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ABSTRACT: A Markov method of analysis is presented for obtaining
the seismic response of suspension bridges to nonstationary random
ground motion. A uniformly modulated nonstationary model of
the random ground motion is assumed which is specified by the
evolutionary r.m.s ground acceleration. Both vertical and horizontal
components of the ground motion are considered to act simultaneously
at the bridge supports. The analysis duly takes into account the angle
of incidence of earthquake, the spatial correlation of ground motion
and the quasi-static excitation. A suspension bridge is analysed under
a set of parametric variations in order to study the nonstationary
response of the bridge, The results of the numerical study indicate that
(i) frequency domain spectral analysis with peak r.m.s acceleration as
input could provide more r.m.s response than the peak r.m.s response
obtained by the nonstationary analysis; (ii) longitudinal component
of the ground motion significantly influences the vertical vibration
of the bridge; and (iii) the angle of incidence of earthquake has
considerable influence on the deck response.

Keywords: Markov method of analysis; Seismic response of suspen-
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1. Introduction

Recently many studies have been reported on the
seismic analysis of suspension bridges [1]. In most
cases, the analysis has been performed either for a
specified earthquake record or for earthquake
assumed to be a stationary random process. Since the
non-stationary model of the earthquake process is
considered to be more realistic representation of the
ground motion, it is important to consider the
non-stationary characteristics of the ground motion
in the seismic analysis of structures. Seismic analysis
of suspension bridges by considering the non-
statioanrity of the ground motion is not widely
reported in the literature. Hyun et al [8] developed
a method for non-stationary analysis of suspension
bridges subjected to multi-support excitations
which was found to be mainly dependent upon the
enveloping function of the time history of ground

motion. The non-stationary responses were
obtained in terms of time-dependent variance
functions. There have been many studies on simpler
structures to represent the non-stationary behaviour
of these structures under seismic excitations. Lin
[10] treated the non-stationary excitation as a sequence
of random pulses. By modelling the earthquake
as filtered Poisson process, Shinozuka et al [14, 15]
developed a procedure to obtain the time-dependent
variance of the response. Debchaudhary and Gaspirini
[4, 5, 6] developed a method for obtaining the
response of  multi-degree of freedom systems to non-
stationary seismic excitation using Markov approach.
The advantage of the Markov approach for the
nonstationary analysis of structures for seismic
excitation is that it directly obtains the evolutionary
r.m.s response of the system. Further, the approach
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does not require the derivation of the evolutionary
frequency response function which may be difficult
to obtain in many complex structures like, suspension
bridges. However, the application of the Markov
approach for the response analysis of suspension
bridges to non-stationary seismic excitation is not
straightforward. It involves some degree of com-
plexity because of (i) horizontal component of
ground motion contributing to the vertical vibration of
the deck and (ii) the presence of pseudo static
component of vertical motion to the total vertical
vibration of the bridge deck.

Herein, the vertical response of the bridge deck
of suspension bridges to multi-component partially
correlated non-stationary random ground motion is
obtained using a Markov formulation. Uniformly
modulated non-stationary model of the random ground
motion is considered in the study. The formulation takes
into account the effects of the angle of incidence of
earthquake, the ratio between the horizontal and vertical
components of ground motion and the quasi-static
component of the response. Using the proposed
method of analysis, the nonstationary response of a
suspension bridge is obtained for a number of
parametric variations.

2. Theory

2.1. Seismic Excitation

Seismic excitation is assumed to be multi-component
uniformly modulated non-stationary random
process. The three components of the ground motion
are assumed to be defined in the three principal
directions of the earthquake and are assumed to be
directed along the principal axes of the bridge x, z, y
or shifted with an angle α  as shown in Figure (1).
The evolutionary r.m.s acceleration for each
component of the ground motion is specified. The
spatial correlation between the  seismic excitations at
two points is given by a correlation function

( ) ( )ijoijij rKscorapex                   v         π−=ρ 2                                 (1)

where a and oK  are parameters which depend on
the direction of wave propagation as well as wave
type, earthquake type and magnitude. The values of
a and oK  are taken as 4.769 and 2.756 respectively
[11]. ijr  is the distance between the stations i and j
measured in the direction of wave propagation
which is assumed to coincide with the major principal
axis of the ground motion )(   u  as shown in Figure (1).

Figure 1. Layout  of  the  principal  axes of the  bridge (x, y, z)
and  the  principal  directions  of  the  ground  motion
(u, v, w).

