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ABSTRACT: Dynamic analysis of a secondary system mounted on a
torsionally coupled non-linear primary system is presented for bi-direc-
tional random earthquake excitation, which is idealized as a broad band
stationary random process. The hysteretic force deformation behavior of
the non-linear primary system is modelled by a set of coupled non-linear
differential equations. The responses are obtained by the linearized
frequency domain spectral analysis and are compared with those obtained
by the time domain simulation procedure. The response quantities of
interest are the relative displacement between the primary and the second-
ary structural systems and the absolute acceleration of the secondary
system itself. The response behavior of the secondary system is examined
under a set of parametric variations. These parameters include the
uncoupled lateral frequencies of the primary and the secondary structural
systems, the ratio of the uncoupled lateral to rotational frequencies of the
primary system; the hysteretic parameters of the primary system, eccentric-
ity ratios of the primary and the secondary structural systems in x and y
directions; damping ratios of the primary and the secondary structural
systems, and the mass ratio of the two sub-systems. Some of the results of the
study show that the responses of the secondary system increase with the
increase in normalized eccentricities of the primary system under the tuned
condition. However, an opposite trend is observed under the untuned
condition. Responses of the secondary system is found to be more if the
interaction between the primary and the secondary structural systems is
considered. Further, responses of the secondary system decrease with the
increase in the mass ratio between the secondary and the primary systems.

Keywords: Primary and secondary systems; Non-classical damping;
Torsionally coupled system; Linearized frequency domain; Spectral
analysis; Primary-secondary interaction; Bi-directional excitation

1.INTRODUCTION

Seismic response analysis of the light secondary system
(S-system), mounted on a primary system (P-system), is
important in relation to the performance of delicate equip-
ments and suspension systems in buildings, nuclear power
plants, lifeline systems, etc. The seismic design of such
structural systems has attracted considerable attention in
recent years [Kiureghian et al [11]; Lin and Mahin [12];
Chen and Lutes [5]; Suarez and Singh [16]; Jangid and
Datta [10]; Huang and Soong [8]]. Analysis of the
primary-secondary system (PS-system), using elastic
theory, is suitable for wind and mild earthquakes. Under
severe earthquakes, the P-system generally undergoes
nonlinear excursion and also shows torsional behavior. In
such situations, an elastic model of the P-system gives
inaccurate design of the PS-system. Thus, the response
analysis of the S-system, attached to a yielding P-system,

is of practical interest.

Lin and Mahin [12] found that responses (relative
displacement between the primary and the secondary struc-
tural systems and the absolute acceleration of the second-
ary structural system itself) of the S-system decrease due
to yielding of the P-system, when its natural frequency
equals to or is greater than that of the elastic structure.
Under some parametric conditions, increase in responses
of the S-system, due to yielding of the P-system, were
identified by Chen and Soong [4]. For multi-degree-of-
freedom (MDOF) yielding primary-secondary structural
systems, Sewel et al [15] found that the responses of the
S-system increase due to yielding of the P-system, and
they are substantial under some parametric conditions.

Chen and Lutes [5] studied the non-linear behavior of
a SDOF linear S-system due to yielding of the primary
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structural system under random ground excitation. They
observed that under some parametric conditions, non-
linearity in the P-system significantly affects the first
passage failure and reliability of the secondary structural
system. Huang and Soong [8] found that under some
specific conditions, yielding of the P-system alleviates
sensitivity of the S-system and its responses are amplified
due to shifting of the primary structural frequencies. Using
the time history integration technique, Igusa [9] found
that yielding of the P-system may result in responses,
which are small fractions of the corresponding linear
responses.

