates the existence of a remarkable anisotropy
at state “2”. Based on the presented experiment
result, the following points can be concluded: (1)
the assumption of isotropic elasticity is not reason-
able in granular soils; and (2) anisotropy evolves
mainly in the dilative portion of behavior. These
points are the cornerstone of the modification
proposed in this study.

3. Effect of Induced Anisotropy on Elastic
Response

Although the anisotropic elasticity theory has not
yet been well considered in geomechanical engineer-
ing applications, a large number of revolutionary
studies on this issue have been published in the
literature by the mathematicians and the researchers
who work on the theoretical fields of the mechanical
engineering. There are numerous methods suggested
by researchers accounting for the influence of
anisotropy on the elastic response of materials. For
example, by using the representation theorem for
isotropic functions, it has been shown that the most
general form of Eijkl for anisotropic materials is
[e.g., 36-38]:
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where, φ i (i  =  1-12) are independent material
parameters which are functions of trZ, trZ 

2, and
trZ 

3; and Z is a proper traceless fabric tensor. The
concept of fabric tensor has been introduced to
characterize the spatial distribution of micromecha-
nical geometric properties of geomaterials such as
direction of contact planes between grains and their
evolution with shear stress [35, 39, 40, 41]. The most
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general form of a second order fabric tensor, Hij, is
[35]:

∫ ϖϖ
π

= Ω ΩΩ dHH jiij )(
4
1                                  (7)

where, the function H(Ω) denotes the spatial statisti-
cal distribution of an anisotropic micromechanical
property such as the distribution of normal vectors
to the contact planes. Ω represents the surface of a
unit sphere used for calculation of Eq. (7). For the
selected configuration, rϖ (r = 1-3) are the direction
cosines of normal vector to the contact planes. Based
on Eq. (7), the most general traceless fabric tensor,
Z, becomes:

IHH )(3/1 trZ −=                                              (8)

For isotropic materials, Z = 0 and Eq. (6) trans-
forms into Eq. (2).

According to Eq. (6), at least twelve independent
material parameters are required if one attempts to
consider the influence of fabric anisotropy in a
complete manner. The importance of this issue
becomes much apparent when it is noted that the
whole number of parameters in the recent well-
known constitutive models such as MIT-S1 [13],
UBCSAND [17], and in SANISAND [11, 18, 25]
is 13, 9, and 15, respectively. Thus, the application
of the anisotropic elasticity theory of Eq. (6) in its
complete form nearly doubles the number of the
model parameters which is undesirable. To over-
come this limitation, it is decided to use a truncated
form of Eijkl, which only takes into account the
influence of terms with the first order of dependence
on Z:
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In the following lines, it is shown that the above
selection is capable of describing the instantaneous
slope of the tangents to the stress paths at any
given points on very small unloading-reloading
cycles.

3.1. Selection of Proper Parameters for the Aniso-
tropic Elasticity Tensor

By using Eq. (1) in conjunction with Eq. (9), trace
of the stress rate tensor becomes:
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Considering that Z is a traceless tensor (i.e., trZ
= 0) and ,)3/1( mmp σ= &&  ordinary algebra operations
reduce Eq. (10) to:
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The rate of shear stress tensor is calculated by:
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Some ordinary algebra leads to the following
expression for the rate of shear stress tensor:
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Hence, the ratio psij && /  can be calculated by:
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As mentioned before, slope of the tangent to
stress path can be used as a description of fabric
anisotropy. In this regard, slope of the tangent to stress
path is determined by the ratio )//(/ 3311 pspspq &&&&&& −=
in constant volume triaxial loading. For the case of
simple shear, the ratio ps && /12  can be used to describe
the slope of the tangent to stress path. The same
trend can be found for unconventional stress paths.
It is observed that in all cases, having the ratio psij && /
is an essential factor.