The non-stationary support excitations are
considered as the outputs of filters excited by the
evolutionary white noise. For the formulation of the
problem, the filters are augmented at each support
degree of freedom and are defined by
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where sn  is the number of exciting degrees of freedom
i.e. the size of excitation vector. }{ fX  is the vector
of output of filters which is the input to the bridge
supports at their degrees of freedom. fiω  and siω  are
the ith filter parameters representing the predominant
frequencies and the other two parameters fiξ  and

siξ  represent the damping ratios. {S} is the vector of
intermediate response, and {W} is the vector
of evolutionary white noise having a covariance
matrix as
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where, Wµ  is the mean vector of )(,}{          W τδ  is the
Dirac delta function and Q(t) is known as the
matrix of white noise intensities. By integrating both
sides of Eq. (3)
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Thus, Q(t) is the integral of the covariance function
of the white noise excitation components. In the
present formulation, the elements of the intensity
matrix are modelled as piece-wise linear functions of
time, although they can take any shape. Typical
elements of the covariance matrix are
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ijρ  is the correlation function between excitations
corresponding to the ith and jth d.o.f. and is given by
Eq. (1) and iW  and jW  are the mean values of the
ith and jth elements of the vector {W}. In general,
the ground motion is defined by its free field record
which is the output of the filter. The inputs to the
filters represent the bed rock excitation and the
filters reflect the soil media. It will be subsequently
seen that the formulation requires the specification
of the matrix Q(t) of the intensities of white noise.
The elements of [Q(t)] are determined with the
help of the specified evolutionary r.m.s acceleration
of free field ground motion and the characteristics
of the filters.

2.2. Bridge Model and the Equation of Motion

A three-span suspension bridge, as shown in

Figure (2), is taken for the formulation of the
problem. The bridge is of hinged girder type in each
span and the connection between the towers and
the cable is of roller type.

The governing equation of motion for the vertical
vibration of the ith span of a suspension bridge shown
in Figure (2) is given by Pugsley [13]
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in which iii W lE ,  are the flexural rigidity and the
dead load of the bridge per unit length of the ith span;

wH  is the initial horizontal component of the cable
tension due to the dead load; h(t) is the additional
horizontal component of the cable tension which
includes not only the vibrational part, but also the
effect of the vertical movement of all supports, and
the longitudinal motion of outer supports and is
given by
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in which ( )tX   fj  are the support ground motions as
shown in Figure (2).

The solution of Eq. (7) which satisfies the
boundary conditions of the stiffening  girder of hinged
type, gives the expression for the total vertical

Figure 2. Layout of the suspension bridge under multi-component ground motion.
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displacement of the bridge as vertical mode shape of the ith span of the bridge and

l1n(t) is the ffh generalized coordinate. Further, the

generalized equation of motion for the relative
vertical vibration of the bridge deck can be written

,2,3 (9)
4

r(Xj,t)=Y(Xpt)+}:::gji(Xj)Xjj(t) , i=
j=l

tin (t)+ 2c,n COn tin (t)+ CO~ lln (t) =

12 ..12 .12

~a jnX .o(t)+ ~ 13 jn X .o(t)+ ~y jn X .o(t)
j=1 j=1 j=1

(13)

where, X .o(t) is the support displacement corres-
ponding to the jth degree of freedom (Figure (2»
which is the output of a set of filters excited by the
evolutionary white noise as given by Eq. (2); j; .o(t)
and X.o(t) are the derivatives ofX.o(t) and cx,jn,

13 jn' 'Y jn are the modal participation factors defined as

where Y(Xj' t),Y(Xj, t) are the total and the relative
vertical displacements of the ;ih span of the bridge

respectively, gji(XU is the quasi-static function
governing the vertical displacement in the ith span
due to unit vertical displacement of the jth support;

X.o(t),j=1,2,3,4 are the vertical displacements of
the jth support due to the ground motion. ;

Substituting Y(Xj,t) from Eq. (9) into Eq. (t>, and
separating the differential equation of quasi~static
functions leads to the equation of motion in terms of
the relative (dynamic) vertical displacement of the
bridge as

Clln = A3n; Cl2n = A6n; Cl3n = A9n; Cl4n = Al2n

El.E~-H ~!2+c..E~+~II ~ 4 w ~ 2 I ~
vx vx vt g f31n = A2n; f32n = ASn; f33n = ASn; f34n = A11n

<Xjn =f3jn =O.O,j=5,6, ,12

~2y (X. t ) WU I' + 1X -
or Hw

I'ln = Aln; I' 2n = A4n; I' 3n = A7n; I' 4n = AIOn

I'Sn = A13n; I'Sn = AI4n

I'jn=O.O, j=6,7,9,10,11,12

i=1,2,3

where, Ec, ~ are the modulus of elasticity of the cable
material and the cross sectional area of the cable
respectively; Le is the virtual cable length defined as

where, A1n' A2n"
Let

., A14n are given in Appendix (I).