All the above studies on the S-system, mounted over
the inelastic P-system, are carried out for symmetric
buildings or buildings with very small eccentricities or
buildings torsionally very stiff. Since most of the practi-
cal buildings are unsymmetric 3-D buildings, the seismic
behavior of the secondary system mounted on torsionally
coupled primary system is of practical importance [18, 19].
Furthermore, since the earthquake is a multi-directional
process, the seismic behavior of the S-system under
bi-directional seismic excitation should be investigated for
the yielding P-system by considering the effect of the
bi-directional interaction on the yielding. There is a lack of
investigations in the above areas.

Recently, Agrawal and Datta [1] studied the behavior
of a S-system mounted over a torsionally coupled
non-linear P-system, to uni-directional ground excitation,
for a 2-D model (i.e. one way eccentric P-system). They
also studied behavior of the S-system mounted over
torsionally coupled and linear P-system for this condition.
In this paper, the response behavior of a secondary
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structural system mounted on a torsionally coupled
non-linear primary structural system is investigated for
bi-directional random ground excitation, modelled as a
white noise. Objectives of the study are: (i) to investigate
the effect of yielding of the P-system on the responses of
the S-system,; (ii) to study the effect of linearization on the
response behavior of the S-system; and (iii) to investigate
the effect of the interaction between the primary and the
secondary structural systems on the responses of the
S-system. The above studies are made under different
important parametric variations.

2. SYSTEM MODEL

Figure 1 shows the structural system considered, which
is an idealized single story building model, over which a
cantilever type S-system is mounted. It is assumed that
the cantilever rod is axially inextensible and has the same
flexural stiffness corresponding to the displacement in
any direction, in the horizontal plane. Similarly, damping
of the S-system is assumed to be constant in all
directions. The S-system is excited and oscillated in the
direction which depends on the motion of the P-system.
The normalized eccentricities of the P-system are varied to
provide various degrees of torsional coupling in the
P-system. The square columns of the P-system exhibit
hysteretic behavior under random ground excitations.
Let K,,;(i =14) represent the initial lateral stiffness of
the ;" resisting element, then the total initial stiffness of
the P-system, same in bothx and y directions, is given by

4
K, =2 Ky (1)
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Figure 1. Structural model.
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and the stiffness of the S-system in any direction is given
by K.

Let 7 denote the distance of the i column from the
center of mass (CM) of the P-system, then the total initial
torsional stiffness of the P-system, defined about the CM,
is given by

_ 2
Ko =2 Kpiti 2

in which it is assumed that the torsional stiffness of each
of the individual column is negligible. The eccentricities of
the P-system in the two orthogonal directions with respect
to the CM of the P-system are given by Figure 1.

> Kpixi
— i=

A 3)

2 K

i=1

4
Zlei Yi
epy = l_4 (4)
ZKpi

i=1

in which x;and y; are the X and Y coordinates of the ;"
column with respect to the CM of the P-system. Eccen-
tricities of the S-system (g, and ¢,) are taken to be
variables for the parametric study. The two uncoupled
frequency parameters of the P-system are defined as

K
w. = |—Z
*"\'m, %)
and
_ | Ky
e (6)

and natural frequency of the S-system is given by

W =, = (7

inwhich m, and m, are the masses of the primary and the
secondary structural systems respectively, and R is the
radius of gyration of the primary mass about the vertical
axis through the CM. The frequencies W, and wy may be
interpreted as the natural frequencies of the P-system,
based on the initial stiffness, if they were torsionally
uncoupled, i.e. a system with e, and e,, =0,but m,),
K,and Kjgare the same as those in the coupled system.
The mass ratio P is defined as p=m/m,. The values of

K, and m, are varied to provide different values of the

P
frequency parameters (), and wy) in the analysis. All

these parameters are taken to be the same in both x and y
directions.

