Seismic Response of Suspension Bridges Under Multi-Component Non-Stationary Random Ground Motion

Seismic Response of Suspension Bridges Under Multi-Component

Non-Stationary Random Ground Motion

Said M. Allam’ and T.K. Datta?

1. Research Scholar, Civil Engineering Department, Indian Institute Technology,
New Delhi 110016, India
2. Professor,

Civil Engineering Department, Indian Institute of Technology,

New Delhi-110016, India, email: tkdatta@civil.iitd.ernet.in

ABSTRACT: 4 Markov method of analysis is presented for obtaining
the seismic response of suspension bridges to nonstationary random
ground motion. A uniformly modulated nonstationary model of
the random ground motion is assumed which is specified by the
evolutionary r.m.s ground acceleration. Both vertical and horizontal
components of the ground motion are considered to act simultaneously
at the bridge supports. The analysis duly takes into account the angle
of incidence of earthquake, the spatial correlation of ground motion
and the quasi-static excitation. A suspension bridge is analysed under
a set of parametric variations in order to study the nonstationary
response of the bridge, The results of the numerical study indicate that
(i) frequency domain spectral analysis with peak r.m.s acceleration as
input could provide more r.m.s response than the peak r.m.s response
obtained by the nonstationary analysis, (ii) longitudinal component
of the ground motion significantly influences the vertical vibration
of the bridge; and (iii) the angle of incidence of earthquake has
considerable influence on the deck response.

Keywords: Markov method of analysis; Seismic response of suspen-
sion bridge; Nonstationary seismic excitation, Modulating function;

Quasi-static bridge response

1. Introduction

Recently many studies have been reported on the
seismic analysis of suspension bridges [1]. In most
cases, the analysis has been performed either for a
specified earthquake record or for earthquake
assumed to be a stationary random process. Since the
non-stationary model of the earthquake process is
considered to be more realistic representation of the
ground motion, it is important to consider the
non-stationary characteristics of the ground motion
in the seismic analysis of structures. Seismic analysis
of suspension bridges by considering the non-
statioanrity of the ground motion is not widely
reported in the literature. Hyun et al [8] developed
a method for non-stationary analysis of suspension
bridges subjected to multi-support excitations
which was found to be mainly dependent upon the
enveloping function of the time history of ground

motion. The non-stationary responses were
obtained in terms of time-dependent variance
functions. There have been many studies on simpler
structures to represent the non-stationary behaviour
of these structures under seismic excitations. Lin
[10] treated the non-stationary excitation as a sequence
of random pulses. By modelling the earthquake
as filtered Poisson process, Shinozuka et al [14, 15]
developed a procedure to obtain the time-dependent
variance of the response. Debchaudhary and Gaspirini
[4, 5, 6] developed a method for obtaining the
response of multi-degree of freedom systems to non-
stationary seismic excitation using Markov approach.
The advantage of the Markov approach for the
nonstationary analysis of structures for seismic
excitation is that it directly obtains the evolutionary
r.m.s response of the system. Further, the approach
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does not require the derivation of the evolutionary
frequency response function which may be difficult
to obtain in many complex structures like, suspension
bridges. However, the application of the Markov
approach for the response analysis of suspension
bridges to non-stationary seismic excitation is not
straightforward. It involves some degree of com-
plexity because of (i) horizontal component of
ground motion contributing to the vertical vibration of
the deck and (ii) the presence of pseudo static
component of vertical motion to the total vertical
vibration of the bridge deck.

Herein, the vertical response of the bridge deck
of suspension bridges to multi-component partially
correlated non-stationary random ground motion is
obtained using a Markov formulation. Uniformly
modulated non-stationary model of the random ground
motion is considered in the study. The formulation takes
into account the effects of the angle of incidence of
earthquake, the ratio between the horizontal and vertical
components of ground motion and the quasi-static
component of the response. Using the proposed
method of analysis, the nonstationary response of a
suspension bridge is obtained for a number of
parametric variations.

2. Theory

2.1. Seismic Excitation

Seismic excitation is assumed to be multi-component
uniformly modulated non-stationary random
process. The three components of the ground motion
are assumed to be defined in the three principal
directions of the earthquake and are assumed to be
directed along the principal axes of the bridge x, z, y
or shifted with an angle a as shown in Figure (1).
The evolutionary r.m.s acceleration for each
component of the ground motion is specified. The
spatial correlation between the seismic excitations at
two points is given by a correlation function

ry :exp(- arﬁ)cos(ZpKOrﬁ) (1)

where a and K, are parameters which depend on
the direction of wave propagation as well as wave
type, earthquake type and magnitude. The values of
a and K, are taken as 4.769 and 2.756 respectively
[11]. 7; is the distance between the stations i and j
measured in the direction of wave propagation
which is assumed to coincide with the major principal
axis of the ground motion (u) as shown in Figure (1).
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Figure 1. Layout of the principal axes of the bridge (X, y, z)
and the principal directions of the ground motion
(u, v, w).

