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ABSTRACT: A new method for the identification of dominant modal
parameters (natural frequencies, damping ratios and participation
factors) of classically damped linear structures using response to a
multi-component earthquake is presented. If different components of
the base acceleration of a structure are measured, the possibility of
coupling between each of the six components of an earthquake and
the measured absolute acceleration of the structure can be
investigated. After introduction of the modal equations of motion
of classically damped linear systems under multi-component
earthquake, a newly proposed method for identification of the
structural modal parameters is explained and, by application of the
method to a model and on a real structure using artificial and
real earthquake records, the accuracy of the method has been verified.
The results of this verification indicate that the effect of the
multi-input can be important for the identification of modal damping
ratios and modal participation factors, and can improve compatibility
between the recorded acceleration response and the calculated model
response.

Keywords: System identification; Modal parameters; Classical
damping; Linear systems; Multi-component earthquake; Optimal
parameters; Seismic response

Identification of Modal Parameters of Classically Damped

Linear Structures under Multi-Component

Earthquake Loading

M. Mahmoudabadi 1, M. Ghafory-Ashtiany 2, and M. Hosseini 3

1. Introduction

The main effort of structural dynamics is defining
input loads, establishing analytical structural models,
and developing suitable numerical schemes for the
evaluation of a response. The applicability of analy-
tical solutions is limited to the degree of realistic
representation of the formulated mathematical
models. A logical prelude to prediction of the
dynamic response of a system is the determination
of its dynamic properties, which can be made
through the application of system identification
theory. System identification is an inverse structural
dynamics problem which involves determination of
mathematical models and estimation of structural

parameter values on the basis of measured res-
ponses of structures under known inputs or ambient
vibration.

Many system identification techniques are
classified as output-error methods. The system
parameters are obtained by minimizing the
discrepancy between recorded and theoretical
responses of the system. The evaluated parameter
is called an optimal estimate. The main problem in
these techniques is that seismic response is usually
only measured at a few locations in a structure. This
limits the degree to which the dynamic properties of a
system can be resolved. However, modal frequencies,



26 / JSEE: Spring 2005, Vol. 7, No. 1

M. Mahmoudabadi, et al

modal damping ratios and effective participation
factors can be determined, with reasonable accuracy,
for linear models on the basis of a single response
measurement [1]. A generalized modal identification
technique for non-linear systems was also proposed
by Peng [2]. In short, insufficiency of response
measurements makes a modal approach in system
identification popular.

Beck [1] was one of the first to study structural
system identification by determining the linear
models of structures from seismic response data.
He employed an output-error approach, in which
optimal estimates of the model parameters were
obtained by minimizing a selected measure-of-fit
between the responses of the structure and the
model. Because earthquake records are normally
only available from a small number of locations in
a structure, and because of the noise measurement,
it was shown that it is necessary to estimate the
parameters of the dominant modes in the records,
rather than the stiffness and damping matrices.
Beck also applied the modal minimization method
to two multi-story building in the 1971 San Fernando
earthquake. He obtained new information concerning
the properties of higher modes of taller building
and obtained more reliable estimates of the properties
of the fundamental modes of both structures.

McVerry [3] has done work similar to Beck’s for
frequency domain. He developed a systematic
frequency domain identification technique to
determine optimal linear model parameters. In his
method, the periods, damping and participation
factors were estimated for the structural modes
which were dominant in the measured response.
He assumed that structures had a planar behavior
which was the response in a given direction
caused only by the component of the input in that
direction. Identification was made by finding the
values of the modal parameters which produce a
least-squares match over a specified frequency
range between the unsmoothed, complex-valued,
finite Fourier transform of acceleration response
recorded in the structure and that calculated for the
model. It was possible to identify a single linear
model for the entire response, or to approximate
the nonlinear behavior exhibited by some structures
with a series of models optimal for different segments
of the response.

Li and Mau [4] used a multiple -input/multiple-
output system identification procedure for the analysis
of the seismic records. Their procedure was an

extension of the least-square-output-error method
applied to a classically damped linear second order
system. The time varying behavior was modeled
through a time window approach. The records of a
15-story reinforced concrete building in the Whittier
earthquake were analyzed, and it was shown that
the torsional response was significant and was
caused by both the translational and the torsional
motions at ground level.

Goal and Chopra [5] have developed a database
on vibration properties  (period and damping ratio of
the first two longitudinal, transverse and torsional
vibration modes) of buildings “measured” from their
motions recorded during eight earthquakes in
California (1971 San Fernando to 1994 Northridge
earthquake). In their investigation, the natural
vibration periods of 21 buildings were measured
using the system identification method applied to
the motions of buildings recorded during the
earthquakes. They used the system identification
toolbox of MATLAB software [6] for identification
of modal frequencies and damping ratios.

Arici and Mosalam [7]  used a multi-input/
single-output system identification method for
instrumented bridges. The recorded motions (actual
response) of seven bridges in California during
recent earthquakes were used in parametric and
non-parametric system identification methods to
obtain the modal frequencies and damping ratios of
the bridges. They said that the excellent fit of the
recorded motion in the time domain was obtained
using parametric methods. They also used
constructed linear filters for response prediction
for three bridges and concluded that reasonable
prediction results were obtained considering the
limitations of the procedure.

In Iran, several studies have been performed for
system identification of model and actual structures
(buildings, concrete and earth dams, offshore oil
platforms) using ambient and forced vibration
methods. Aghakouchak and Memari [8] identified
natural frequencies, mode shapes and modal damping
of a six story building with an ambient and forced
vibration test; the first study of this type in Iran.
Memari, et al [9] performed an ambient vibration test
on a 32-story building to determine its dynamic
properties and fine tune the analytical modeling. The
properties of interest from the test were frequencies,
mode shapes and damping ratios for the first few
modes. Ghafory-Ashtiany, et al and Kazem, et al [10-
12] made extensive system identification and damage
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assessment studies on a half-scale model of typical
steel structures in Iran using forced vibration
technique. Saberi-Haghighi, et al [13] proposed a
procedure based on backpropagating feedforward
neural network simulators and a genetic algorithm
identifier for damage assessment of structures. They
used the experiments data of the half-scale model
mentioned above to investigate the performance of
this proposed method in conjunction with real data.
Ghafooripour and Aghakoochack [14] have applied
ambient vibration test for system identification of an
offshore oil platform in Persian Gulf. Mivehchi [15]
evaluated dynamic characteristics and behavior of
Saveh concrete arch dam using ambient vibration
tests and of the Shahid Rajaie concrete dam using
forced vibration and proposed an identification
procedure with a minimum number of response
measurements. Davoodi [16] performed a complete
system identification on the Marun embankment
dam ambient vibration measurements and from
low-level loads such as wind, machinery movement,
low level tectonic activities and water exit from the
bottom outlet. He also performed force vibration
and ambient vibration test on Masjid Solyman
embankment dam. He identified natural frequencies,
mode shapes and modal damping of the lower
vibration modes of both dams from the results of
these tests.