3. EQUATIONS OF MOTION FOR THE COMBINED
SYSTEM

The equation of motion of the hysteretic primary and the
linear secondary structural systems to bi-directional input
excitation may be written as

[T} AU} A = M) 1{T= 1) @®)

where {U}={ o Upy,Ue,st,Usy}Tis the displacement
vector of the system model; [/],[M]and [C] are termed as
influencing coefficient, mass and damping matrices
respectively and {Ug = ng, Ugy T'is the ground accel-
eration vector. The matrices [/],[M] and [C] are given by

000 1od
[1]‘@10015 ©)
_ . 2
[M]—dmg[mp,mp,mpR ,ms,ms] (10)
0 Zcpi+cg 0 chax-'-qesy
O 0 szi+Cv sz9y+Cvesx
[C]z%cepx-i-csesy zcﬂpy+Csesx C9+Cs(es2x+efy)
0 -G 0 ~Ce,
H o0 -G, —Ceu
-G 0 0O
0 -C, U
_CSeS _CS'eSXD
¢ 0 J (1
0 -G O

where 3 Cpi, 3 Cpoe = 3 Copr s 2 Cpoy = 3 Copy and
Cy are the elements of the damping matrix neglecting the
S-system; C; =2 &, m, w, is the damping of the S-
system; and & is the percentage critical damping. The
elements of the damping matrix, concerning the P-system,
are determined by assuming that the damping matrix of the
P-system is proportional to its mass and initial stiffness
matrices. Using the modal damping ratio, and the first two
undamped mode shapes of the P-system (only), these
elements are obtained by standard procedure [14].

The restoring force vector {F}z{fl,fz‘,ff;,ﬁhfé}T’ Eq.
(8), is given in the Appendix (I). The total displacements
(U,and U)) of the P-system consist of both hysteretic
and linear components. The hysteretic components
Z;(j=x,Y) for the column elements are given by the
following first order non-linear differential equations [13].

Z,= AU, ~Bsgn(U)| Z,| 2.~ YU, Z:

—BsgnUy|Zy

Z.-yU,Z.Z, (12)

and

JSEE: Fall 1999, Vol. 2, No. 1/ 37



A.K. Agrawal and T.K. Datta

Zy = AUy —Bsgn (Uy)| Zy| Z, —VUyZi

~BsgnU,|z]z,-YU, 2,2, (13)

in which V,[3,and A are the hysteretic parameters. The
parameters Y and [3 control the shape of the hysteretic
loop, and A is the restoring force amplitude which
controls both stiffness and strength. For nearly elasto
plastic system, the hysteretic parameters are taken as
A=1.0,and y=B=0.5 [3].

Using the equivalent linearization procedure [17], the
hysteretic Eqgs. (12 and 13) can be linearized as

Zx+Cx[(pr +L'/ee,ﬁ,y)—z'x]+cxz)r =0 (14)
+Cy[(U +Ugep) = Z]+cz =0 (15)

the expressions for the parameters C,, Cx' efc. are given in
the Appendix (IIT).

The linearized equation of motion of the combined
structural system which includes hysteretic elements also
is given by combining the Egs. (8, 14, and 15)
oafrlialrliaint=-tmn{o} 00

where the displacement vector of the system model is

given by {1}={u .U .Up.U,., U, 2,2} and[])

and [ pf] are expressed as

[}]251001OOOET -
MH100100H

and

(3] = diag[m, . m,.m, R, m,, m,.0.0] (18)

the matrices [ E‘] and [1?] are given in the Appendix (I).

4. EQUATIONS OF MOTION FOR THE CASCADED
SYSTEM

The equation of motion for the hysteretic P-system,
without considering interaction between the PS-system,
may be written as

imp{ G+ c{o}+{ B} = - M0 {0} = /0 (19)

where the displacement vector {Ul} is given by {U]} =
{Ulpx,Ulpy,Ule}Tand matrices [ [;],[ M;], and [C]] are
expressed as

w=3°9 -
0 1 05

[ Mi]= diag[my,,m, ,m, R’] @1)
E]rz % ZZCpey (22)
e, 8 %E
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The restoring force vector of the P-system { 7} ={ £;,
fi, fB}T for the no-interaction case is given in the Ap-
pendix (IT). The hysteretic components Z; ( j = x, ), from
the hysteretic force deformation relationship is expressed
as