The non-stationary support excitations are
considered as the outputs of filters excited by the
evolutionary white noise. For the formulation of the
problem, the filters are augmented at each support
degree of freedom and are defined by

C i+ 2X,We X+ W3, X =S, + W

S5 +2%Xg Wy S, +We, S, =- "

where 7, is the number of exciting degrees of freedom
i.e. the size of excitation vector. { X} is the vector
of output of filters which is the input to the bridge
supports at their degrees of freedom. w, and w; are
the i filter parameters representing the predominant
frequencies and the other two parameters X; and

X

; represent the damping ratios. {S} is the vector of

intermediate response, and {W} is the vector
of evolutionary white noise having a covariance
matrix as

&y (L1+t)=
E{w)- my Q1w (t+t)- my (e+2)}
=0(t).d(t) 3)

where, m), is the mean vector of {W},d(t) is the
Dirac delta function and Q(¢) is known as the
matrix of white noise intensities. By integrating both
sides of Eq. (3)

O . (Lr+t)=0(e)d(t )at

(4)
A, (Lr+t)dt=0(¢)
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Thus, O(¢) is the integral of the covariance function
of the white noise excitation components. In the
present formulation, the elements of the intensity
matrix are modelled as piece-wise linear functions of
time, although they can take any shape. Typical
elements of the covariance matrix are

&g' wiwi (t’t+t):

A0 (A R AT
= qii(t)' (t)

o

& i (t,e+t)=
{0 Ol s 0)- 7 o))
:ql-j(t).d(t) (6)
= rij[qii(t)qjj(t) v d(t )

I'; is the correlation function between excitations
corresponding to the i* and j* d.o.f. and is given by
Eq. (1) and Wl and W] are the mean values of the
i and j" elements of the vector {W}. In general,
the ground motion is defined by its free field record
which is the output of the filter. The inputs to the
filters represent the bed rock excitation and the
filters reflect the soil media. It will be subsequently
seen that the formulation requires the specification
of the matrix Q(¢) of the intensities of white noise.
The elements of [Q(7)] are determined with the
help of the specified evolutionary rm.s acceleration
of free field ground motion and the characteristics
of the filters.

2.2. Bridge Model and the Equation of Motion

A three-span suspension bridge, as shown in

Figure (2), is taken for the formulation of the
problem. The bridge is of hinged girder type in each
span and the connection between the towers and
the cable is of roller type.

The governing equation of motion for the vertical
vibration of the i span of a suspension bridge shown
in Figure (2) is given by Pugsley [13]

£l T (x.0) i, 7Y (x,.7) v 1 (x,.1)
1x* 1x2 1t
AR T (7)
A Y(xl-,t)_'_ W, HO=00, =123

g ¢ H,

in which E/,W, are the flexural rigidity and the
dead load of the bridge per unit length of the i* span;
H,, is the initial horizontal component of the cable
tension due to the dead load; A(¢) is the additional
horizontal component of the cable tension which
includes not only the vibrational part, but also the
effect of the vertical movement of all supports, and

the longitudinal motion of outer supports and is

given by
— EC AC
TR
| 2 €W, 3 WL u
3 o S TR
J 8
+(Xf8(f)' st(f))g ®)

in which X (t) are the support ground motions as
shown in Figure (2).

The solution of Eq. (7) which satisfies the
boundary conditions of the stiffening girder of hinged
type, gives the expression for the total vertical

A
By * it : it
X
Xt101t) K2 Kergy
- L | L,

Figure 2. Layout of the suspension bridge under multi-component ground motion.
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displacement of the bridge as
4

Y(x.1)= yx, 1)+ Zlgji(xi)Xﬁ(t) , i=,2,3 )
J=

where Y(x;,1),y(x;,t) are the total and the relative
vertical displacements of the i span of the bridge
respectively, g;(x;) is the quasi-static function
governing the vertical displacement in the i span
due to unit vertical displacement of the j*# support;
X5(0),j=1,2,3,4 are the vertical displacements of
the j* support due to the ground motion. ‘
Substituting ¥ (x;,#) from Eq. (9) into Eq. (7), and
separating the differential equation of quasi‘-static
functions leads to the equation of motion in terms of
the relative (dynamic) vertical displacement of the
bridge as |

w

4 2 _—
£12 ,;(J;,-,t)_H 8 y()czi,t)+ci oylxt) W,
x Ox

ot g
(10)
2 AN 3w Ln 1
: -V E. A 2 W 4 3 [
(ZH0i), B Ede § T T ax, |- 2(0)
ot HW! L, ma1 H, § |
i=1273

where, E,, A4, are the modulus of elasticity of the cable
material and the cross sectional area of the cable
respectively; L, is the virtual cable length defined as