In a general undrained (constant volume) shear
test, Eq. (14) is reduced to:

(12)
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An example of such a test described above is
schematically shown in Figure (2). It was started at
isotropic stress state (p  =  284kPa). Then it was
subjected to undrained shear with the maximum
amplitude = 150kPa. During the reversal points R1
and R2, the sample stress path formed a butterfly
loop which is a signal of cyclic mobility. In R1 and
R2, the fabric is nearly in fully anisotropic saturate
state, which indicates that if the current loading is
followed to the critical state, the excessive shearing
would not result in further evolution of fabric. Fabric
is a direction-dependent property. Hence, due to the
opposite directions of loading prior to R1 and R2,
signs of the corresponding terms in fabric tensor for
R1 and R2 should be opposite; however, their magni-
tudes are nearly the same. Immediately after R1 and
R2, the sample is elastically unloaded. The tangents
to the stress path at R1 and R2 are illustrated in
Figure (2). It is observed that the slopes of the
tangent lines are opposite, but the values of the
slopes with respect to the p-axis are relatively the
same, because at both points fabric is nearly in
saturate state. Considering this discussion, the
terms e

klkl eZ &)3/4( 43 φ+φ  and −+φ )(2[4
e
kikj

e
kjik eZeZ &&

])3/4( ij
e
klkleZ δ&  does not change sign upon reversal

(because at loading reversal points, signs of Z and
ee&  are always the same); however, the sign of the

term e
ije&22φ  changes with the change of shear strain

direction. Moreover, it was also discussed that the
slopes of the tangent lines at R1 and R2 have the
same values but the opposite signs. Considering
these points, the latter phenomenon is not possible
unless 4φ  becomes zero. Referring to Eqs. (2) and

(3) for isotropic condition (Z=0), ,3/21 GK −=φ  and
G=φ3  are selected. Moreover, by changing nota-

tion ,3φ=Φ  the following constitutive equations
are obtained:
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By considering Eq. (16), it is observed that the
presence of fabric anisotropy (Z≠ 0) results in the
dependence of the rate of mean principal stress on
both elastic volumetric and shear strains. A similar
coupling for the shear stress tensor can be found in
Eq. (17). For the case of isotropy (Z = 0), Eqs. (16)
to (18) are reduced to the conventional elasticity.

3.2. Calculation of Φ Using Conventional Tests

An agreed versatile fabric tensor fitting all aspects
of the mechanical behavior of granular media is not
available at this time; however, there are some
suggestions in the literature which can be applied
for particular purposes. Herein, the fabric-dilatancy
tensor of Dafalias and Manzari [18] with the follow-
ing evolution law is adopted:

][ max ZnZ −ε−= Z c p
vz &&                                  (19)

where, cz and Zmax are material constants. This
evolution law fulfills many of the previously described
requirements, including: (1) direction dependency;
(2) evolution with dilation; and (3) the existence of a
saturate state.

In practice, G and K, see Eqs. (16) and (17), can
be measured using resonant column, bender element,
or any other small amplitude shear tests. As previ-
ously discussed, valuable data on the evolution of
anisotropy may be extracted from the slope of the
tangents to constant volume stress paths. When the
soil state enters the dilative part of the butterfly loop,
the fabric (and hence, the fabric tensor) is in saturate
or nearly saturate state. By using these points and
Eq. (19), one can obtain the following relationship
for the slope of the tangent to stress path in constant
volume triaxial tests immediately after unloading in a
butterfly loop:Figure 2. A typical constant volume test in sij-p plane.
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where, βTX is slope of the tangent to stress path in
the butterfly loop immediately after unloading, and
q (deviator stress) = .31 σ−σ  By rearrangement of
terms, one has:

TXaxm 
Z

G
β

=
6Φ                                                 (21)

Study of available liquefaction data indicates
that 3≈βTX  is a good estimation for various sands.
This can simplify Eq. (21) to the following form:

xma  
Z

G8.0
≈Φ                                                       (22)

Finally, performing the same calculations for
simple (torsional) shear tests leads to:

SSaxm 
Z

G
β

=
2Φ                                                 (23)

where, βSS is the slope of the tangent to stress path
in undrained simple (torsional) shear  tests (measured
in σ12 - p plane). In the proposed anisotropic elasticity
theory, Φ plays the role of the third elastic moduli
which can be calibrated by Eqs. (21) to (23).

4. General Formulation of a Bounding Surface
Sand Plasticity Model

For implementation of the proposed anisotropic
elasticity, the critical state compatible bounding
surface plasticity model of Dafalias and Manzari
[18] is selected. In the following lines, detailed
formulation of this model is described.

Total strain rate tensor is decomposed into the
elastic and plastic parts:

pe εεε &&& +=                                                       (24)

where superscripts “e” and “p” indicate the elastic
and plastic branches. The elastic part of strain rate
tensor is calculated here by the anisotropic elasticity
theory presented in the last section. In the absence
of low amplitude shear tests, G and K can be esti-
mated by experimental correlations suggested by
Hardin and Richart [42]:
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in Eq. (25), e is the current value of void ratio, and
pref is a reference pressure that can be taken as the
atmospheric pressure ( ≈ 101kPa). In its definition,
the elastic bulk modulus in Eq. (26) is related to
the elastic shear modulus through the Poisson's
ratio (v). Regarding the third elastic modulus, Φ is
calculated using Eqs. (21)-(23).