In addition to the identification of dynamic
characteristics of different structures in Iran,
several important buildings were instrumented
by accelerographs to record their responses during
an actual earthquake. In order to have a systematic
approach to processing these seismic responses
McVerry’s method was adopted and is extended for
a six-components earthquake for the general case.
This extended method was verified using generated
test data and then applied to measured earthquake
responses obtained during Northridge earthquake.

2. Modal Equations of Motion of Classically
Damped Linear Systems due to Six-
Component Earthquake Loading

The governing equation of motion of an n degree of
freedom linear system subjected to the base excitation
is expressed as:

)()()()( tERMtVKtVCtVM          −=++ &&&                        (1)

in which M, C and K are the mass matrix, damping
matrix, and stiffness matrix of the system, respectively;

)(),( tV tV    
&&&  and V  (t) are the relative acceleration, velocity

and displacement vector of the system, respectively;
R, is the influence coefficients matrix of earthquake
input; and E  ( t) is the ground acceleration vector
consisting of six components as follows:
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By means of the normal mode shapes matrix (Φ)
and with the classical damping assumption, Eq. (1)
transforms to an n decoupled differential equation as
follows:
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where coefficients, pjr, 
is defined as:
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in which ϕr is the r 
th mode shape vector and r

j
 is

the influence vector of earthquake in the j direction
(j 

th column of R). Considering that ϕ
pri

 is the i 
t h

component of r 
th mode shape at position p of the

structure in the x direction and that every joint in
the structure has six mode shape components in six
principle directions, the pre-multiplication of Eq. (3)
in ϕ

pri
 results in:
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Similar equation can be developed for other
directions. Eq. (5) is the modal equation of motion
for a system subjected to six components earthquake
(three translational and three rotational). In this
general case, there is a modal participation factor, for
each earthquake component. The first index of



28 / JSEE: Spring 2005, Vol. 7, No. 1

M. Mahmoudabadi, et al

cijpr, i, addresses the direction in which absolute
acceleration of structure is measured. The second
index, j, indicates the direction of the earthquake
component. The third index, p indicates the position
of the measured acceleration of the structure
and the fourth index, r, addresses the vibration mode
number. It is assumed that the measured quantities
are ground acceleration components ),(tx j&&  j  =
1, ...., 6 in the x, y, z, rx,  ry and rz directions and
the absolute acceleration response  at one or more
positions in the structure.

The modal equations can be transformed into
frequency domain via Fourier transform. Although
the interval of integration of the transform is
semi-infinite in practice, this transform will be
both finite and discrete as found by use of the
Discrete Fourier Transform (DFT ). The Finite
Fourier Transform F(ω, T) of  f  (t) over a record
length T is defined as
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assuming that the finite Fourier transform of the
ground acceleration components ),(tx j&&  j = 1, ...., 6
over the duration of T are Xj(ω,T), j = 1,  ...., 6.
The DFT algorithm produces the complex-
valued transforms at N equally-spaced frequencies
ωn from 2 N equally spaced samples of a record of
length T where
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The finite Fourier transform of absolute accele-
ration ),();()(            TAtxtx pgp ω+ &&&& using the McVerry [3]
approach becomes
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where Hr(ω) is the rth mode transfer function which
is defined as
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and vpr and dpr are the differences in the modal
velocities and displacements between the beginning
and end of the record segment of duration T:
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Eq.  (9) represents the response of the model of
the system for which the parameters ar, br, cxjpr

( j = x,  . . . ,  rz ), vpr  and dpr  are to be identified
for Nm modes. It must be noted that the existence
of the finite Fourier transform of the x direction
“X1(ω, T)” in the beginning of Eq. (9) is for trans-
formation of the relative acceleration to the
absolute acceleration. For the other directions, the
corresponding finite Fourier transform is added to
the first of Eq. (9).

3. The Error Criteria

The system identification process was performed
by selecting parameters to obtain a least-squares fit
of the model response (Eq. (9)), to the transform of
the measured response acceleration over a specified
frequency band. That is:
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with respect to the parameters ar, br, cxjpr ( j = x, ..., rz),
vpr and dpr (r = 1,…, Nm), of the Nm modes of the
model. In Eq.  (13), A is the discrete finite Fourier
transform of the measured response acceleration,
∆ω=2π /T and .10 −≤<≤ Nll axminm   

The normalized error E is defined as the mean
square error divided by the mean square response
taken over the same frequency band and for the same
segment of record:
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A similar normalized time-domain error criterion
has been used by Werner, et al [17] and defined as
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where yi and iy  are the actual recording from the
structure and the simulated model output, respectively.
Arici and Mosalam [7] have claimed that a value of
E′  less than 0 .1 corresponds to an excellent
model. An E′  of 0.1-0.5 corresponds to an adequate
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model and time history fits where E′  is greater
than 0.5 are poor and the corresponding results
should be disregarded. In Parseval’s theorem, the
error criterion in Eqs.  (14) and (15) are identical if
all the DFT frequency points are used in the
identification process.

It is an important feature of the approach that
the data used for the identification be in the form of
the real and imaginary parts of the unsmoothed
Fast Fourier transforms of the untapered segment of
duration T of the measured ground acceleration,
and the corresponding segment of the recorded
response. Any smoothing of the FFT and tapering
of the initial and final portions of the acceleration
records introduces bias into the estimates of the
parameters. Such untapered, unsmoothed data
typically produce extremely poor transfer functions
for parameter estimation using common resonant
amplification and half-power methods. However, it
will be seen that the parameter values obtained from
the present approach are accurate.