L . L
Z1 = AUy, ~Bsgn (Uy)| 2, 20, —YULZ),

_BSgn Uly | Zly| le _yUly le Zly (23)
and
o ) . )
Z,, = AU, ~Bsgn(U)| 2| 2, - YU, 23,
~Bsgn Uy, | le| Zyy~ YUL Zyy 21y (24)

The linearized equation of motion of the P-system is given
by

Dan{p+rea{vb+ i ka{nt =-tam{o,} @5
The displacement vector is given by {V]}z{Ulpx,

Ulpy,U]e, Zx,ay}T and {fl} and {j\_/ll} are expressed as

000

B 10003 (26)

and

{a}=diag[m,.m,.m,R* 0,0]

the matrices {El} and {1?1} are given in the Appendix (II).
The equation of motion for the secondary (SDOF)
system is given as

@7n

[m) ik + [el{id + L {n} = = [ mll {1} (28)

where {w} = {st , wsy}T is the displacement vector of
the SDOF system; {Uap}z Uapx, (japy}T is the accelera-
tion vector for the deck of the P-system, at the point of
attachment of the SDOF system along the two orthogonal
directions (x andy); and [ i],[ m],[ c] and [ k] are termed as
influencing coefficient, mass, damping and stiffness matri-
ces respectively for the SDOF system. These matrices are

given by

[Z]—@ 15 (29)
0
[m :%S m)g (30)
(1= oF G1)
and
_[X, 00
[K=50 k.8 (32)
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5. SPECTRAL ANALYSIS FOR THE LINEARIZED
SYSTEM

5.1. Combined PS-system

The frequency response function matrix [H(w)]for the
composite PS-system is given by

(1] = (-3 [a ]+ i ]+ [] )"
If the power spectral density function (PSDF) of the

input excitation is modelled as a stationary random
process, then the PSDF of the displacement is given by

[s0 @]=[HE] [s, @] [H@]"

in which |S; ()] is the PSDF matrix of the f(t) and is
given in the Appendix (I).

The relative displacements (U,, and U, ) and the
absolute accelerations ( Uaj ..J =x,) ofthe S-system are
obtained in the following manner

(33)

(34)

Uy =Ux~Up —Ugey, (35)
Uy =Uy ~Uy, ~Us & (36)
and

Uy =0, +0, 7

Thus, the PSDFs of the relative displacements and the

absolute acceleration (.S, , Suy and §j; ) are given by
X T aj

"'efy Svet Su, * +ey Sugu

SUrx - SU px eW Spr Ug

S U - (39)

Sst Upx ™ Csy Sst Ug~Csy SUS Usgx

- 2
Su,, = Su,, *ex Sug TSy, +

= SU Uy, = SUG U, = €5 Su, Ug = st SUg Uy,

€w Su,, Up T €x SUg U,y

(39)

and

St =Sty S+ St o+ Siig U (40)

The elements of the right hand side (RHS) of Egs. (38
and 39) can directly be obtained from the PSDF matrix of
the displacement of the combined structural system
Eq. (34). The elements of the RHS of the Eq. (40) are
derived as

Sy =9 Sy (41)
Sty Ugy = =[H.] St g (42)
Sv,, 04, =[#15.] S, (43)
Stge Uy = [H :1] S0 g (44)
S e @)

gy

where [H41] and [H5J are the elements of the [H (00)]
matrix. The variances of the response quantities are
obtained as

+00

= I SUU’ (w)dw (46)

+00
op, = I o, (@) doo (47)

5.2. Cascaded System

The frequency response function matrix for the P-system
is given by

(@)= (-3 [ i+ [

Frequency response function H, (w) for the secondary
system is given by

(48)

H@=(-M& +icw+k,) (49)

The input floor acceleration U « at the point of attachment

of the secondary system is given by

qu:Upj+Ugj+Uees (50)