Yield surface describes domain of pure elasticity
in multiaxial stress space:

03/2)](:)[()( 2/1 =−−−= mpppf ααασ, ss    (27)

Yield surface of Eq. (27) has a cone shape with
circular cross section in principal stress space and
its apex is fixed on the origin of stress space. α is
back-stress ratio which is a second order traceless
tensor indicating the location of the yield surface
axis in deviator plane, see Figure (3). Plastic strains
may be generated when stress state reaches the
yield surface and attempts to move beyond its
domain. At such a moment, the gradient to the yield

Figure 3. Schematic view of the model constitutive surfaces.
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surface becomes:
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                                 (29)

In above equations, r (= s / p) is shear stress ratio
tensor, and n is a traceless unit tensor (n : n = 1)
indicating the yield direction in deviator (π) plane,
see Figure (3).

By adopting a non-associated flow rule, the plas-
tic strain rate is calculated by:

])3/1([ InR D p +== ΛΛε&                          (30)

where D is dilatancy function, and Λ  is loading
index which indicates the magnitude of plastic shear
strain rate. These terms are introduced in followings.

In addition to the yield surface, the model
employs three other constitutive surfaces: the bound-
ing, the critical, and the dilatancy surfaces, see
Figure (3). Bounding surface defines domain of
accessible stresses. Critical state surface is the
locus of stress states of the samples reached critical
state. Finally, dilatancy surface describes a reference
boundary separating contractive states from those
states in which the behavior is dilative. The model
constitutive surfaces in multiaxial stress space are
mathematically expressed by:

n]),([3/2)( mMcg b
b −θ=θα                         (31)

n]),([3/2)( mMcg b
c −θ=θα                         (32)

n]),([3/2)( mMcg b
d −θ=θα                            (33)

where ),(),( θθ cb  αα  and )(θdα  are, respectively,,
back stress ratios corresponding to the bounding, the
critical, and the dilatancy surfaces. g(θ,c) is a proper
interpolation function which takes into account the
actual shape of bounding, critical, and dilatancy
surfaces in deviator π-plane. θ is the Lode angle,
and c is defined by the ratio Me/Mc. In this definition,
Mc and Me are respectively the slopes of critical state
line measured in the compression and extension
modes of triaxial. Mb and Md are the sizes of the
bounding and dilatancy surfaces measured in triaxial
compression:

)exp( ψ−= bcb nMM                                        (34)

)exp( ψ= dcd nMM                                         (35)

where, nb and nd are two model parameters, and Ψ is
the state parameter [2]:

])/([ ξλ−−=−=ψ refc ppeeee Γ                     (36)

In Eq. (36), ec is the critical void ratio correspond-
ing to the current value of mean principal effective
stress. Γe  and λ are the model parameters.

Dilatancy function is defined by, see Eq. (30):

ndnZ :):1( −+= AD                                     (37)

where, αα −θ= )(dd  is distance between the cur-
rent back-stress ratio and a conjugate back-stress
ratio on the dilatancy surface, and A is a model
parameter. The presence of fabric tensor in defini-
tion of dilatancy enables the constitutive model to
take into account the influence of induced anisotropy
on the plastic portion of behavior.

To consider the possibility of kinematic hardening
of the yield surface, plastic hardening modulus is
defined by:

n
n:b

:)(
)(

in
p GeHK

αα −
=                                  (38)

where, H(e) is a parameter which depends on void
ratio. αα −θ= )(bb  is distance between the current
back-stress ratio and a conjugate back-stress ratio
on the bounding surface. The geometrical rule to
find conjugate points on the bounding and dilatancy
surfaces is illustrated in Figure (3b).