Z!(t)=Sj(t)
(11)

Z{(t)=Sj(t)
in which the integration is performed from the hold
down to hold down points of the cables and P(t) is
the total force including elastic, damping and inertia
forces generated due to the support motions. The
quasi-static functions can be obtained by solving the
differential equation of the quasi-static functions
separated in a similar way as mentioned above. Mode
shapes and frequencies for the bridge can be obtained
using the continuum approach as given by Chatterjee
et al [3].

j=1,2, 12
zl(t) = X jj(t)

zl(t) = x .o(t)

Z;(t)=T1n(t)
n =1,2, M

Z~(t)= Tln(t)

M is the number of modes included in the analysis.

Then
2.3. State Space Formulation Using Modal Co-

ordinate i!(t)= Sj(t) = z{(t)

The relative vertical displacement Y(Xj,t) at any
point in the ith span of the bridge deck is given by i{ (t) = S j(t) = -ro;jS j (t)- 2E;sjrosj(t)S j(t)- Wj(t)

= -ro;jZ! (t)- 2E;sjrosjZ{ (t)- W j(t)i = 1, 2, ,N (12)

i{(t)= X .o(t)= zl(t)where N is the number of spans, IJ'n (xJ is the nth

18 / JSEE: Spring 2003, Vol. 5, No.1
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if(t) = X jj(t)= 1 (19)

-(J};jS j(t)- 2~sj(J}sj S j(t)- (J}~X jj (t)- 2~jjb jj X jj(t)

= -(J};j zl (t)- 2~sj(J}sj z{ (t)- (J)~ z{ (t)- 2~;(J) jj zf (t)

[{Z(t)}]T =

[Z.t ZI Z.t ZII 2 3 4 ZfZ~](23)
Z l2 Z I2 Z I2 Z I2 : Z I Z2

I 2 3 4. 5 6'

where) = 1,2, ., 12 and Wj(t) can be defined as

The matrices [A] and [B] are given in the

Appendix (II).
{w( t)} is the vector of the white noise arranged

Wj(t)= Wucosa-Ww sina j = 5, 6, 7, 8 (x-direction)

Wi2(t)]Wj(t). (24)
Wj(t)= Wv j = 1, 2, 3, 4 (y -direction)

Eq. (22) describes a system of (4 x 12 + 2 x M)
first order differential equations. The solution of
Eq. (22) in time domain is given by

Wj(t)= Wusina + Ww cosa j = 9, 10, 11, 12 (z -direction)

where Wu,Wv,Ww are the three components of the

ground motion and a is the angle between the

major component (u) and the longitudinal direction
(x) of the bridge, see Figure (2). !

(25)

The Matrix exponential in Eq. (25) is defmed by
the power series as

n =1,2, M (26)(20)

Eq. (25) can be written as
Now Eq. (13) can be written as

(27)
Tln(t)=

where

[<I>~,to)]= JA)(t-to) (28)

-ro~lln (t)- 2 ~n ron Tln (t)

12
[+ L<Xjn -ro;jZI(t)-2~$jro$jZ{(t)

j=1 [<1>(/,/0)] is the state transition matrix and may be
calculated in different ways. Here, the method of
similarity transformation of matrix A is used [12, 16].

-co~ zf (t)- 2F;fJco .oZ{ (t)]

2.4. Evolutionary Mean and Covariance Matrix of
State Vector {Z}

If the excitation {W(t)} is evolutionary Gaussian white
noise, the response {Z(t)} is an evolutionary Gauss-
Markov random process [9]. The mean vector of
{w(t)} is

= -O)~ Z; (1)- 2 E;n O)n Z: (1)

-a jnro1zj (t)- 2a jn~fJro.tizl (t)] E[{ W(t )}]= {~w(t)} (29)f21)

and the auto covariance matrix of {W(t)} is

(30)Equation of motion for the bridge in terms of state
variables can be written in the matrix form as

Lww(t\,tJ= E~W(t\)-l.1w(t\)}{W(t2)-I.1W(t2)}T

=QW(t\)O(t\-t2)

(22)

where Qw(tJ is the matrix of intensities of white
noise vector {W(t)} as defined earlier; 5(t)-tv is
Dirac delta function.