L =[| £ ] dx a1
in which the integration is performed from the hold
down to hold down points of the cables and P(?) is
the total force including elastic, damping and inertia
forces generated due to the support motions. The
quasi-static functions can be obtained by solving the
differential equation of the quasi-static functions
separated in a similar way as mentioned above. Mode
shapes and frequencies for the bridge can be obtained
using the continuum approach as given by Chatterjee
et al [3]. 3

2.3. State Space Formulation Using Modal Co-
ordinate

The relative vertical displacement y(x;,f) at any

point in the i* span of the bridge deck is given by

i=1,2,...,N

y(xut) = 3 (), (1) (12)

where N is the number of spans, ¥,(x;) is the n*
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vertical mode shape of the i* span of the bridge and
n,(¢) is the n” generalized coordinate. Further, the
generalized equation of motion for the relative
vertical vibration of the bridge deck can be written

i, (t)+ 28, 0,7, (1) + 0}, () =
12 . 12 . 12
jZ]a,-nXﬁ(t)+ ZIBjn Xﬁ(t)"’ Zlen Xﬁ(t) (13)
= J= Jj=

where, X ;(¢) is the support displacement corres-
ponding to the j* degree of freedom (Figure (2))
which is the output of a set of filters excited by the
evolutionary white noise as given by Eq. (2); X (1)
and X (1) are the derivatives of X (O and a,,
BjuYjn are the modal participation factors defined as

Ay, = Az Uy = Ay O3y = Aoy 04y = Appy
Bin = A3 Ban = Asn; B3n = Agn3s Ban = A1
a;, =B, =00,7=56.,...,12

Yin = AinsY2n = Aans Yan = A7n5 Yan = Alon
Ysn = A13n; Yan = A1an

Y; =00, j=6,7,9,10,11,12

where, A4,,, 45, . A4, are given in Appendix (1).
Let

2/()=5,9)

zZ{(1)=5,()

=12 12
Z()-x,(0)
20,0,
Z@=n0)

Z5(1)=1,()

M is the number of modes included in the analysis.

Then
Z{(1)=$,(r)=2{(s)

Z{(1)=5;(1)= - 05;8,(1)- 2,50 3(9)$;(2)-#,(2)

= (ij le (t)" Z&Sja)sj ZZJ (t)_ }Vj(t)

Z{(1)=x;(1)=2{(c)
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2()=%,(0)- E
0;8;(1)-28 04 S;(1)-0% X ;(1)- 28 o 5 X ;(1)
= _msjzlj (’)‘2§gmsjzzj(’)‘mﬁzsj(t)“2&1}‘017 z{(2)

» 12 and W;(¢) can be defined as

(19)

wherej = 1, 2,
w; (1)=W,cosa - W, sina j=5,6,7,8(x-direction)

wi(t)=W, 7 =1,2,3,4(y- direction)

Wj(t) =W,sina+W,, cosa j=9,10,11,12(z - direction)

where W,,W,,W, are the three components of the
ground motion and ais the angle between the
major component (#) and the longitudinal direction
(x) of the bridge, see Figure (2). |

Ma(t)=2¢ (¢)
rn=12 M

22 ()=
. 20
Zg (1)=1,(1) 20)
Now Eq. (13) can be written as
i (£) =
—minn(t)—zénwnﬁn(t)
12 . .
. zlajn[_ 02 2/ (1)-28,0, 2 (1)
=
-0} 2{(1)-28 5 0,2(1)

+ 3 B Zi(e)+ z w0

=~ 23()-28,0,2()
[

12
rz u”:u Z{(1)-2a,E0,;Z] /(1)

— 0,05 Z{ (£)- 20,8 s 0 5Z] (t)] 2n

12 EPTOI:  - o
+ 2B Zi(t)+ X v Z{(2)

Equation of motion for the bridge in terms of state
variables can be written in the matrix form as

=[4]{z()

where | Z(¢)} is the vector of state variables given
by

Z2(1)} t+[Bl{w ()] (22)

{z()3) =

#2242, 27z

Vi isl Al 4V iV £

The matrices [4] and [B] are given in the
Appendix (I).
{w(} is the vector of the white noise arranged

[ =[m(). w(0). my()]

Eq. (22) describes a system of (4 x 12+2 x M)
first order differential equations. The solution of
Eq. (22) in time domain is given by

24

e[ w(

fo

The Matrix exponential in Eq. (25) is defined by
the power series as

1At ,vl_:.]_lz(ru)-: 2 )|ffT

25)

P (26)
Eq. (25) can be written as

z(0)}=[6(.10){ 2 (1) }+ | [ BRW (Ndx (o7
where IIJ
[6(1,)]= e41-) (28)

[d(z2,)] is the state transition matrix and may be
calculated in different ways. Here, the method of
similarity transformation of matrix A is used [12, 16].