4.1. Explicit form of the Constitutive Equations

Loading index, ,Λ  see Eq. (30) is calculated by:

σ
σ
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f
K

 

p ∂
∂⋅=Λ                                                 (39)

It is preferred to calculate the loading index
based on total stain rates, soil moduli, dilatancy
function and fabric tensor. This goal can be achieved
by considering Eqs. (16), (17), (28), (29) and (30)
into Eq. (39) and performing some algebra opera-
tions which yield to:
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In the case of isotropy (Z = 0), Eq. (40) is reduced
to the following familiar form [11]:
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Now, the stress rate tensor can be expressed by:
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5. The Model Simulations

The modified model of this study introduces Φ as
the sole new parameter to the basic critical state
compatible bounding surface plasticity platform
proposed by Dafalias and Manzari [18]. The calibra-
tion method of the basic model parameters is not
described here and can be found elsewhere [11, 15,
18, 25]. For the new parameter, one can simply
determine Φ through Eqs. (21) or (23) once Zmax
and βTX (or βSS) are determined. In the absence of
detailed data on slope of unloading curves, Φ may be
estimated by Eq. (22).

In the following sub-sections, the modified
model predictions are compared with the experimen-
tal data of six independent research groups on the
mechanical behavior of Toyoura sand.

Figure 4. The modified model predictions versus experimental data of four undrained triaxial loading-unloading tests on medium-
loose (Dr=38%, e=0.833) samples of Toyoura sand (data from [3]).

Figure 5. The modified model predictions versus experimental data of three undrained triaxial loading-unloading tests on dense
(Dr ≈ 56-66%, e=0.726-764) samples of Toyoura sand (data from [3]).

5.1. Simulation of Undrained Triaxial Loading-
Unloading Tests

Verdugo and Ishihara [3] studied the behavior of
Toyoura sand samples prepared by wet tamping
method. In their testing program, isotropically
consolidated samples were subjected to undrained
triaxial loading-unloading shear. The 25% axial
strain was selected as the utmost of the loading
phase. When this strain limit was attained, samples
were unloaded to zero shear stress under constant
volume conditions in unloading phase. The results of
four tests on medium-loose samples of the same
density (e = 0.833, Dr  = 38%) starting at different
values of mean principal effective stress (pin = 100,
1000, 2000, and 3000kPa) are presented in Figure
(4). For three dense (Dr  = 56-66%) samples subjec-
ted to the loading-unloading pattern, the measured
behaviors are presented in Figure (5). Using the
model parameters given in Table (1), the mechanical
behavior of seven tests described above are simu-
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Table 1. The model parameters used in simulations.

lated and depicted together with the experimental
data in Figures (4) and (5). For both loading and
unloading phases, a reasonable correspondence
between the experimental data and predictions
exists.

5.2. Studies on the Influence of the Anisotropic
Elements of the Model

By divesting the model from the elements intro-
duced to take into account the effects of induced
anisotropy, a number of stepwise studies on the
influence of each element on the predictive capacity
of the model are presented in Figure (6). To this
end, predictions by the model of Manzari and Dafalias
[11], which ignores the effect of induced anisotropy
(the model employs isotropic elasticity defined
through Eq. (3), and dilatancy function defined by
D = Ad : n); the model of Manzari and Dafalias [11]
with the anisotropic elasticity of this study together
with dilatancy function defined by D = Ad : n [instead
of Eq. (37)]; and the model of Dafalias and Manzari
[18], which only considers the influence of anisot-
ropy on dilatancy through Eq. (37) are compared.

It must be noted that the model of [11] is the
basic platform in all approaches. In part (a) of
Figure (6), predictions by the model of Manzari
and Dafalias [11] are compared with data. In all
cases, the simulated mean principal effective stress
is larger than the corresponding measured data.
Moreover, a remarkable deviation from data can be
observed in the slopes of stress paths immediately
after the unloading points. These observations
corroborate the model inability in the accurate
simulation of the pore pressure build-up in reverse
loading. Simulations by the model of Manzari and
Dafalias [11] improved by the anisotropic elasticity
theory of this study are presented in Figure (6b). A
sharp shift is observed in unloading point of each
stress path that fits well with the experimental
data. As a result, a tangible improvement is achieved
in all predictions compared to those obtained from

Figure 6. Experimental data of three undrained triaxial loading-
unloading tests on dense (Dr ≈ 56-66%, e=0.726-764)
samples of Toyoura sand versus the correspon-
ding predictions obtained from: (a) the model of
Manzari and Dafalias [11] which ignores the influence
of induced anisotropy; (b) the model of Manzari and
Dafalias [11] modified by the anisotropic elasticity
of this study; (c) the model of Dafalias and Manzari
[18] with anisotropic dilatancy and isotropic elasticity.