The PSDF of the absolute acceleration (SU ) of the P-

system is given by

S+ =8+ +S5 +8: 5 +S
Usj  “Up “Ug  “UgiUpi  SUpiUg;

(S

The elements of the (RHS) of the Eq. (51), are derived as
(i=xv)

_ 4
S0, = @ Sy (52)
S0y Ugy I.HIIIJSU (53)
S0, Ugy = =|u 122JSU (54)
SG Uy = [H 1,11JSU'gX (55)
S0 Uy = L 1,22]Szjgy (56)

where I_H 1 Jand I_H 122 Jare the elements of the [ H; (w)]
matrix Eq. (48).

The relative displacement between the S-system and
P-system is obtained as

lsv, @)= [rz, @I, @Az, @1 (7)
in which
s @)= %"52 mfz%%ja, (@) (58)
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The absolute acceleration Uasj of the S-system is given
as

Ua5j = U + U 59)

The PSDF of the absolute acceleration (SUMJ-) of the
S-system is given by

=Q. +9. +9C. .. +Q. ..
SUSI- SUaj SUajUSj Si; 0

S
Uasj sj Yaj

(60)

The elements of the RHS of the Eq. (60) are derived as

Sy, = W' Sy, (61)
S o, = |Houlss (62)
S04,y = =|H, 2 JSU (63)
Sg . v, = IH:,HJSUM (64)
Sty Uy = A 22]SUay (65)

where le,”J and lI-L 22] are the elements of the [Hs (w)]
matrix for the SDOF system.

6. TIME DOMAIN ANALYSIS FOR THE NON-LINEAR
SYSTEM

6.1. Combined PS-system

The restoring force vector { F'}of the Eq. (8) is given by
[Clough and Penzien [7]]

{FY=1KJ{U}+[ H){ 2}

where [ K] is the stiffness matrix of the PS-system which

(66)

includes the effect of non-linearity of the P-system
without considering hysteretic effect and [ H,] is the
hysteretic stiffness matrix of the P-system.

The matrices [ K] and [ H,] are given inthe Appen-
dix (I). The hysteretic components { Zj}( j =x,y) for the
non-linear P-system at any particular time ¢ are given by
Egs. (12 and 13).

In the time domain method of analysis, the equation of
motion of the PS-system, Eq. (8) can be solved by
incremental solution choosing suitable time step (A¢) for
integration. The resulting incremental effective static
equilibrium equation can be expressed as

[kl{auvt= QA;’Q (67)
and
[H{Aaz}={2 1,0} (68)

The expression for the effective stiffness matrix can be
written as

40 / JSEE: Fall 1999, Vol. 2, No. 1

[R]=[ Kk, ]+30C1+ OIM]

Ar (80?2 (69)

and the effective load increment for any time t is given by

0. -0 . .
=A@ t t

arc={arod-{as, o+ EE-{ud+s{d)

. A .
+[c{d)+SHol
After the calculation of incremental displacement

{ AU} from the Eq. (67), the incremental velocity {A U}
may be calculated as

{av}= gstavy-3{u}-2Ha)

and the acceleration at that time ¢, {U(t)} is calculated as

(70)

(71)

(k=g 7€ {nk-{ =L )
where {A f (t)} is the increment in the earthquake excita-
tion force and {A f; (1)} is the incremental hysteretic
force between time # and s+ As-{ £} = [M]{U} is the
inertial force;{ f,}= [C]{U} is the damping force;
{ fxot =[ K,J{ U} is the stiffness force without consider-
ing hysteretic effect; and {fh}: [Ha]{Z} is the
hysteretic force. All the above forces are calculated at any
time t for the calculation of the acceleration at that time.
The relative displacement U, (f) and the absolute

acceleration U, (1) of the S-system are obtained as

Urx (t) = st (t) - pr (t) - UQ (t) esy (73)
Uy ) = Uy, () =U,,, () ~Ug (1) ey (74)
and