2.4. Evolutionary Mean and Covariance Matrix of
State Vector {Z}

If the excitation {#()}is evolutionary Gaussian white
noise, the response {Z(#)} is an evolutionary Gauss-
Markov random process [9]. The mean vector of

w9} is

E[{w (9)}]={n.()} (29)
and the auto covariance matrix of {#(f)} is
T st2) = B ()= 1, ()} (12) - o (2)F

(30)

=0,(1)8 (4 -1,)

where Q,(t)) is the matrix of intensities of white
noise vector {W(¢)} as defined earlier; 3(¢,—¢,) is
Dirac delta function.

The governing equation for the evolutionary
mean vector {Z(#)} is
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{m ()} =[4fm ()} +[BKm, (1)} 31)

The solution of this equation in terms of mean,
assuming that the response vector at time (#,) being

Z(1);, 1s
{m(@}=[tG to)]{m(to)}+:c‘1[f Ol [Bl{m, (1)}t 32)

The covariance matrix of the state vector Z(¢) can
be calculated as

a. ()= ellz(0)- mHz (- m )] 63
Substituting Eq. (32) into Eq. (33), the following
expression for the covariance matrix is obtained

ézz(tl’tz) =f (t]’to)ézz(to)f (IZ’IO)T

H n
+ Odi(fptl)ﬁg(tl)d(tl - t,)

toto

(34)

i ETET(fzatz)dtldtz

The integral term is obtained by assuming
4 >t,t0Et £ and ¢, £t, £¢, and the integration
is first performed with respect to t,, then with
respect to t,. In this case,

ézz(tl’tZ):f(tl’tO)ézz(tO)f_T(t2’tO)

L)

+ ff(tlat2)§_Q(t2)§TiT(t2at2)dt2 (35)

to

putting #, =¢, =t, the covariance matrix is

8. ()=t (t,00)8 (1) F7 (. 10)

3 (61)B 0(0)B7F7(1,t)at (36)

If the mean of the exciting vector is assumed to
be zero (i.e. M = 0), then Eq. (36) fully describes
the state output vector {Z(f)}. Thus, the covariance
matrix of response can be calculated at any time
t provided that the covariance matrix at any
previous time 7, and the matrix of strengths of the
excitation (i.e. intensity matrix [Q(?)] of {W(¢)}) are
known.

2.5. Calculation of Intensity Matrix Q(t) for the
Input White Noise, Given the r.m.s Ground
Acceleration

The fictitious piece-wise linear-strength envelope
(intensity function of white noise) needed to match

20 / JSEE: Spring 2003, Vol. 5, No. 1

any desired ground motion can be directly obtained by
analyzing the filters before augmenting them to the
bridge system.

Consider any filter corresponding to any excitation
d.o.f. (j), referring to Eq. (2)

X, +2XW5 X, +wijﬁ =S +W,
.. . _ (37)
Sp+2xg WS +Wg; Sy == W
Where j = 5, 6, 7, 8 correspond to x-direction
excitations, j = 1, 2, 3, 4 correspond to y-direction
excitations and j = 9, 10, 11, 12 correspond to
z-direction excitations as shown in Figure (2).
The filter equations ;j” degree of freedom may be
written in the matrix form as

{ZQV =[P (2@ +[B1{w () (38)
where
kz(t)}j]T =(2,2,2,2,) (39)

(W (1))’ is the vector of white noise for the
filter. The matrices [4]/ and [B]’/ are given in the
Appendix (II).

The solution of Eq. (38) for filters is similar to that
given by Eq. (22). Assuming {/¥ (1)} to be zero mean
random vectors, the covariance matrix of the filter
responses is given by

[é.zizj(t)J = [f i(t’tO)] [ézizj(to)”f j(t’tO)]T

+df (8] Lo [f ()] at (GO

Lo

where f (#¢,) is the transition matrix for filter i.
For the case in which the elements of [Q(7)]
are piece-wise linear, as shown in Figure (3),
Eq. (40) can be written in the following form:
(at time ¢, =Dr i.e. point 1 with £, =0.0). Note that
the duration is divided into increments Dy, and ¢ is a
single element for each filter which is one element
of matrix [Q(?)]

W0) )

1

&, (00)] =[t,(00)]

Dt 41
*+4q0 OO[fi(Dt’t)][B]i[B]]T[fj(Dt- t)]Tdt

+%[-)_;foi’§§[fi(m- OllaL LBt (or- 1)t at

For point 2, i.e. ¢, =2Dtq =¢q,,
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Figure 3. Piece-wise linear strength intensity function.

[éz,-zj(tz)Jl = [fi(fz - f/)] [éZiZj(tl)J[fj(tZ - f/)]T

+6]1[Eo]+ 612[');11 [on]

(42)

where

[l = olt (o1} [ (or- ]

o (43)
[on]: S)[fi(Dt' t)][B]i[B]JT'[f (Dt' t)]Ttdt

[F, o]’ [on] are 4 x4 matrices. They are constant
for equal intervals Dt.