 G0 v m M c Γe  λ ξ H(e) nb nd A Zmax cz axmTX
 

β  

Figures  
(4) to (8) 125 0.05 0.01 1.25 0.75 0.934 0.019 0.70 2.46 (1.0 - 1.015e) 1.1 3.50 0.70 2.0 1200 3.0 

Figures  
(9) to (14) 125 0.05 0.01 1.25 0.75 0.976 0.026 0.70 430 exp(-9.0e) 1.0 1.26 0.60 2.0 1200 3.0 
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the basic model of Manzari and Dafalias [11].
Finally, predictions by the improved model of
Dafalias and Manzari [18] by means of anisotropic
dilatancy theory are depicted versus data in Figure
(6c). One can find that considering the influence of
induced anisotropy by relating dilatancy to a proper
fabric-dilatancy tensor can lead to a remarkable
improvement of predictions. Further comparison of
predictions presented in parts “b” and “c” indicates
that none of them is strictly successful in simulation
of the sand response.

Referring to the part “b”, the anisotropic elastic-
ity fits data immediately after unloading when the
mechanical behavior is mainly elastic. A different
manner can be found in part “c”. Due to the
presence of isotropic elasticity, the model predictions
lag behind data immediately after unloading. The
gradual transition of behavior from elastic to elasto-
plastic and the presence of anisotropic dilatancy
function lead to the recovery of the model predic-
tions in the medium to large stages of shear reversal.
This brings us to the conclusion that the combined
application of anisotropic elasticity and anisotropic
dilatancy results in the best performance of the
model over wide ranges of shear stress after
reversal. Comparing part “a” of Figure (5) with
simulations in Figure (6) confirms this idea. The
measured stress path of the sample with e = 0.726
adjacent the unloading point is considered in Figure
(7). The stress paths predicted by three approaches
are identical prior to unloading, see path AB in
Figure (7). As discussed before, isotropic elasticity
theory predicts a vertical tangent to the stress path
immediately after unloading in constant volume shear.
This issue leads to a significant diversity observed
between the prediction obtained from the model of
Manzari and Dafalias [11] and the test result after
the unloading point “B”. However, the modification
of dilatancy function by fabric-dilatancy tensor leads
to refinement of the prediction of constitutive models
in a butterfly loop, see Figure (6c), but this remedy
is not functional immediately after unloading
where the mechanical behavior is essentially elastic.
Hence, the model of Dafalias and Manzari [18] is
also unable to simulate the correct slope of stress
path immediately after unloading.

The sensitivity of the model predictions with
variation of xma 

β (the only newly introduced model
parameter) is studied in Figure (8). Investigation of

Figure 7. Comparison of predictions obtained from the modi-
fied model of this study with anisotropic elasticity,
the model of Dafalias and Manzari [18] with modified
dilatancy function with fabric-dilatancy tensor, and
the original framework of Manzari and Dafalias [11]
in simulation of undrained triaxial loading-unloading
stress path (data from [3]).

Figure 8. A sensitivity study on the influence of maxTX )(β  on
the model predictions.

the behavior of various sands indicates that the
typical value of 0.3≈βmax  is a reasonable assump-
tion. The slope of the unloading path deviates from
the measured data with the increase of .xma  

β
Ultimately by setting ,∞=βmax  the model prediction
transforms to that of Manzari and Dafalias [11] with
isotropic elasticity.

5.3. Simulation of Liquefaction in Cyclic Triaxial
Tests

Numerous researchers have studied monotonic
and cyclic behavior of Toyoura sand samples
prepared by dry deposition method [e.g., 4-8].
However, reliable published works in which the
monotonic and cyclic behaviors are simultaneously
studied are scarce. To overcome this difficulty, by
using experimental data of three independent
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Figure 9. The modified model predictions versus experimental
data of three undrained triaxial tests on medium-loose
samples of Toyoura sand (data from [4]).

researches on the monotonic response of dry depos-
ited Toyoura sand samples, the model parameters
associated with this fabric are determined. Using
these parameters which are given in Table (1),
behavior of ten samples under monotonic constant
volume triaxial loading are simulated and illustrated
with corresponding data in Figures (9) to (11). Once

Figure 10. The modified model predictions versus experimental
data of four undrained triaxial tests on dense to very
loose samples of Toyoura sand (data from [19]).

again, a reasonable agreement is found between the
model predictions and the experiments which are
separately conducted. This issue becomes more
interesting when it is indicated that the values of void
ratio and mean principal effective stress cover wide
ranges of variation in tests. The existing consistency
justifies the propriety of the proposed parameters
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Figure 11. The modified model predictions versus experimental
data of three undrained triaxial tests on medium-
loose samples of Toyoura sand (data from [7]).