4. The Identification Algorithm

The least-squares minimization of J in Eq.  (13) is
performed using an iterative Gauss-Newton type
approach to solve the non-linear algebraic equations
resulting from setting the partial derivatives of J to
zero. The algorithm takes advantage of the linearity
of the equations with respect to modal participation
factors and modal displacement and velocity
differences. The technique ensures that error is
reduced at each iteration. Consider
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where, for simplicity, the subscript p (denoting
dependence on position) is dropped. For a least
square local minimum, partial derivatives J to the
parameters of γ:
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must be positive definite. The individual equations of
Eq. (17) take the form
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The set of equations
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are non-linear with respect to all parameters in γ .
However, the equations
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are linear in the parameters cxj( j = x, ..., rz), v and d,
although non-linear in a and b. This condition
suggests a two-part iterative algorithm that takes
advantage of the linearity of Eq .  (21) with respect
to cxj( j = x, . . ., rz), v and d. First, initial estimates
are chosen for all parameters. Then nonlinear Eq.
(20) is solved approximately using a modified
Gauss-Newton method to produce new values of a
and b. The linear Eq.  (21) is then solved exactly
for cxj( j = x,  ..., rz), v and d corresponding to the
latest values of a and b. The process is repeated
until a selected convergence criterion is satisfied.
The special case of the algorithm for one earthquake
component is given by McVerry [3].

5. Application and Verification of the Proposed
Identification Algorithm

A computer program based on MATLAB was
developed for the proposed algorithm [18-21]. The
performance of the method can be illustrated by the
results of identifications applied to a model structure,
see Figure (1), and to an actual structure subjected
to real earthquake input (a 10-story concrete building
in Burbank subjected to the Northridge earthquake,
Figures (10) and (11)).

5.1. Six-Degrees-of-Freedom Model Structure

For the verification test of the identification algorithm,
the parameters of a six-degrees-of-freedom structure
were estimated from simulated data generated for
its response to a six-component artificial earthquake.
As shown in Figure (1), this structure is composed
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of a rigid horizontal rectangle plate a with size a x b
and uniform mass distribution (total mass is equal
m) which is supported by a massless column with
a height h. The degrees of freedom of structure
are assumed at the center of the mass of the plate
and, according to these degrees of freedom, mass
and stiffness matrices of the structure are:
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                     (22) Figure 1. The six-degrees-of-freedom model structure used for
the verification test of the proposed identification
algorithm.

Table 1. Natural frequencies and mode shapes of six-degrees-
of-freedom model.

Table 2. x-direction participation factors of six-degrees-of-freedom structure.
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Natural frequencies and mode shapes of the
system are presented in Tables (1) and (2) showing
the participation factors of the x-direction,
computed using Eq .  (6). The damping ratio is
assumed to the 0.02 for all modes.

Six uncorrelated, stationary, artificial random-
generated base acceleration records, as in Figure (2),
were applied to the six principle directions of the
six degrees of freedom structure. The frequency
content of these records is shown in Figure (3).
Time history response of the structure computed
using recurrence formulas [22] with the time steps of
0.005 seconds are shown in Figure (4) .  The

zxrcyxrc
xxrccxz cxy cxx Mode 

No.

-2.017×10-20.2184 -2.496×10-3-0.4089 -1.444×10-20.2841 1 

-0.3038 2.176×10-31.839×10-20.2737 -0.3351 0.3655 2 

0.2601 0.1600 -6.728×10-30.1953 0.2775 0.2117 3 

-3.223×10-2-0.3536 -5.774×10-2-5.420×10-20.1050 0.1294 4

9.294×10-2-2.703×10-25.134×10-2-5.862×10-3-3.145×10-29.318×10-35 

3.164×10-31.223×10-5-2.769×10-31.915×10-5 -1.545×10-31.742×10-56
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Figure 2. Base acceleration records applied to a six-degrees-of-freedom structure in the six principle directions x, y, z, rx,
ry, and rz from top to bottom, respectively.

Figure 3. Frequency content of base acceleration records applied to a six-degrees-of-freedom structure in the six principle
directions x, y, z, rx, ry, and rz from top to bottom, respectively.
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Figure 4. Response acceleration records of a six-degrees-of-freedom structure in principle directions x, y, z, rx, ry, and rz from
top to bottom, respectively (only effect of third mode is included).

Figure 5. Frequency content of response acceleration records of a six-degrees-of- freedom structure in principle directions x,
y, z, rx, ry, and rz from top to bottom, respectively (only effect of third mode is included).

corresponding frequency content of the response is
shown in Figure (5). For simplicity and as an example,
only the identification of parameters of the third

mode is shown, since its base acceleration records
for the five direction x, y, z, ry and rz have considerable
participation in the response of the structure in x
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Table 3. Results of modal parameters identification of the third mode of six-degrees-of-freedom model for different number of
components of an artificial excitation.

direction. The identification of the other parameters is
given in [23].

In order to show the effect of different base
acceleration components on the estimates of the
modal parameters, the identification of parameters
proceeds thus:
1. Assuming that the absolute acceleration of

structure in the x direction results only from
x direction acceleration, the modal parameters
were identified. The results are presented in
the first row of Table (3).

error, almost in all of the cases. Also, the frequency
parameter has a minimum variation in the process of
identification while the damping ratio parameter has
a maximum variation. Thus, according to this
example, if all earthquake components are not
included in the identification process, considerable
identification error will occur in the damping ratio.

Since the base acceleration records applied to
the 6DOF model were artificial and bear no res-
emblance to earthquake ground motion, it was
decided to apply the base acceleration records of a

2. Assuming that the absolute acceleration of
the structure in the x direction results from x
and y direction base accelerations, the
corresponding modal parameters were
identified and compared with their exact
values as shown in the second row of
Table (3).

3. The above steps were repeated until all six
component base accelerations were included
in the identification process. Their correspond-
ing results are given in the subsequent rows
of Table (3).

In the single-input/single-output case (first row
of Table (3)), the value of normalized error is equal
to 0.2363 and with the addition of other earthquake
components in each step, the value of normalized
error gradually decreases and, finally, in the six
components input case, the value of normalized error
become very small and reaches to a negligible value
of 8.819E-5.

With accurate consideration of Table (3), one can
observe that frequency parameter has minimum value
of the identification error, while the damping ratio
parameter has maximum value of the identification

ten-story concrete building (see section 5.2) to the
6DOF model. Figure (6) shows the time histories of
these base acceleration and Figure (7)  shows the
corresponding frequency content of the base
acceleration records.