From Eqgs. (41) and (42), a recursive relation for
covariance and cross covariance of state vector can

be obtained as

&, ()] =1 (o0&, (e ) I (0]

] 44
"’C]k-l[lrlo]"'ql(Tct]k-l[on] “9

Generally, the ground motion is represented in
terms of rnm.s ground acceleration, which can be
written as

X, :[- Wy - 2Xg Wy - W - 2xfoJ(Z}

-[al{z} “
Since Eq. (45) is linear
S%(‘f = [d][ézz][d]r (46)

Using Eqs. (44) and (46), Cross variance of ground
acceleration at time ¢, is given by

Sizj(tk):

af. (Dr)a 77 (4 l)f_;(D’)iT

ij 4 )- ii t,.
+qzj(fk-1)1[Flo]iT +%M1[F20]QT
= if_i(Dt)éZiZj (tk— l)f_j(Dt)ir (47)
qi' t)- ql" .
+qii(tk-l)'A0 +%ﬁ(kl).go
s3()=df (D), (1) (00
@ B0, il (48)

+qij(tk-])'gAO - Dy D

where 4 =d[F]d" and B, =d[Fy]d"

It is known that Sl-zj(tk) can be written as

Sizj(tk)zsi(tk)sj(tk)rij (49)

where '; is the correlation function between the
two filters 7 and j.
Using Eq. (49) and Eq. (48) can be written as

qy(fk):%o’[si(rk)s,-(rk)ri,--gf_ (o)

. o ) 50
8, 1 O - B, () Y
where
_® B, &
F,=c4,- —=
0 g 0 Dt g
and
8, (u) =1 (Da,, (41)f (Dr)
0)- a1, 51
+qij(tk-])[Fi0]+M'[F20] Gl

Now, defining the nm.s time history of ground
acceleration and filter characteristics, the
corresponding time history of elements ¢;(¢) of
the matrix [Q(#)] can be easily calculated by using
Egs. (50) and (51). The matrix [Q(¢)] at each time “¢”
is to be used in Eq. (36) to calculate the covariance
matrix for the bridge response.

2.6. Calculation of the Bridge Responses

Once the evolutionary mean and the covariance
matrices for the total state vector are computed, the
evolutionary mean and covariance matrix of any
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desired response can be obtained by expressing them
as a linear function of the state variables that includes
the base displacement, modal coordinates, and their
derivatives.

Let {U(f)} be any unknown response vector that
is of interest and is linearly related to some other
response vector {R(¢)}, whose evolutionary mean
vector {R(7)} and covariance matrix & zz(f) are
already known, i.e.,

{v}=[p{r()}

Then, the evolutionary mean and the covariance

(52)

matrices of the responses {U (f)} can be expressed
in terms of the known evolutionary mean and
covariance matrices of the response {R(#)} as follows:

{o}=1ol{r(0)}

ayy (t) =[D] a RR[D]T

Since the input is assumed to be zero mean

(53)

(54)

random vector, the output will be zero mean, and
response vector will be zero mean and the diagonal
terms will give the evolutionary mean square value of
the response.

2.7. Evolutionary Mean Square Responses for
Suspension Bridge

2.7.1. Evolutionary Mean Square Displacement

The expression for the total displacement at any time
in the i span of the suspension bridge can be written
as

Y('xi,t) = [y (xi)]{h} +[G(xi)]{Xf}
where

[y (xi)] = [y 1 (xz) Y u (xi)]
{n}" =[h, ... hy]
[G(Xi)] = [gl (xi) 8> (xi) 83 (xi) g4(xi)]

[{Xf}]T = [Xfl X2 Xps Xf4]

Then, the evolutionary mean square of the total
displacement can be written as

s} (x)=ly ()] & Ly ()]
()]l v, G

+y ()] By, (6"
(el Oy ()

(55)

(56)
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where [&, (D118 y .y (D1, (0] and [& y ()]
can be easily assembled from the covariance matrix
of the state variable [& _.(1)].

2.7.2. Evolutionary Mean Square Bending Moment
and Cable Tension h(t)

The evolutionary mean square value of the lz)ending
. . . d

moment can be easily obtained by using £/ 7 { and

X

2
EI flx? instead of y (x;) and G(x;) respectively.

Further, the evolutionary mean square value of the
additional horizontal component of cable tension
h(?) can also be obtained.

3. Numerical Study

Three span suspension bridge [7] shown in Figure (2)
is considered for the parametric study. The following
data are used in the study.

L, =Ly =155.0m; L, = 460.0m;
W, =W, =W, =534Tkg/m

I,=15=0.3749m* 1, =0.3269m"*; 4, = 0.078m*

H, =30038.0" 10°N; L, =L, =281.0m; L, = 494m;
E.=186" 10"'N/m*E =1.998" 10"' N/ m?.