The governing equation for the evolutionary
mean vector {Z(t)} is

where
by

Z(t)} is the vector of state variables given

JSEE: Spring 2003, Vol. 5, No. 1/19
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( ){ } [ ] ( ){ } [ ] ( ){ }                tBtAt wzz µ+µ=µ&                          (31)

The solution of this equation in terms of mean,
assuming that the response vector at time )( 0t  being
{Z },)( 0  t  is

( ){ } ( )[ ] ( ){ } ( )[ ] [ ] ( ){ } ττµτφ+µφ=µ ∫                            dB t,t tt,t w

t

t
zz

0
00 (32)

The covariance matrix of the state vector Z(t) can
be calculated as

( ) ( ) ( ){ } ( ) ( ){ }[ ]T 
zzzz                          ttZ ttZEtt  221121, µ−µ−=∑   (33)

Substituting Eq. (32) into Eq. (33), the following
expression for the covariance matrix is obtained
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The integral term is obtained by assuming

11021 , tt tt ≤τ≤>  and 220 tt ≤τ≤  and the integration
is first performed with respect to ,1τ  then with
respect to .2τ  In this case,
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If the mean of the exciting vector is assumed to
be zero (i.e. w

µ = 0), then Eq. (36) fully describes
the state output vector {Z(t)}. Thus, the covariance
matrix of response can be calculated at any time
t provided that the covariance matrix at any
previous time t0, and the matrix of strengths of the
excitation (i.e. intensity matrix [Q(t)] of {W(t)}) are
known.

2.5. Calculation  of  Intensity  Matrix  Q(t)  for  the
  Input  White  Noise,  Given  the  r.m.s  Ground
  Acceleration

The fictitious piece-wise linear-strength envelope
(intensity function of white noise) needed to match

any desired ground motion can be directly obtained by
analyzing the filters before augmenting them to the
bridge system.

Consider any filter corresponding to any excitation
d.o.f. (j), referring to Eq. (2)
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Where j = 5, 6, 7, 8 correspond to x-direction
excitations, j = 1, 2, 3, 4 correspond to y-direction
excitations and j = 9, 10, 11, 12 correspond to
z-direction excitations as shown in Figure (2).

The filter equations jth degree of freedom may be
written in the matrix form as

( ){ } [ ] ( ){ } [ ] ( ){ }jjjjj
             tWBtZAtZ   +=&                      (38)

where

( ){ }[ ] [ ] jTj   ZZZZtZ        
 

   4321=                                  (39)

j
   tW })({  is the vector of white noise for the

filter. The matrices j 
 A][  and j 

 B][  are given in the
Appendix (II).

The solution of Eq. (38) for filters is similar to that
given by Eq. (22). Assuming })({    tW  to be zero mean
random vectors, the covariance matrix of the filter
responses is given by
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where )( 0tt,  iφ  is the transition matrix for filter i.
For the case in which the elements of [Q(t)]
are piece-wise linear, as shown in Figure (3),
Eq. (40) can be written in the following form:
(at time tt  ∆=1  i.e. point 1 with ).0.00  t =  Note that
the duration is divided into increments t, ∆  and q is a
single element for each filter which is one element
of matrix [Q(t)]
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[F10], [F20] are 4 x 4 matrices. They are constant
for equal intervals .t ∆

From Eqs. (41) and (42), a recursive relation for
covariance and cross covariance of state vector can
be obtained as
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Generally, the ground motion is represented in
terms of r.m.s ground acceleration, which can be
written as

[ ]{ }
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Since Eq. (45) is linear
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Using Eqs. (44) and (46), Cross variance of ground
acceleration at time kt  is given by
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where [ ] Td F dA  
 100 =  and [ ] T 

 d F dB
 200 =

It is known that ( )kij t  
2σ  can be written as

( ) ( ) ( ) ijkjkikij           ttt ρσσ=σ2                                     (49)

where ijρ  is the correlation function between the
two filters i and j.

Using Eq. (49) and Eq. (48) can be written as
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Now, defining the r.m.s time history of ground
acceleration and filter characteristics, the
corresponding time history of elements )(tq   ij  of
the matrix [Q(t)] can be easily calculated by using
Eqs. (50) and (51). The matrix [Q(t)] at each time  “t”
is to be used in Eq. (36) to calculate the covariance
matrix for the bridge response.

2.6. Calculation of the Bridge Responses

Once the evolutionary mean and the covariance
matrices for the total state vector are computed, the
evolutionary mean and covariance matrix of any

Figure 3. Piece-wise linear strength intensity function.
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desired response can be obtained by expressing them
as a linear function of the state variables that includes
the base displacement, modal coordinates, and their
derivatives.