Accelerograms of channels 16, 14 and 15 were
applied in the x, y and z directions respectively at
the base level of the model. The torsional accele-
rogram computed by means of parallel channels 1
and 13 also was considered as torsional base
acceleration about the z axis, see Figure (11). As in
previous case, the response of the 6DOF model
was computed using recurrence formula. Time
histories of the model response in six principle
directions are shown in Figure (8)  and their
corresponding frequency contents are presented
in Figure (9). Each accelerogram has 3000 points
sampled at 0.02 seconds. Contrary to the previous
case, the total modes effects were considered in the
computation of the model response.

Identification of modal parameters in the
x direction was performed as in the previous case. In
this way, it was first assumed that the response of
the 6DOF model in the x direction is resulted only

Normalized 
Errorzxrcyxrc

xxrcxxcxycxxcζ (%) f (Hz)Parameter 
Condition 

No. of 
Eq. 

Comp. 
0.2601 0.1600 -6.728E-3 0.1953 0.2775 0.2117 2.00 2.8549 Exact Values 
------ ------ ------------  ------ ------ 0.2203 1.2317 2.8257 Identified Values  0.2363 
------ ------ ------------  ------ ------ 4.06 -38.42 -1.02 Error (%) 

1

------ ------ ------------  ------ 0.2830 0.1823 0.0151 2.8747 Identified Values  0.12939 
------ ------ ------------  ------ 1.98 -13.89 -99.25 0.70 Error (%) 

2

------ ------ ------------  0.18040.2802 0.16410.08032.8958 Identified Values  0.095007
------ ------ ------------  -7.63 0.97 -22.48 -95.99 1.43 Error(%) 

3

------ ------ -4.322E-30.18030.2803 0.16380.06892.8964 Identified Values  0.094986------ ------ -35.76-7.68 1.01 -22.63 -96.56 1.45 Error (%) 4

------ 0.1406 -1.691E-30.17630.2789 0.17880.82122.9038 Identified Values  0.074224
------ -12.11-125.13-9.73 0.50 -15.54 -58.94 1.71Error (%) 

5

0.2594 0.1595 -7.850E-30.19560.2781 0.21021.97042.8560 Identified Values  8.819E-5
-0.27 -0.3114.290.15 0.22 -0.71 -1.48 0.04Error (%) 

6
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Figure 6. Base acceleration records applied to a six-degrees-
of-freedom structure in the four principle directions
x, y, z, and rz from top to bottom, respectively.

Figure 7. Frequency content of base acceleration records
applied to a six-degrees-of-freedom structure
in the four principle directions x, y, z, and rz from top
to bottom, respectively.

Figure 8. Response acceleration records of a six-degrees-of-
freedom structure in principle directions x, y, z, rx, ry,
and rz from top to bottom, respectively.

Figure 9. Frequency content of response acceleration records
of a six-degrees-of- freedom structure in principle
directions x, y, z, rx, ry, and rz from top to bottom,
respectively.

from the x direction base acceleration and the
corresponding modal parameters are identified.
Then, in the other directions, base acceleration
components were included and modal parameters
were identified. For briefness, only the results of
identification of the third mode parameters are given
in Table (4). The identification of the other parameters
is given in Ref. [23].

It is observed in Table (4) that, with artificial
excitation by including of more components of a real
earthquake, the normalized error (a match criterion
between the recorded acceleration response and
calculated model response) decreases and the
precision of identification of modal parameters
increases.

The following conclusions can be obtained from
Tables (3)  and (4):
1. Error of identification of third modal frequency

in all cases is negligible and including different
components of an earthquake in the identification
process has little effect on the identification of
this modal frequency.

2. Contrary to modal frequency, identification
of the third modal damping ratio and third modal
participation factors are sensitive to the number
of base acceleration components and, by
ignoring the effect of different base acceleration
components in the identification of modal
parameters, relatively large errors can occur.
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Table 4. Results of modal parameters identification of the third mode of a six-degrees-of-freedom model for different number of
components of a real earthquake.

The measurement of all six components of an
earthquake is difficalt since the rocking components
of ground motion are seldom measured. Hence, to
provide a clearer indication of the importance of
torsional input without the complication of including
all the other inputs, it was decided to bring in
results which directly compare to the modal
parameters estimation using one input (x direction)
and two inputs (x and rz directions) in Table (5), for
both artificial excitation and real base acceleration.
It can be observed in Table (5), that for both cases,
by including the torsional base acceleration in the
identification process, the match between the
simulated acceleration response and the calculated
model response improves considerably. In this way,
normalized error decreases 27.66% and 14.64%
respectively in comparison to one input excitation
for artificial excitation and real base acceleration.
However, this effect is less for real base acceleration,
which may be attributed to lower amplitude of real
torsional base acceleration relative to real translational

Table 5. Results of modal parameters identification of the third mode of six-degrees-of-freedom model for the x direction and x with
rz direction components of an artificial excitation and a real earthquake.

base acceleration, regardless of their units, see Figures
(6) and (7).

From Table (5) it can be understood that, by
including the torsional component of base acceleration
for artificial excitation, the error of identification of
modal frequency is slightly increased, but the error of
identification of modal damping ratio decreases
considerably. This is opposite for real base
accelerations .  Also in the Table (5) there is an
enormous error of identification of zxrc  relative to
the other modal parameters in the real base
acceleration case. This may arise from the relatively
small amplitude of  torsional excitation in comparison
with other translational base acceleration components
as mentioned previously.

A real case will be considered in the next section
and it will be shown that the participation of the
torsional base acceleration about z axis plays an
effective role in more precisely identifying the first
mode damping ratio parameter of a nominal symmetric
building.

Normalized 
Errorzxrcxxcxycxxcζ (%) f (Hz)Parameter 

Condition 

No. of 
Eq. 