The stiffening girder in each span is hinged at
the ends and the cable is free to move at the tower
top (i.e. roller type cable connection). Uniformly
modulated non-stationary ground motion is expressed
in terms of the evolutionary ».m.s ground acceleration.
Three modulating functions, shown in Figure (4),
are considered in the study. The value of Sf‘g (the
peak value of the r.m.s ground acceleration) is

128 — Modulating Funchion (1)
""" Modulating Fungtion (2)
100 .-'_/"’\'&-""' ,‘____—‘——nhdulaung Function {3}
i ", .‘-"n
i o L
eoBd N o
— 1 \\ k‘ -
2 0&0- ;I N o
-] [
m o 1
g / . i,
FRELE \
= | v
’l x
0.:2a B *
I e
0.0 r. A S e e e g
0o 4.0 8.0 12.0 18.0 20.0 24.0
Time (sec)

Figure 4. Modulating functions used in the parametric study.
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taken as 0.61 ™2 The ground motion is described
along the principal directions of the earthquake by
specifying different proportions between R,,R,,R,.
For the angle of incidence @ =0.0°, the ground
motions in the three directions refer to those
corresponding to the longitudinal, vertical and
transverse directions of the bridge. Three sets of
filter parameters are used representing soft, firm
and very firm soils respectively and are shown
in Table (1). The strength intensity functions for
the set of filter parameters describing the firm soil
for the three modulating functions are shown in
Figure (5). It is seen that the maximum value of
the strength intensity function occurs at the same
time where the corresponding modulating function
attains its peak. However, the shapes of the strength
intensity functions are not exactly the same as
those of the corresponding modulating functions.
The evolutionary r.m.s responses are calculated
with R, :R,: R, =1.0:1.0:1.0;a=0.0° and the set of
filter parameters corresponding to the firm soil
condition, unless mentioned otherwise. With the
help of the numerical study, effects of different
important parameters on the responses of the bridge
are investigated.

Table 1. Filter parameters corresponding to different soil

conditions.
Filter Parameters
Soil Condition
@y @ Ss ‘ff
Soft Soil 6.2832 | 0.62832 0.40 0.40
Firm Soil 15.708 1.5708 0.60 0.60
Very Firm Soil 31.416 3.1416 0.80 0.80

(o2s - Modulating Function (1)
7 R— ¥ Ie T4 Iar:ng Function (2)
0.024 e Modulating Function (3)

.f/\
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Figure 5. Strength intensity functions correspnding to the
modulating functions.

3.1. Effect of the Degree of Nonstationarity (The
Nature of Modulating Function)

The degree of nonstationarity is denoted by the
sharpness of the modulating function with time. The
sharper the variation of the modulating function
with time, more is the degree of nonstationarity.
Figures (6) to (8) show the evolutionary rm.s

Evolutionary r.m s Displacement (Quter Span)
0.28

(=
X
|

r.m.s Displacemenl (m)

o

o

=<}
1

0.04 - /}‘/

0.00 TTTT T I T I T I I I T T T T T I I T I I I T T I T T T T I T T 7T I I
0.0 4.0 8.0 12.0 16.0 20.0 24.0
Time (sec)

Figure 6. Evolutionary r.m.s of vertical displacement at the mid-
point of the outer span.

Evelutionary r.m.s moment (Inner span)
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Figure 7. Evolutionary r.m.s of vertical bending moment at the
mid-point of the inner span.
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Figure 8. Evolutionary r.m.s of additional horizontal component
of the cable tension h(t).
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responses (standard deviation = zm.s value since the
random process is assumed with zero mean) for the
displacement at the mid-point of the outer span, the
bending moment at the mid-point of the inner span
and the additional horizontal component of the cable
tension /(f) for the three modulating functions. It is
seen that the nature of the evolutionary response and
its maximum value depend upon the modulating
function being used. The sharper the modulating
function (modulating function (1)), less is the maximum
value of the nm.s response. Further, the variation of
the 7m.s response with time is different than that of
the corresponding modulating function with time. The
effect of nonstationarity on the response is shown
by the difference between the maximum r.m.s
response as obtained from the stationary analysis
(frequency domain spectral analysis). The latter is
determined with input as Clough and Penzien double

filtered PSDF of ground acceleration having
Sy, = 0.61m /s> (i.e. the peak 7m.s acceleration in the
evolutionary input).

Table (2) compares between the maximum
r.m.s responses as obtained by the nonstationary
analysis and the r.m.s responses as obtained by the
frequency domain spectral analysis (stationary
analysis). The difference between the stationary
r.m.s responses and the maximum value of
the nonstationary r.m.s responses is about 17%
for the modulating function (3), about 25% for the
modulating function (2) and about 45% for
the modulating function (1). For further parametric
studies, the modulating function (2) is used.