for simulation of the mechanical behavior of dry
deposited samples of Toyoura sand. Using these
parameters, three cyclic tests reported by two other
research teams are simulated and comparisons are
shown in Figures (12) to (14). In this regard, results
of a cyclic test on a dense sample of Toyoura sand
started at p=100kPa is taken from Yoshimine and

Figure 12. Comparisons between the data of a triaxial test and
simulations: (a) and (b) test data [6]; (c) and (d)
simulations obtained from the modified model of
this study with anisotropic elasticity  for e=0.74; (e)
and (f) simulations for e = 0.74 by the model of
Manzari and Dafalias [11].
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Figure 13. Comparisons between the data of a triaxial test
and simulations: (a) and (b) test data [8]; (c) and (d)
simulations obtained from the modified model of
this study with anisotropic elasticity  for e=0.73; (e)
and (f) simulations for e=0.73 by the model of
Manzari and Dafalias [11].

Figure 14. Comparisons between the data of a triaxial test
and simulations: (a) and (b) test data [8]; (c) and (d)
simulations obtained from the modified model of
this study with anisotropic elasticity  for e=0.72;
(e) and (f) simulations for e=0.72 by the model of
Manzari and Dafalias [11].
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Hosono [6]. During the test, magnitude of cyclic
shear stress is bounded between +70 and -70kPa.
At the second reversal, the sample state enters the
butterfly loop which is the first sign of coming
liquefaction, and 85kPa  pore water pressure is
accumulated in the third cycle, see parts “a” and “b”
of Figure (12). The modified model predictions are
presented in parts “c” and “d” of Figure (12). For the
aim of comparison, simulation obtained from the
model of Manzari and Dafalias [11] are presented in
parts “e” and “f” of Figure (12). Using the same
preparation method, more recently, Yamada et al [8]
studied the cyclic behavior of dense samples of
Toyoura sand. Two series of evaluations are orga-
nized here using those tests without previous shear
history. The first test performed on a sample
isotropically consolidated at p = 100kPa  and the
shear stress oscillating in range of q = ±39kPa. The
stress path and shear stress versus axial strain of
this test are illustrated in parts “a” and “b” of Figure
(13). Unlike the previous test and due to the lower
amplitude of the applied shear stress, the sample
enters the butterfly loop in the fifth cycle. In the
same cycle, nearly 92kPa  pore water pressure is
accumulated. The last set of comparisons is pre-
sented in Figure (14) using data of another test by
Yamada et al [8] that is started at p = 300kPa with
the maximum shear amplitude in the range q  =
±300kPa. This sample steps in the butterfly loop in
the first cycle, and a maximum of 285kPa  pore
water pressure built up is recorded in the second
cycle of shearing. Predictions calculated by the
modified  model of this study, and by the basic frame-
work of Manzari and Dafalias [11] are presented in
Figures (13) and (14). Like the previous simulations,
it is  observed that inclusion of anisotropic elasticity
results in a concrete improvement of simulations in
the butterfly loop. All simulations presented in
Figures (9) to (14) are obtained from a unique set of
model parameters; however, refined predictions may
be achieved for each set of simulations by imposing
small variation on the parameters.

6. Conclusions

Comparing to other engineering materials, the
mechanical behavior of granular soils is considered
complex because it may be highly non-linear, highly
state dependent, and also highly anisotropic. In the
constitutive modeling of the non-linearity and state

dependency of sands, a remarkable success has
been achieved in the last decades. Regarding the
anisotropy, various aspects of the anisotropic
nature of granular soils are considered in the
constitutive models proposed in the recent years.
However, in order to avoid complexity, the possibility
of the anisotropic elasticity is usually ignored in
formulation of these constitutive models. Herein, a
simplified anisotropic elasticity was proposed by
incorporation of an evolving fabric-dilatancy tensor
in the elasticity tensor. Attempt has been made to
keep the formulation as simple as possible and
compatible with other fabric dependent ingredients
of the existing constitutive models. It was shown
that only one new parameter is required for the
suggested elasticity theory which can easily be
calibrated using the results of conventional constant
volume tests. The introduced anisotropic elasticity
was implemented in a multiaxial bounding surface
plasticity model. It was shown that considering
the possibility of anisotropic elasticity leads to the
improvement of predictions for liquefaction under
cyclic shear loads.
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