U,0=U;0)+U, ()  ..(j=x.) (75)

6.2. Cascaded System

The restoring force { F;} vector for the P-system Eq. (19) is
given by

{ £} =1 K {U+ H1{ 2}

where [ K] and [ H,] are given in the Appendix (II).
The Eq. (76) is solved in the same manner as described
before. The absolute acceleration of the P-system Uy, (1)
(J =x, ), at the point of attachment of the S-system is

(76)

given by

Ui © = U e 0+ Ug, () e + Uy, (77)
and

Uppy @ =U 1y () +Up, (1) e + Uy, (78)
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The S-system is analyzed with the absolute accelera-
tion time history given by Egs. (77 and 78). The integration
of the equation of motion is performed by Newmark’s beta
method [14]. The result of the integration provides the
relative displacement between the S-system and the
P-system. The absolute acceleration of the SDOF system

U,y (@) is given by (j = x, )

Uasj (t) = Uv] (t) + Uapj (t) (79)

7. PARAMETRIC STUDY

A large number of parameters influence the responses of
the P-system absolute acceleration (0 /g) and the
relative displacement (GXr) of the S-system. The important
parameters, which predominantly influence the responses
are considered in the present study. These parameters
include the normalized eccentricities of the P-system
(¢x/ R and ey, / R)and the S-system (e, / R and e,, / R)
in two orthogonal directions (x and y); the uncoupled
lateral frequencies of the P-system (w,) and the
S-system (), the damping ratios of the P-system (Ep)
and the S-system (&), the ratio of uncoupled lateral
to rotational frequencies (001,/ y) of the P-system; and
the mass ratio m;/m, of the PS-system. Values of
other parameters (held constant throughout) are
w, =3.0rad/sec, §,=5.0%, & =2.0%,and R =3.0
meters. The hysteretic parameters of the primary struc-
tural system are taken as 4=1.0,y=B=0.5, and
o =1/21 (for nearly elasto-plastic case). Intensity of the
white noise input excitation is the same in both x and y
directions and is taken as 0.013m”/sec/rad. The time
history of ground acceleration is simulated from the PSDF
of white noise for a record length of 200 seconds.

7.1. Effect of the Degree of Non-linearity in the P-system

Figures 2 and 3 show the variation of responses with
normalizes eccentricities of the P-systems with hysteretic
parameter o for strong and weak torsionally coupled
P-system under both the tuned and untuned conditions.
For strong torsionally coupled P-system under the tuned
condition, the responses increase with the increase in o .
This indicates that the responses decrease as the non-
linearity of the P-system increases. However, an opposite
trend is observed for the weak torsionally coupled
P-system under the untuned condition.

7.2. Effect of Linearization

Solution of the equation of motion Eq. (8) by equivalent
linearization technique (frequency domain spectral
analysis) gives approximate responses for the S-system.
The time domain solution takes into account the full
non-linearity of the P-system. Thus the time domain method
gives more accurate responses. From Figures 4 to 7, and
Figures 14 and 15, it is observed that the maximum

0.800 7
. ARAARO=1/21
': LAALLQ0=05
. TTTYTU=10
0.600 Mg /mp= 0.001
2 3 0p/0y=1.0; Op/0s=1.0
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Figure 2. Variation of responses with epx/R and epy/R for
different values of O , and for wp/we =1.0 and

W,/ =10
1.500
] ARARAQG=1/21
] Lo2800=05
] A — —A— — A — ¥ F ¥ Ol=
1 EC oo ttrrrasio
] N
1.000 |
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ex/Rand e, /R