3.2. Effect of the Ratio Between the Three Com-
ponents of Ground Motion

Table (3) shows the effect of the ratio between the

Table 2. Effect of the nature of modulating function on the r.m.s responses.

Non-Stationary

Position Stationary
Modulating (1)  Modulating (2)  Modulating (3)

Outer Span
Displacement (m) 0.2253 0.1598 0.1876 0.2002
Outer Span 616
Moment (t.m) 690 492 577
Inner Span

. 0.3628 0.2491 0.2915 0.3102
Displacement (m)
Inner Span
Moment (t.m) 303 213 250 268
h() 152 107 126 134
(ton)

Table 3. Effect of the ratio between the three components of ground motion on the r.m.s responses (R : R : R)).

Position 1.0:0.4:0.6 0.6:0.5:0.6 0.8:0.5:0.6
Stationary Non-Stationary® Stationary Non-Stationary® Stationary Non—Stationary.

Outer Span 0.1988 0.1641 0.1296 0.1076 0.1651 0.1366
Displacement (m)
Outer Span
Moment(t.m) 617 511 399 332 511 424
Inner Span 0.3499 0.2813 0.2149 0.1727 0.2828 0.2273
Displacement (m)
Inner Span
Moment(t.m) 272 224 175 144 225 185
h(©) 138 114 88 73 114 94
(ton)

® Peak value of the evolutionary r.m.s response (modulating function (2)).
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three components of the ground motion on the
maximum r.m.s responses obtained from the non-
stationary analysis and the 7zm.s responses obtained
from the stationary analysis. Three different ratios
(R,:R,:R,)between the three components of the
ground motion are considered for the study
namely, (i) 1.0:0.4:0.6; (ii) 0.6:0.5:0.6; (iii) 0.8:0.5:0.6.
The angle of incidence of the earthquake is taken as
a=0.0°, i.e. the three components of the ground
motion coincide with the principal directions of the
bridge (x, y, 2). It is seen that the relative magnitude
of the x component of the ground motion has a
predominant effect on the responses at the mid
points of the outer and the inner spans. This is expected
since the horizontal movement of the abutments (in
the longitudinal direction) substantially influences
the vertical movement of the bridge deck because of
the fluctuation in the cable tension. It is observed that
as R, (=R,)increases, the response also increases.
Even if R, (=R,) is decreased but R, is increased
(=R,),and the vertical response of the bridge deck
increases.

3.3. Effect of the Nature of the Filter Coefficients
(Soil Conditions)

Three different filter coefficients denoting three
different soil conditions have been used in the study.
The evolutionary strength functions for the three
soil conditions are shown in Figure (9). Although
the evolutionary free field ~m.s ground acceleration
is same for all hree soil conditions, the shapes of the
evolutionary strength functions and the evolutionary
r.m.s responses are different for different soil
conditions. This is the case because the filter
coefficients modify the frequency contents of the free
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#=——— Firm Soil

swees Very Firm Soil

o
(=]
o]
1
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YN
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— i
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8.0 16.0 20.0 24.0

12.0
Time (sec)

Figure 9. Strength intensity functions for different soil param-
eters (soil condition).

field ground motion, see Eq. (2). Table (4) compares
between the maximum 7.m.s responses obtained from
the non-stationary analysis and the r.m.s responses
as obtained from the stationary analysis. It is seen
from the table that the responses are more for the
soft soil condition and the difference between the
responses obtained by the stationary and non-stationary
analyses remains nearly the same for all three soil
conditions.

3.4. Effect of the Angle of Incidence of Earthquake
(a)
The effect of the angle of incidence (o) on the
displacement response is shown in Table (5). o =0.0°
corresponds to the case when the major principal
component of the earthquake is along the longitudinal
direction of the bridge and a =90° indicates the case
when the moderate principal component of the
earthquake is along the longitudinal axis of the bridge,
see Figure (1). The minor principal component of the
earthquake is always in the vertical direction. Further,

Table 4. Effect of the filter coefficients (soil conditions) on the r.m.s responses.

Soft Soil Firm Soil Very Firm Soil
Position
Stationary | Non-Stationary® | Stationary Non-Stationary®| Stationary | Non-Stationary®

Otitor, Span 0.5772 0.4933 0.2253 0.1876 0.0557 0.0476
Displacement (m)
Outer Span 1571 1309 690 577 177 151
Moment(t.m)
Tuner Span 1.4617 1.3345 0.3628 0.2915 0.0627 0.0500
Displacement (m)
Inner Span 849 739 303 250 79 68
Moment(t.m)
h(t) 360 300 152 126 43 37
(ton)
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Table 5a. Effect of the angle of incidence of the earthquake () onthe r.m.s responses.