Let {U(t)} be any unknown response vector that
is of interest and is linearly related to some other
response vector {R(t)}, whose evolutionary mean
vector })({     tR  and covariance matrix ∑RR t )(  are
already known, i.e.,

{ } [ ] ( ){ }           tRDtU =)(                                           (52)

Then, the evolutionary mean and the covariance
matrices of the responses {U (t)} can be expressed
in terms of the known evolutionary mean and
covariance matrices of the response {R(t)} as follows:

{ } [ ] ( ){ }           tRDtU =)(                                            (53)

( ) [ ] [ ]∑∑ = RR
T

UU
 

     DDt                                       (54)

Since the input is assumed to be zero mean
random vector, the output will be zero mean, and
response vector will be zero mean and the diagonal
terms will give the evolutionary mean square value of
the response.

2.7. Evolutionary   Mean   Square   Responses   for
Suspension Bridge

2.7.1. Evolutionary Mean Square Displacement

The expression for the total displacement at any time
in the ith span of the suspension bridge can be written
as

( ) ( )[ ]{ } ( )[ ]{ }                  fiiti XxGxxY +ηψ=,                       (55)

where

( )[ ] ( ) ( )[ ]               iMii x....xx ψψ=ψ 1
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{ }[ ] [ ]  
 

    ffff
T

f X X X XX 4321=

Then, the evolutionary mean square of the total
displacement can be written as
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where  t t t
fff XXX       ])([])([])([    ∑∑∑ ηηη and ])([  ∑ ηfX t  

can be easily assembled from the covariance matrix

of the state variable ].)([  ∑zz t  

2.7.2. Evolutionary Mean Square Bending Moment
    and Cable Tension h(t)

The evolutionary mean square value of the bending

moment can be easily obtained by using 2

2

 
 

 
 

xd
dEI ψ

 and

2

2

 
 

 
 

xd
GdEI  instead of )( ix  ψ  and )( ixG    respectively..

Further, the evolutionary mean square value of the
additional horizontal component of cable tension
h(t) can also be obtained.

3. Numerical Study

Three span suspension bridge [7] shown in Figure (2)
is considered for the parametric study. The following
data are used in the study.

;0.460;0.155 231   mL mLL    ===

mkgWWW    /5347321 ===

24
2

4
31 078.0;3269.0;3749.0 mAmI mII c      ====

;494;0.281;100.30038 231
3 mL mLLNH eeew     ===×=

./10998.1;/1086.1 211211 mNEmNE c ×=×=

The stiffening girder in each span is hinged at
the ends and the cable is free to move at the tower
top (i.e. roller type cable connection). Uniformly
modulated non-stationary ground motion is expressed
in terms of the evolutionary r.m.s ground acceleration.
Three modulating functions, shown in Figure (4),
are considered in the study. The value of gf&&

σ  (the
peak value of the r.m.s ground acceleration) is

Figure 4. Modulating functions used in the parametric study.
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taken as 0.61 m/s2. The grQund mQtiQn is described

a1Qng the principal directiQns Qf the earthquake by

specifying different prQPQrtiQns between Ru,~, Rw'

FQr the angle Qf incidence a. = 0.0°, the ground

motions in the three directions refer to those

corresponding to the longitudinal, vertical and

transverse directions of the bridge. Three sets of

filter parameters are used representing soft, firm

and very firm soils respectively and are shown

in Table (1). The strength intensity functions for

the set of filter parameters describing the firm soil

for the three modulating functions are shown in

Figure (5). It is seen that the maximum value of

the strength intensity function occurs at the same

time where the corresponding modulating function

attains its peak. However, the shapes of the strength

intensity functions are not exactly the same as

those of the corresponding modulating functions.

The evolutionary r.m.s responses are c~lculated

with Ru :Rv: Rw =1.0:1.0: 1.0; a. = 0.00 and the set of

filter parameters corresponding to the firm soil

condition, unless mentioned otherwise. With the

help of the numerical study, effects Of f different important parameters on the responses of e bridge

are investigated.

3.1. Effect of the Degree of Nonstationarity (The
Nature of Modulating Function)

The degree of nonstationarity is denoted by the

sharpness of the modulating function with time. The
sharper the variation of the modulating function
with time, more is the degree of nonstationarity.

Figures (6) to (8) show the evolutionary 1:m.s

IFigure 6. Evolutionary r.m.s of vertical displacement at the mid-
point of the outer span.

Table 1. Filter parameters corresponding to different soil
conditions.