Figure 3. Variation of responses with epx/ R and epy/ R for
different values of O, and for (A)p/Q)BZO.5 and
w, /W, =15

difference in responses between the equivalent lineariza-
tion technique and the time integration technique is not
very large and is of the order of 14%. In certain cases, the
linearized method provides higher responses (e.g.
variation of the responses with €,/ R and €,/ R for both
strong and weak torsionally coupled P-systems under
the untuned condition, (see Figures 5 and 7), while for
other cases, it provides less response e.g. variation of the
responses with €,/ R and e,,/R for strong and weak
torsionally coupled P-system under the tuned condition,
(see Figures 4 and 6). Further, for strong and weak torsion-
ally coupled P-system under the tuned condition, the
responses increase with the increase in €,/ R and e, /R
as shown in Figures 4 and 6. However, an opposite trend is
observed for strong and weak torsionally coupled P-sys-
tem under the untuned condition, (see Figures 5 and 7).

7.3. Effect of Primary-Secondary Interaction

Figures 8 to 11 show the effect of interaction between the
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Figure 6. Variation of responses with er/R and epy/R for
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primary and the secondary structural systems (PS-interac-
tion) on the response quantities of interest.
Figures 8 and 9 show the variation of responses with
normalizes eccentricities of the P-system with and without
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PS-interaction. Similarly, Figures 10 and 11 show the same
variation with normalized eccentricities of the S-system.
From the figures, it is observed that the PS-interaction
provides higher responses. However, the nature of the
variation of responses with the normalized eccentricities
of'the primary and the secondary system remains the same.

7.4. Effect of Mass Ratio (my/m.,,)

Figures 12 and 13 show the effect of the m,/m,, ratio on
response quantities of interest. It is seen from the figures
that the increase in the /mp ratio decreases the
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Figure 8. Variation of responses with e,,x/R and e, /R for
W,/0y =10 and ,/0) =1.0, with and " without
PS-interaction.

responses. However, the change in m,/m,, ratio does not
change the nature of variation of responses with the
normalized eccentricities.

7.5. Effect of Damping Ratio of the Secondary System

Figures 14 and 15 show the variations of the absolute
acceleration with the damping ratio of the S-system (&) for
the strong torsionally coupled P-system under both tuned
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Figure 11. Variation of responses with esx/ R and ey /R for
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and untuned conditions. The responses generally
decrease with the increase in (§,). The responses decrease
sharply in the lower range of (§,) values.

7.6. Effect of Degree of Asymmetry of the P-system

Figures 4 and 6 show that the responses increase with
increase in the degree of asymmetry for the tuned condi-
tion. On the contrary, Figures 5 and 7 show that under the
untuned condition, responses decrease with the increase
in the degree of asymmetry.
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Figure 12. Variation of responses with epx/R and epy/R for
different values of m/m,, (for (A)p/(kb =1.0and

W,/ =10.
1.200 7
] Aaaaan er
] lllllﬁxa/g
o 0800 ;
g? ] Tt ‘
° i,
© ]
© ]
E
& 04007 T
I me/mp=0.001; &,=5%; Eo=2%
] 0p/0y=1.0; 0p/05=1.5 — my/my=0.001
Jex/R=ey/R=03 oo mg/mp=10.01
0000 TTTTTT I T I T I T I T T T T T T I T T I T T I T T T I T T T T T I T T ITTITTTTTTIT

0.00 0.10 0.20 0.30 0.40 0.50

en/Rand e, /R

Figure 13. Variation of responses with epx/ R and epy/ R for
different values of m;/m, (for W,/ =1.0 and
W,/ =15,

8. CONCLUSIONS

Seismic behavior of a secondary structural system
mounted over a torsionally coupled non-linear primary
structural system is investigated under bi-directional
random ground excitation, modelled as a white noise. The
response quantities of interest are the standard deviation
of the relative displacement between the primary and the
secondary structural systems and the absolute accelera-
tion of the secondary system. The responses are obtained
by both linearized frequency domain analysis and time
domain analysis. The effect of interaction between the
primary and the secondary structural systems on