@ =0.0° a =35° a =659
Point
Stationary | Non-Stationary®| Stationary | Non-Stationary®| Stationary Non-Stationary®
Outer Span
Displacement (m) 0.2253 0.1876 0.1966 0.1631 0.2502 0.2076
Outer Span
Moment (t.m) 690 577 606 505 772 643
Inner Span
Displacement (m) 0.3628 0.2915 0.3308 0.2660 0.4185 0.3363
Inner Span
Moment (t.m) 303 250 280 231 3147 286
h(t)
(ton) 152 126 133 110 172 142
* Peak value of the evolutionary r.m.s response (modulating function (2)).
Table 5b. Effect of the angle of incidence of the earthquake (a) on the r.m.s responses.
a =175° a = 80° a =90°
Point
Stationary | Non-Stationary®| Stationary | Non-Stationary®| Stationary Non-Stationary®
Quter Span
Displacement (m) 0.1697 0.1431 0.2661 0.2223 0.1491 0.1322
Outer Span
Moment (t.m) 508 429 813 680 426 376
Inner Span
Displacement (m) 0.2345 0.1875 0.4129 0.3319 0.1098 0.0880
Inner Span
Moment (t.m) 199 165 325 267 187 165
h(t)
(ton) 102 85 164 135 106 95

* Peak value of the evolutionary r.m.s response (modulating function (2)).

denotes the case of fully correlated excitations.
As the ratio between the three components of the
earthquake is taken as 1.0:1.0:1.0, the change in
predominantly effects the correlation between
excitations at any two points by modifying the
separation length , see Figure (1).

The table shows that the maximum response at
any section of the bridge deck does not necessarily
occur for , it may occur for an angle of
incidence between 0 to The responses are
minimum for i.e., for fully correlated ground
motion. The critical value of depends upon the
section at which the response is desired. Further, the
difference between the maximum rm.s response and
the r.m.s response as obtained by the stationary and
non-stationary analyses varies with The value of
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for which this difference becomes maximum
depends upon the response quantity of interest and
the section at which the response is desired.

4. Conclusions

Seismic response of the suspension bridge to multi-
component non-stationary partially correlated
random ground motion is obtained using a Markov
approach. An uniformly modulated non-stationary
model of the random ground motion is assumed and
is specified by the evolutionary r.m.s ground
acceleration. The analysis duly takes into account
the spatial correlation of the ground motion, angle
of incidence of earthquake and the quasi-static
excitation. Using the proposed method of analysis, a
suspension bridge is analyzed under a set of parametric
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variations in order to study the non-stationary response
behaviour of the bridge. The results of the numerical

study show that

7
0‘0

The shape of the modulation function depicting
the degree of nonstationarity significantly
influences the evolutionary zm.s response of
the bridge. The effect of nonstationarity is to
decrease the r.m.s response.

Frequency domain spectral analysis (stationary
analysis) provides higher rm.s responses
compared to the maximum rzm.s responses
obtained by the non-stationary analysis; the
difference could be as much as 45%.

The sharper the modulating function, more is
the difference between the maximum rm.s
response (of the non-stationary analysis) and
the stationary zm.s response.

Responses are more for the filter coefficients
corresponding to soft soil condition. However,
the difference between the maximum rm.s
response (of the non-stationary analysis) and the
stationary 7.m.s response remains nearly the same
for all soil conditions.

Fully correlated ground motion provides less
value of the response.

The maximum response does not occur for zero
angle of incidence of earthquake (i.e. major
component coinciding with the longitudinal axis
of the bridge). The critical angle of incidence
depends upon the response quantity of interest.
Further, the difference between the maximum
rm.s response (of the non-stationary analysis)
and the stationary nm.s response differs with
the angle of incidence of earthquake.
Longitudinal
significantly influences the vertical vibration of
the bridge deck.

component of ground motion
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Appendix 1 where

The elements of [4,] matrix [0 1 0 0 ]
WL, |

Apy =, 8| L |05 %50y 0 0
ZH Aﬁ =

AZn = —2§nmn71n; A3n =Yin>

2
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WL, W,L
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2H, 0
A11n = 28,0, Y4n; A120 =~Van; Bjn—20 ;€ g 4
Ayzp =1, 5; Ayan =1, 0
Azn =185 Aygy = -, 8 and the Matrix [B] can be written as
n n> n n
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3L |-
W | gi(xiwa(x)dx l]=|.... 2
E Ag i=l__o j=1234 U |TTTRITTTC
6 L H ;an = 3 L; = 1’29334 B3
M I v T
=1 ero (3Q6)r2xp)x(12)
and
3 __ L where the submatrices B, B, and B, can be written as
ZPVt ,r\'ln(xi)dx
_i=sl_ o
Hp = 3 __L; )
ZW; J}Wn (xi)dx .
i=1 0 0
VI_/,. is the dead load per unit length of the i* span of ';
the suspension bridge.
Appendix IT 0
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