Filter Parameters
Soil Condition

~f

0.40Soft Soil

(J)s

6.2832

(J)f

0.62832

1;5

0.40

Firm Soil 15.708 1.5708 0.60 0.60

Very Firm Soil 3 1.416 3.1416 0.80 0.80

0 Evolutionary r.m.s Cable Tension
180.0

~ Modulating (1)
160.00 ~ Modulating (2)

C 140 00 ~ Modulating (3)g .
g 120.00
'to"
Q) 100.00
f-
Q)

:0 80.00
to

U
"' 60.00
E
.; 40.00

20.00

0.0
...12.0 16.0 20.0 24.0

Time (sec)

Figure 8. Evolutionary r.m.s of additional horizontal component
of the cable tension h(t).
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responses (standard deviation = r.m.s value since the
random process is assumed with zero mean) for the
displacement at the mid-point of the outer span, the
bending moment at the mid-point of the inner span
and the additional horizontal component of the cable
tension h(t) for the three modulating functions. It is
seen that the nature of the evolutionary response and
its maximum value depend upon the modulating
function being used. The sharper the modulating
function (modulating function (1)), less is the maximum
value of the r.m.s response. Further, the variation of
the r.m.s response with time is different than that of
the corresponding modulating function with time. The
effect of nonstationarity on the response is shown
by the difference between the maximum r.m.s
response as obtained from the stationary analysis
(frequency domain spectral analysis). The latter is
determined with input as Clough and Penzien double

filtered PSDF of ground acceleration having
2/61.0 sm

gf
=σ && (i.e. the peak r.m.s acceleration in the

evolutionary input).
Table (2) compares between the maximum

r.m.s responses as obtained by the nonstationary
analysis and the r.m.s responses as obtained by the
frequency domain spectral analysis (stationary
analysis). The difference between the stationary
r.m.s responses and the maximum value of
the nonstationary r.m.s responses is about 17%
for the modulating function (3), about 25% for the
modulating function (2) and about 45% for
the modulating function (1). For further parametric
studies, the modulating function (2) is used.

3.2. Effect  of  the  Ratio Between the  Three  Com-
ponents of Ground Motion

Table (3) shows the effect of the ratio between the

Table 2. Effect of the nature of modulating function on the r.m.s responses.

Position Stationary
Non-Stationary

Modulating (1) Modulating (2) Modulating (3)

Outer Span
Displacement (m)

Outer Span
Moment (t.m)

0.2253

690

0.1598

492

0.1876

577

0.2002

616

Inner Span
Displacement (m)

Inner Span
Moment (t.m)

0.3628

303

0.2491

213

0.2915

250

0.3102

268

h(t)
(ton) 152 107 126 134

Position 1 .0 :0.4:0.6 0 .6 :0.5:0.6 0.8:0.5:0.6

Stationary Non-Stat ionary Stationary Non-Stat ionary Stat ionary Non-Stat ionary

O uter Span
Displacement (m)

O uter Span
Moment(t.m)

0 .1988

617

0 .1641

511

0 .1296

3 9 9

0 .1076

3 3 2

0 .1651

511

0 .1366

4 2 4

Inner  Span
Displacement (m)

Inner  Span
Moment(t.m)

0 .3499

272

0 .2813

2 2 4

0 .2149

175

0 .1727

1 4 4

0 .2828

2 2 5

0 .2273

185

h(t)
(ton) 1 3 8 114 8 8 73 114 9 4

Table 3. Effect of the ratio between the three components of ground motion on the r.m.s responses (Ru: Rv: Rw).

l Peak value of the evolutionary r.m.s response (modulating function (2)).

lll
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three components of the ground motion on the
maximum 1:m.s responses obtained from the non-

stationary analysis and the 1:m.s responses obtained
from the stationary analysis. Three diffet1ent ratios
(Ru : Rv: Rw) between the three components of the
ground motion are considered for the study

namely, (i) 1.0:0.4:0.6; (ii) 0.6:0.5:0.6; (iii) 0.8:0.5:0.6.
The angle of incidence of the earthquake is taken as
a = 0.00, i.e. the three components of the ground

motion coincide with the principal directions of the
bridge (x, y, z). It is seen that the relative magnitude
of the x component of the ground motion has a
predominant effect on the responses at the mid
points of the outer and the inner spans. This is expected
since the horizontal movement of the abutments (in
the longitudinal direction) substantially influences
the vertical movement of the bridge deck because of
the fluctuation in the cable tension. It is observed that
as Ru(=Rx) increases, the response also increases.
Even if Rz(=Rw) is decreased but Rx is increased
(=Ru)' and the vertical response of the bridge deck
increases.