JSEE: Fall 1999, Vol. 2, No. 1/ 43



er(m) and .y /g

A.K. Agrawal and T.K. Datta

0.30 3
g Absaaan er
025; lI-ll(;.ia/g
0.20
0.5 3
010
3mg/mp=0.001: &,=5%
0.05 3 (J)p/O)e:1.0 : OJp/0)S=1.0
Jen/R=¢y/MR=03 —— Time domain
Jex/R=ey/R=03 - Frequency domain
0.00 T T T T T T T 7] T
] 2 3 4 5 6 789 2 3
0.01 0.1
&

Figure 14. Variation of responses with &, for wp/me= 1.0

Gx,(m) and oy /g

and ,/W, =1.0.

1.50
7 ms/mp=0.001 ; §p=5% YN er
1 0p/0y=1.0; ©Op/0s=1.5 wsmun0yfg
] . en/R=6€,/R=0.3

100 \\\\etsle =ey/R=03

0.50-]
E —— Time domain
q e Frequency domain

0.00 +— T T T T T T
9 2 3 4 5 6 789 2 3
0.01 0.1

S

Figure 15. Variation of responses with ES for wp/ 0y =1.0

and W,/ =15.

responses is also investigated by calculating responses
of the cascaded system. The results of the study lead to
the following conclusions:

KD
0’0

KD
*

The difference between responses obtained by the
linearized frequency domain analysis and the time
domain simulation technique is not very large. The
maximum difference is of the order of 14%.

Under the tuned condition, responses increase
with the increase in the degree of asymmetry i.e.
e,/ R or €,/R, of the P-system. However, an
opposite trend is observed under the untuned
condition.

Similar results as above are observed for the varia-
tion of responses with normalized eccentricities of
the S-system.

Responses are found to be more when interaction
is considered between the primary and the sec-
ondary structural systems.

Responses decrease with the increase in the
mg /' m, ratio.

Responses do not necessarily decrease with the

44 / JSEE: Fall 1999, Vol. 2, No. 1

increase in the degree of non-linearity of the P-
system. It depends upon the condition of tuning
and the degree of torsional coupling.

There is a sharp decrease in responses with the
increase in &, in the initial range of the §; value;
afterward, this variation tends to be flatten out.
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Appendix 1

The matrices [E‘] and []?] of Eq. (16) are given as
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The matrices [ K,] and [ H,] of Eq. (66) are expressed

[Kd = [Ki]]
[Hd] =[]

The matrix lS, (Q)J of Eq. (34) is given as

Omy 0 O0mum, 0 000
O 2 O
0 0 0 00
O mp mpms 007
oo 0 0 0 0 000
[S_f((*))]7><7 =Gnm, 0 0 m’ 0 0 00%©
= 0 0 m2 o002
O myM my O
0 0 0 0 0 000
90 0 0 0 0 007
=14
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Appendix 11

The matrices [51] and [1?1] of Eq. (25) are given as

[_]5 - O K1) 3 [Klz]sng

=0
HEKolos [KnlooB

and
dCilya [C12]3><2D
[C]5x5
g Cailra [sz]zxza
where
[kilse =0 0" 2 0K, 20K, 0
HZGKP,'}/,' 20K,% 0K, (?9 +VIH
03 (1-20)K, 0 0
[Ki]y =5 0 S (1-200K,,; U

%(1—20()19,% S(1-200K b

[K21]2x3 = |_8 8 8]

0YC, 0 G, y,
[Cll]sxszg 0 2 Coi G
DG 2 Cpixi Ce D
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_ lel)c 0 C]xepy[l
[Czl] 23~ Eo Cyy C])ﬂpxa

_oi-¢y 0 O
[C22]2x2 : 01) (1-CyA

(A=K [K ol {0, U, U 2 285

The matrices [ K,y] and [ H,,] of Eq. (76) are expressed as
[Kid] = [K1]

(4] = [K0]

Appendix 111

The coefficients of Egs. (14 and 15) are taken as Wen [17],
Baber and Wen [3]
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