Comp. 
0.2601 0.1953 0.2775 0.2117 2.00 2.8549 Exact Values 

------ ------ ------ 0.2330 2.2929 2.8317 Identified 
Values 

0.353 

------ ------ ------ 10.06 14.65 -0.81 Error (%) 

1

------ ------ 0.2490 0.2704 1.8292 2.8519 Identified 
Values 0.058894 

------ ------ -10.27 -27.73 -8.54 -0.11 Error (%) 
2

------ 0.19240.27380.21031.99102.8549Identified 
Values 2.6036E-5

------ -1.48 -1.33 -0.66 -0.45 0.00 Error (%) 
3

0.25250.19310.27460.20951.99992.8548Identified 
Values 2.1029E-7

-2.92 -1.13 -1.05 -1.04 -0.005 -0.004Error (%) 
4

 

Type of Base 
Accelerations 

System 
Input 

System 
Output 

Parameter 
Condition 

f 
(Hz) 

ζ 
(%) xxc  zxrc  Normalized 

Error 
Exact 

Values 2.8549 2.00 0.2117 0.2601 

Identified 
Values 

2.8257 1.2317 0.2203 ------ 

 
Base Acceleration 

in x direction 

Absolute Acceleration 
in x direction 

Error (%) -1.02 -38.42 4.06 ------ 

0.2363 

Identified 
Values 2.7714 1.6488 0.2460 0.2458 

Artificial 
Records 

 
Base Acceleration 

in x and rz direction 
Absolute Acceleration 

in x direction 
Error (%) -2.92 -17.56 16.20 -5.50 

0.17095 

Identified 
Values 2.8317 2.2929 0.2330 ------ Base Acceleration 

in x direction 
Absolute Acceleration 

in x direction 
Error (%) -0.81 14.65 10.06 ------ 

0.353 

Identified 
Values 2.8570 1.3762 0.1722 -3.5628 

Earthquake 
 Records 

 Base Acceleration 
in x and rz direction 

Absolute Acceleration 
in x direction 

Error (%) 0.074 -31.19 -18.66 -1470 
0.30133 
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5.2. Identification of Modal Parameters of a 10-Story
Concrete Building in Burbank

The ten-story concrete building under study, as
shown in Figure (10), was designed and constructed
in 1974. The lateral load resisting system consists of
precast concrete shear walls in both directions [24].
The plan and elevation of the building and the
location of sensors are shown in Figure (11). Figure
(12) shows the time histories of the recorded
response of the building during the Northridge
earthquake at the sensors locations. This earthquake

data has been used to check the Spline function
technique for reconstruction of seismic responses [25].

The largest peak horizontal acceleration recorded
at the base (Channel 1, N-S) was 0.34g, and at the
roof (Channel 2, N-S) was 0.77g. No sign of structural
damage was observed during the inspections;
however, only minor damage to the nonstructural
equipment on the roof was observed [24]. For the
identification of the modal parameters of this

Figure 10. General view of 10-story residential building in
Burbank [24].

Figure 11. Plan and elevation of 10-story building in Burbank
and location of the sensors [24].

Figure 12. Time histories of the recorded response of a 10-story building during Northridge earthquake at the location of sensors
  [24].
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building, a step-by-step procedure (see Section 5.1)
was adopted as follows:
1. It was assumed that the recorded acceleration

in the N-S or E-W direction of the building
resulted only from base acceleration in the
corresponding direction.

2. It was assumed that the two horizontal base
accelerations can be effected in the recorded
acceleration in the building.

3. It was assumed that in addition to the two
horizontal base accelerations, vertical base
acceleration can be effected in the recorded
response of the building.

4. The rotational base acceleration about the z
axis, with rigid base assumption and by means
of two parallel sensors (Channels 1 and 13)
was computed and this component of the
earthquake participated in the identification of
the modal parameters of the building.

Tables (6) through (9), show the results of the
identification processes. It is noted that the direction
of the x-axis coincides with E-W direction of the
y-axis with the N-S direction and that of the z-axis
is vertical. In order to better understand the
variations of different modal parameters, the
variation of normalized error, first and second modal

Table 7. Results of the modal parameters identification of a 10-story building in Burbank for two components of an earthquake.

Table 6. Results of modal parameters identification of a 10-story building in Burbank for one component of an earthquake.

Normalized 
Error

Second Mode 
Participation 

Factor

First Mode 
Participation 

Factor 

Second  Mode 
Damping 

(%)

First Mode 
Damping 

(%)

Second Mode 
Frequency 

(Hz)

First Mode 
Frequency 

(Hz) 

Direction of 
Recording

System 
Output

System 
Input

0.27241 -0.584 1.6818.0612.16 7.909 1.801 N-SCh. 2Ch. 14
0.30226-0.6161.53110.7010.407.6171.765N-SCh. 3Ch. 14
0.283290.1271.0977.9911.026.5791.785N-S Ch. 4Ch. 14
0.289680.1111.1196.1311.506.4561.766N-S Ch. 5Ch. 14
0.321030.2041.2044.8211.626.3871.755N-S Ch. 6Ch. 14
0.168750.6370.35512.519.167.3581.762N-S Ch. 7Ch. 14
0.189820.8190.55026.6414.226.7971.756N-S Ch. 8Ch. 14
0.258531.1360.65721.6716.656.7271.756N-SCh. 9Ch. 14
0.10141-0.6741.5279.196.407.4411.673E-W Ch. 10Ch. 16
0.0925390.1711.0429.466.147.4291.674E-WCh. 11Ch. 16
0.0947890.6000.3628.125.457.3541.669E-WCh. 12Ch. 16

 

Normalized 
Error

cxy or 

cyx

cxx or 

cyy

Damping 
(%)

Frequency 
(Hz)

Mode 
No. 

Direction of 
Recording

System 
output

System 
Inputs

0.135 1.664 11.77 1.800 1 
0.26982 

0.0319 -0.605 8.10 7.915 2
N-SCh. 2Channel 

14 & 16

0.102 1.516 10.07 1.765 1 
0.30043 

-0.0344 -0.628 11.09 7.613 2
N-SCh. 3Channel 

14 & 16

0.0557 1.092 10.82 1.785 1 
0.28208 

0.0171 0.120 8.05 6.571 2
N-SCh. 4 Channel 

14 & 16

0.0887 1.105 11.06 1.767 1 
0.28681 

-4.581E-30.103 5.62 6.473 2
N-SCh. 5 Channel 

14 & 16

0.103 1.182 11.08 1.756 1 
0.31647 

-0.0288 0.199 4.38 6.412 2
N-SCh. 6 Channel

14 & 16

0.0227 0.353 8.94 1.762 1 
0.16838 

-3.325E-30.634 12.44 7.363 2
N-SCh. 7 Channel 

14 & 16

0.0316 0.545 13.84 1.757 1 
0.18911 

0.0174 0.809 26.55 6.809 2
N-SCh. 8 Channel 

14 & 16

0.0323 0.647 16.10 1.757 1
0.25771 

-0.0354 1.131 21.40 6.731 2
N-SCh. 9 

Channel 
14 & 16

-0.0370 1.524 6.36 1.6721 
0.10015 

-0.0311 -0.660 8.91 7.442 2
E-W Ch. 10Channel 

14 & 16

-5.710E-31.040 6.12 1.673 1 
0.09233 

0.0111 0.167 9.18 7.441 2
E-W Ch. 11Channel 

14 & 16

-0.001 0.360 5.42 1.669 1 
0.094484 

0.01860.593 8.01 7.359 2
E-W Ch. 12Channel 

14 & 16
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frequencies, and first and second damping ratios
are plotted in Figure (13) with respect to output
channel number and number of input components.