Figure 9. Strength intensity functions for different soil param-
eters (soil condition).

field ground motion, see Eq. (2). Table (4) compares
between the maximum 1:m.s responses obtained from
the non-stationary analysis and the 1:m.s responses
as obtained from the stationary analysis. It is seen
from the table that the responses are more for the
soft soil condition and the difference between the
responses obtained by the stationary and non-stationary
analyses remains nearly the same for all three soil
conditions.3.3. Effect of the Nature of the Filter Coefficients

(Soil Conditions)

Three different filter coefficients denoting three
different soil conditions have been used in the study.
The evolutionary strength functions for the three
soil conditions are shown in Figure (9). Although
the evolutionary free field I:m.s ground acceleration
is same for all hree soil conditions, the shapes of the

evolutionary strength functions and the evolutionary
r.m.s responses are different for diffelrent soil
conditions. This is the case because the filter
coefficients modify the frequency contents <l>fthe free

3.4. Effect of the Angle of Incidence of Earthquake
(a)

The effect of the angle of incidence (a) on the
displacement response is shown in Table (5). a = 0.00

corresponds to the case when the major principal
component of the earthquake is along the longitudinal
direction of the bridge and a = 900 indicates the case

when the moderate principal component of the
earthquake is along the longitudinal axis of the bridge,
see Figure (1). The minor principal component of the
earthquake is always in the vertical direction. Further,

Table 4. Effect of the filter coefficients (soil conditions) on the r.m.s responses.

Soft Soil Firm Soil Very Firm Soil

Position

Stationary N on-Stationary-, Stationary Non- tationary.1 Stationary N on- Stationary.

0.5772 O.49~3 0.2253 0.1876 0.0557 0.0476

I

Outer Span

Displacement (m)

Outer Span
Moment(t.m)

1571 13019 690 577 177 151

4617 1.33~5 0.3628 0.2915 0.0627 0.0500
Inner Span
Displacement (m)

Inner Span
Moment(t.m)

849 73~ 303 250 79 68

h(t)
(ton)

360 30() 152 126 43 37

JSEE: Spring 2003. Vol. 5. No.1 /25
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Table 5a. Effect of the angle of incidence of the earthquake (a) on the r.m.s responses

a = 0.00 a = 350 a = 650

Point

Stationary Non-S tationary. I Stationary

Non-Stationary.1 

Stationary N on- S ta tionary

0.2253 0.1876 0.1966 0.1631 0.2502 0.2076
Outer Span
Displacement (m)

Outer Span
Moment (t.m) 690 577 606 505 772 643

0.3628 0.2915 0.3308 0.2660 0.4185 0.3363
Inner Span
Displacement (m)

Inner Span
Moment (t.m) 303 250 280 231 347 286

h(t)
(ton)

152 126 133 110 172 142

.Peak value of the evolutionary r.m.s response (modulating function (2».

Table 5b. Effect of the angle of incidence of the earthquake (a) on the r.m.s responses.

a = 750 a = 800 a =900

Point

Stationary N on- S tationary.1 Stationary N on- S ta tionary Stationary Non

0.1697 0.1431 0.2661 0.2223 0.1491 0.1322

: 

Outer Span

Displacement (m)

Outer Span
Moment (t.m)

508 429 813 680 426 376

0.2345 0.1875 0.4129 0.3319 0.1098 0.0880
Inner Span

Displacement (m)

Inner Span
Moment (t.m) 199 165 325 267 187 165

h(t)
(ton)

102 85 164 135 106 95

.Peak value of the evolutionary r.m.s response (modulating function (2».

for which this difference becomes maximum
depends upon the response quantity of interest and
the section at which the response is desired.

4. Conclnsions

Seismic response of the suspension bridge to multi-
component non-stationary partially correlated
random ground motion is obtained using a Markov
approach. An uniformly modulated non-stationary
model of the random ground motion is assumed and
is specified by the evolutionary r.m.s ground
acceleration. The analysis duly takes into account
the spatial correlation of the ground motion, angle
of incidence of earthquake and the quasi-static
excitation. Using the proposed method of analysis, a
suspension bridge is analyzed under a set ofparametric

denotes the case of fully correlated excitations.
As the ratio between the three components of the
earthquake is taken as 1.0:1.0:1.0, the chanige in
predominantly effects the correlation between
excitations at any two points by modifying the
separation length, see Figure (1).

The table shows that the maximum response at
any section of the bridge deck does not necessarily
occur for, it may occur for an angle of
incidence between 0 to The responses are
minimum for i.e., for fully correlated ground
motion. The critical value of depends upon the
section at which the response is desired. Further, the
difference between the maximum t:m.s response and
the t:m.s response as obtained by the stationary and
non-stationary analyses varies with The value of

26 / JSEE: Spring 2003, Vol. 5, No.1
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variations in order to study the non-stationary response
behaviour of the bridge. The results of the numerical
study show that
v The shape of the modulation function depicting

the   degree   of   nonstationarity   significantly
influences  the  evolutionary r.m.s  response  of
the  bridge.  The  effect of  nonstationarity  is to
decrease the r.m.s response.

v Frequency domain spectral analysis (stationary
analysis)   provides   higher   r.m.s    responses
compared  to  the   maximum  r.m.s  responses
obtained  by  the  non-stationary  analysis;   the
difference could be as much as 45%.

v The sharper the modulating  function,  more  is
the   difference  between  the  maximum   r.m.s
response  (of  the  non-stationary  analysis)  and
the  stationary r.m.s response.

v Responses are  more for the  filter  coefficients
corresponding to soft soil condition.  However,
the  difference   between  the   maximum  r.m.s
response (of the non-stationary analysis) and the
stationary r.m.s response remains nearly the same
for all soil conditions.

v Fully  correlated  ground  motion  provides less
value of the response.

v The maximum response does not occur for zero
angle  of  incidence  of  earthquake  (i.e.  major
component coinciding with the longitudinal axis
of the bridge). The critical  angle  of  incidence
depends upon the response quantity of interest.
Further,  the  difference between the maximum
r.m.s  response  (of the non-stationary analysis)
and  the  stationary r.m.s  response differs with
the angle of incidence of earthquake.

v Longitudinal   component  of   ground   motion
significantly influences the vertical vibration of
the bridge deck.
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Appendix I where

The elements of [An] matrix 0 1 0 0

Aln = J.1n O(~); --CO~j -lc,SjCOSj 0 0
W A.o -

0 0 0 0
A2n = -2~nconYln; A3n = -Yln;

2 ')1: 2
-COSo -~S.COS. -COco' -')I: .o CO.o!/ !/!/ oj} ~ (4x4)

A = 5[~+~ ]. 4n J.1n 2H 2H '

w W

ASn = -2~ncon Y2n; A6n = -Y2n; Ann =[ 02 1

]---COn -2~ncon (2x2)

A = 5[~+~ ). 7n J.1n 2H 2H '

W W

ASn =-2~nCOnY3n; A9n =-Y3n; [Aj]= [ 0 0 0

--ajnCO~j -2ajn~SjCOSj Yjn -ajnCOfi

O( W3L3)AIOn = J.1n m:-; 0

]Alln =-2~nCOnY4n; AI2n =-Y4n; ~jn-2ajn~.oco.o

AI3n = J.1n 0; AI4n = -J.1n 5

A = II 5. A = -II 5 and the Matrix [B] can be written as13n t"n' 14n t"n

where B
I

L 3_;
( ) ( ) BE Acg ~Wf f gji Xi \lJn Xi dx .[B]= 2 0 =-£--;Y jn = 0 L. J = 1,2,3,4 B3

LH 3_,e W 2:Wf f \IJ~{xi}dx i=1 0 Zero (3(16}t2xM)x(12)

and

3 _L; where the submatricesBI,B2 andB3 can be written as
2:Wf J \lJn{x;}dx
i=1 0J.1n = 3 L.

2:'if; J \IJ~{xi}dx
i=1 0 0

'if; is the dead load per unit length of the fh span of -1

the suspension bridge. 0

0

Appendix II 0

The matrix [A] is -1

0

A 0
fl [Bl]= 0

A.o -1

A 0[ ] fl2 A = 0

AI A:2 Afl 0
I -1

Aj Ann 0

A~ At{ AMM 0-
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0 0, 0 0

-c s -s-c

0 0 0 0

0 0 0 0

0 0 0 0

-c s -s-c

0 0 0 0

0 0 0 0

[B2]= 0 0 [B3]= 0 0

.-c s -s-c

, 0 0 0 0

0 0 0 0

0 0 0 0

-c s -s-c

0 0 0 0

0 0 0 0

The matrices [A]jand [B]j j -

[ _Oc ~ 8] "- 0 1 0 0 [B] -0 0 0 ' J -5, 6, 7, 8

000

-O>~. -2c,s:O>s. 0 0
" '1 '1 '1

[A]l = [ 0 0 0]0 0 0 1 [ B] j- -s-cO J"=9101112-0 0 0 ' ",

2 21: 2 21: 0 0 0
-O>Sj -~SjO>Sj -0>.0 -~.oO>.o

[00 0 ][BY= 8801 ,j=I,2,3,4 '

00 0

,

\ ,
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