In the multi-input/single-output procedure
explained, for each output channel, different values
may be obtained for modal frequencies and damping
ratios. For a unique value assignment for these
parameters for each direction, mean values of the
computed parameters are shown in Table (10) .
Also, in order to estimate dispersion of the modal
frequencies and modal damping ratios, coefficients of

Table 8. Results of the modal parameters identification of a 10-story building in Burbank for three components of an earthquake.

Table 9. Results of the modal parameters identification of a 10-story building in Burbank for four components of an earthquake.

variation of these parameters were also computed
and are given in the Table (10). Coefficients of
variation of parameters were computed using
division of the standard deviation of parameters
by their mean values expressed in percent [26].
Also, the mean value of normalized errors and
coefficient of variation of these parameters are in-
cluded in Table (10) for different input components.
From the results of Table (10), it can be concluded
that:
l Considerable difference exists between the

Normalized 
Error

cxz or 

cyz

cxy or 

cyx

cxx or 

cyy

Damping 
(%)

Frequency 
(Hz)

Mode 
No. 

Direction of 
Recording

System 
output

System 
Inputs

0.168 0.132 1.668 11.67 1.798 1 0.26768 
0.0636 0.0276 -0.6178.13 7.928 2

N-SCh. 2Ch.  
14,15&16

0.0117 0.0999 1.517 10.07 1.765 1 0.30003 
-0.0880 -0.0368 -0.62511.90 7.599 2

N-SCh. 3Ch.  
14,15&16

0.0917 0.0544 1.097 10.78 1.784 1 0.28034 
0.0415 0.0175 0.121 8.11 6.554 2

N-SCh. 4 Ch.  
14,15&16

0.0410 0.0881 1.107 11.06 1.767 1 0.28637 
0.0243 -2.906E-3 0.105 5.78 6.464 2

N-SCh. 5 Ch.  
14,15&16

0.0248 0.102 1.182 11.07 1.756 1 0.31637 
-1.557E-3-0.0294 0.198 4.36 6.414 2

N-SCh. 6 Ch.  
14,15&16

0.0240 0.0215 0.354 8.94 1.762 1 0.16817 
4.149E-3-4.659E-3 0.633 12.40 7.361 2

N-SCh. 7 Ch.  
14,15&16

0.0555 0.0396 0.550 13.82 1.756 1 0.18405 
0.199 0.0210 0.79826.26 6.770 2

N-SCh. 8 Ch.  
14,15&16

0.0754 0.0460 0.656 16.12 1.756 1 0.25033 
0.281 -0.0270 1.126 21.18 6.715 2

N-SCh. 9 Ch.  
14,15&16

0.0558 -0.0406 1.520 6.41 1.671 1 0.097404 
-0.132 -0.0396 -0.6588.74 7.405 2

E-W Ch. 10Ch.  
14,15&16

0.0349 -7.326E-3 1.040 6.20 1.672 1 0.091554 
0.0143 0.0103 0.163 8.98 7.422 2

E-W Ch. 11Ch.  
14,15&16

3.694E-3-2.656E-4 0.363 5.49 1.669 1 0.090238 
0.111 0.02600.588 7.82 7.330 2

E-W Ch. 12Ch.  
14,15&16

 

Normalized 
Error

zxrc or 

zyrc
cxz or  

cyz 
cxy or 

cyx 
cxx or 

cyy 
Damping 

(%)
Frequency 

(Hz)
Mode 
No. 

Direction of 
Recording

System 
output

System 
Inputs

6.389 0.150 0.122 1.632 11.16 1.788 1 0.26461 
-3.455 0.0456 0.0447 -0.657 7.45 7.759 2

N-SCh. 2Ch.  
14, 15,16, rz

-18.5090.0664 0.122 1.628 11.60 1.792 1 0.26909 
13.028-0.0595 -0.170 -0.344 13.24 7.734 2

N-SCh. 3Ch.  
14, 15,16, rz

-1.4330.0974 0.0553 1.112 11.02 1.787 1 0.27922 
1.709 0.0491 5.877E-3 0.133 8.51 6. 479 2

N-SCh. 4Ch.  
14, 15,16, rz

-7.155 0.0616 0.0976 1.110 11.57 1.781 1 0.27991 
-0.158 0.0252 -0.0204 0.138 8.35 6.496 2

N-SCh. 5 Ch.  
14, 15,16, rz

-10.891 0.0527 0.123 1.149 11.44 1.776 1 0.29164 
-3.955 -0.0224 -0.0321 0.210 5.856.481 2

N-SCh. 6 Ch.  
14, 15,16, rz

-7.189 0.0491 0.0260 0.388 11.001.803 1 0.15507 
3.785 6.503E-3-0.0474 0.726 13.18 7.262 2

N-SCh. 7 Ch.  
14, 15,16, rz

4.176 0.1470.0527 0.467 11.00 1.739 1 0.15037 
-10.330 0.0552 0.0796 0.63923.07 7.019 2

N-SCh. 8Ch.  
14, 15,16, rz

2.208 0.199 0.06730.486 11.24 1.750 1 
0.16837 -19.417 0.0576 0.0485 0.995 21.44 6.974 2N-SCh. 9 

Ch.  
14, 15,16, rz

-1.183 0.0558 -0.0438 1.523 6.43 1.671 1 0.097204 
0.0823 -0.135 -0.0341 -0.665 8.77 7.402 2

E-W Ch. 10Ch.  
14, 15,16, rz

0.0488 0.0350 -7.404E-31.040 6.20 1.672 1 0.09155
-0.0568 0.0151 9.318E-30.163 8.96 7.416 2

E-WCh. 11Ch.  
14, 15,16, rz

0.260 4.716E-3-1.952E-30.361 5.46 1.668 1 0.089832
-0.592 0.115 0.01520.591 7.81 7.319 2

E-W Ch. 12Ch.  
14, 15,16, rz
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Figure 13. Variation of normalized error, 1st and 2nd modal
frequencies, 1st and 2nd  modal damping ratio
according to channel and number of input
components.

Table 10. Mean values and coefficients of variations of modal frequencies, modal damping ratios and normalized errors in the N-S
and E-W directions with respect to the number of input components.

mean values of normalized errors in N-S direction
and E-W direction in all cases. The mean value
of normalized errors in N-S direction is
approximately 2.5 times that of the E-W direction
for different values of input number. Also,
coefficients of variation of normalized errors in
N-S direction in all cases are several times of
those of the E-W direction. It is noted that the
the N-S  direction sensors are located near
east and west sides of building, far from
center of mass of the floors. Thus, the torsional
component of the earthquake may have affected
these sensors and be a cause of this considerable
difference.

l The negligible decrease of mean value of
normalized errors with the addition of different
components of an earthquake occurred due to
plan symmetry. The only exception is in the
N-S direction, where a considerable decrease
in the mean value of normalized errors occurs
with the addition of the torsional component
of an earthquake. This shows a noticeable
effect of the torsional component on base
acceleration.

l Coefficients of variation of the first and second
modal frequency for both the N-S and E-W
direction are always less than the coefficient
of variation of corresponding modal damping

Coefficient of  
Variation of 
 Normalized  

Error (%) 

Mean  
Value of  

Normalized
Error 

Coefficient  
of Variation 
of Damping 

(%) 

Mean Value 
of Damping

(%)

Coefficient  
of Variation  
of Frequency 

(%) 

Mean  
Value of 

Frequency 
(Hz)

Number of  
Inputs of  
Dynamic 
System

Mode 
No.

Direction 

20.68 0.2607 19.40 12.09 0.93 1.768 1 

20.39 0.2589 19.31 11.71 0.89 1.7692

20.92 0.2567 19.39 11.69 0.87 1.768 3 

26.82 0.2323 2.25 11.25 1.23 1.777 4

1 

20.68 0.2607 63.37 12.32 8.21 6. 979 1 

20.39 0.2589 64.27 12.20 8.13 6. 986 2

20.92 0.2567 63.50 12.14 8.23 6. 976 3 

26.82 0.2323 51.39 12.64 7.56 7.026 4

2 

N-S 

4.780.0962 8.186.00 0.16 1.672 1 

4.180.0957 8.17 5.97 0.13 1.671 2

4.080.0931 7.99 6.03 0.09 1.671 3 

4.200.0929 8.416.03 0.13 1.670 4

1 

4.780.0962 7.95 8.92 0.64 7.408 1 

4.180.0957 7.05 8.70 0.64 7.414 2

4.080.0931 7.19 8.51 0.66 7.386 3 

4.200.0929 7.25 8.51 0.71 7.379 5

2

E-W 
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ratios for all cases. This indicates the high
precision of frequencies estimates relative to
damping ratios estimates.

l Coefficients of variation of the frequencies
and damping ratios of the first and second
modes in the N-S direction are greater than
those of the corresponding parameters in the
E-W direction for almost all cases. In other
words, the modal frequencies and modal
damping in the N-S direction were identified
with less precision relative to the corresponding
parameters in the E-W direction. This can be
due to the N-S direction sensors being located
far from center of mass of the floors and
affected by the torsional response of building,
in contrast to the E-W direction sensors.

l Table (10) shows a sudden decrease of the
coefficient of variation of the first mode
damping ratio in N-S direction from 19.39%
for three input components to 2.25% for four
input components. In contrast to other
components of earthquake, the torsional
component has a marked effect on the
coefficient of variation of the first modal
damping ratio. By including this component,
the first modal damping ratios in the  N-S
direction obtained from different sensors
locations reach nearly a unique value and the
precision of estimation increases.

As mentioned in section 5.1 and in order to show
the importance of including the torsional component

of earthquake, the two additional pairs of input
situations of (x or y, z) and (x or y, torsion) have been
added. The results of the identification of these two
additional pairs are presented in Tables (11) and
(12) respectively. Mean values and coefficients of
variations of modal frequencies, modal damping
ratios and normalized errors in the N-S and E-W
directions for three paired inputs (x, y) ,  (y, x) ,
(x or y, z) and (x or y, torsion) are given in Table
(13) with their corresponding one input cases as
base points. The following results can be extracted
from Table (13):
l For the N-S direction, from three paired

inputs (y, x), (y, z) and (y, torsion), the mean
value of normalized error of (y, torsion) is
less than the two other pairs. This shows the
higher effect of torsional base acceleration in
comparison with E-W and vertical base
accelerations. The mean value of normalized
error for the paired input (y, torsion) decreased
9.09% relative to one input situation, but, the
decrease for paired inputs (y,  x) and (y, z)
are 0.69% and 0.61%, respectively, which is
negligible.

l For E-W direction, where accelerographs
were installed about the center of the floors,
this is not true. In this direction, the mean
values of the normalized errors for the paired
input (x, y) and (x,  torsion) did not change
considerably. The mean value of the normalized

Table 11. Results of the modal parameters identification of a 10-story building in Burbank for (x or y, z) components of an
earthquake.

Normalized 
Error

cxz or 

cyz

cxx or 

cyy

Damping 
(%)

Frequency 
(Hz)

Mode 
No. 

Direction of 
Recording

System 
Output

System 
Inputs

0.175 1.68512.03 1.799 1 0.27015 
0.0599 -0.5988.09 7.925 2

N-SCh. 2Channel 
14 & 15

0.0129 1.53210.39 1.765 1 
0.30182 -0.0904 -0.61210.47 7.601 2N-SCh. 3

Channel 
14 & 15

0.0967 1.10110.96 1.784 1 0.28148 
0.0317 0.1277.98 6.574 2

N-SCh. 4 Channel 
14 & 15

0.0449 1.12211.48 1.766 1 0.28917 
0.0253 0.1136.22 6.449 2

N-SCh. 5 Channel 
14 & 15

0.0268 1.20611.62 1.753 1 
0.32086 0.0175 0.2064.84 6.383 2N-SCh. 6 

Channel 
14 & 15

0.0254 0.3569.15 1.762 1 0.16852 
3.470E-30.63512.48 7.356 2

N-SCh. 7 Channel 
14 & 15

0.0316 0.54513.83 1.757 1 0.18911 
0.0174 0.80926.57 6.809 2

N-SCh. 8 Channel 
14 & 15

0.0713 0.66816.86 1.754 1
0.2514 0.278 1.13021.32 6.706 2N-SCh. 9 

Channel 
14 & 15

0.0478 1.5236.44 1.6721 0.098986 
-0.129 -0.6709.02 7.401 2

E-W Ch. 10Channel 
14 & 15

0.0340 1.0436.22 1.673 1 0.091806 
0.0131 0.1689.36 7.414 2

E-W Ch. 11Channel 
14 & 15

4.413E-30.3655.53 1.669 1 
0.090823 

0.1080.5988.02 7.324 2
E-W Ch. 12

Channel 
14 & 15
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Table 12. Results of the modal parameters identification of a 10-story building in Burbank for (x or y, torsion) components of
an earthquake.

Table 13. Mean values and coefficients of variations of modal frequencies, modal damping ratios and normalized errors in the
N-S and E-W directions for one input and different combination of paired input situations.

paired inputs decreased 0.52% and 0.10%,
respectively relative to the one input case,
which is negligible. Note the considerable effect
of the vertical component of base acceleration
where the decrease in the mean value
of normalized error for paired input (x, z) is
2.39%. This value is not high, but is more
than the effect of horizontal and torsional
components of earthquake.

l The coefficient of variation of the first mode
in the N-S direction has an abrupt decrease

for paired input (y, torsion). The coefficient
of variation of this parameter decreased from
19.40% for the y input to 3.04% for paired
input  (y,  torsion).  This represents the
strong effect of torsional base acceleration
component in the identification of the first
mode damping ratio in N-S direction in
comparison with other base acceleration
components. This was also previously
observed for the cumulative effect of base
acceleration components.

Normalized 
Error 

zxrc or 

zyrc  
cxx or 

cyy 
Damping 

(%) 
Frequency 

(Hz) 
Mode 
No. 

Direction of 
Recording 

System 
Output 

System 
Inputs 

6.141 1.642 11.59 1.791 1 0.26876 
-3.902 -0.616 7.12 7.703 2 

N-S Ch. 2 Channel 
14 & rz  

-14.241 1.637 11.78 1.786 1 
0.27517 13.618 -0.416 14.35 7.799 2 N-S Ch. 3 

Channel 
14 & rz  

-1.077 1.113 11.25 1.788 1 0.28224 
1.609 0.141 8.75 6.516 2 

N-S Ch. 4 Channel 
14 & rz  

-6.166 1.121 11.97 1.779 1 0.28444 
-0.466 0.141 8.92 6.469 2 

N-S Ch. 5 Channel 
14 & rz  

-9.563 1.166 11.94 1.773 1 0.29762 
-4.435 0.219 6.29 6.452 2 

N-S Ch. 6 Channel 
14 & rz  

-6.065 0.388 11.08 1.799 1 0.15749 
3.638 0.711 13.34 7.238 2 

N-S Ch. 7 Channel 
14 & rz  

2.400 0.473 11.84 1.746 1 0.15674 
-10.393 0.720 24.93 7.026 2 

N-S Ch. 8 Channel 
14 & rz  

1.128 0.491 12.06 1.753 1 0.17378 
-19.735 1.048 22.29 6.977 2 

N-S Ch. 9 Channel 
14 & rz  

-0.356 1.529 6.39 1.673 1 0.10136 
0.299 -0.670 9.09 7.435 2 

E-W Ch. 10 Channel 
16 & rz  

0.287 1.041 6.13 1.673 1 0.092497 
-0.0763 0.173 9.49 7.427 2 

E-W Ch. 11 Channel 
16 & rz  

0.175 0.360 5.42 1.669 1 0.094476 
-0.466 0.599 8.06 7.348 2 

E-W Ch. 12 Channel 
16 & rz  

 

Coefficient of 
Variation of 
Normalized 

Error 
(%) 

Mean 
Value of 

Normalized 
Error 

Coefficient of 
Variation of 

Damping 
(%) 

Mean  
Value of 
Damping 

(%) 

Coefficient of 
Variation of 
Frequency 

(%) 

Mean Value 
 of Frequency 

(Hz) 

Direction of 
Inputs of  

Dynamic System 

Mode 
No. Direction 

20.68 0.2607 19.40 12.09 0.93 1.768 y 
20.39 0.2589 19.31 11.71 0.89 1.769 ( y , x ) 
20.80 0.2591 19.65 12.04 0.91 1.768 ( y , z ) 
26.30 0.2370 3.04 11.69 1.05 1.777 (y, torsion) 

1 

20.68 0.2607 63.37 12.32 8.21 6. 979 y 
20.39 0.2589 64.27 12.20 8.13 6. 986 ( y , x ) 
20.80 0.2591 63.05 12.25 8.27 6. 975 ( y , z ) 
26.30 0.2370 52.94 13.25 7.62 7.023 (y, torsion) 

2 

N-S 

4.78 0.0962 8.18 6.00 0.16 1.672 x 
4.18 0.0957 8.17 5.97 0.13 1.671 ( x , y ) 
4.75 0.0939 7.83 6.06 0.12 1.671 ( x , z ) 
4.84 0.0961 8.40 5.98 0.14 1.672 (x, torsion) 

1 

4.78 0.0962 7.95 8.92 0.64 7.408 x 
4.18 0.0957 7.05 8.70 0.64 7.414 ( x , y ) 
4.75 0.0939 7.92 8.80 0.66 7.380 ( x , z ) 
4.84 0.0961 8.31 8.88 0.65 7.403 (x, torsion) 

2 

E-W 
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6. Conclusions

By presenting a multi-input/single-output modal
identification method for linear systems and with the
analysis of artificial and real acceleration records, the
following conclusions can be made:
v The proposed method can include the effects of

different components of the earthquake for the
identification of modal parameters. By including
these effects, modal parameters specially
modal damping ratios, can be identified more
precisely. Also, the compatibility between the
assumed response model and the measured
response of a structure increases by including
these effects.

v Analyzing the seismic response of a symmetric
10-story building during the Northridge
earthquake indicated that the torsional
component of an earthquake effects on the
identification of the first mode damping ratio
parameter. The seismic response of more
buildings must be analyzed to confirm this.

v The output-error method identifies the
parameters of a class of models assumed at the
first stage of identification process; i.e. linear
models with classical damping. Therefore, from
a global point of view, it is necessary to examine
the other class of models such as linear models
with non-classical damping, bi-linear models
and other nonlinear models and so on. Finally,
by considering all the probable class of
models, the most appropriate one should be
chosen.
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