
Vol. 14, No. 1, 2012JSEE

ABSTRACT

Available online at: http://www.iiees.ac.ir/jsee

The novel scaled boundary finite-element method is a fundamental solution-less
boundary-element method based on finite element technology, which combines the
advantages of finite-element and boundary element methods. Only the boundary is
discretized reducing the special discritization by one as in the boundary element
method; no fundamental solution is required as in the finite-element method; and
the radiation condition at the infinity is rigorously satisfied. Making use of a
scaling center the geometry of the problems is transformed into the scaled boundary
coordinates including radial and circumferential coordinates. The boundary of the
problem represents the computational domain. The finite-element approximation
on the circumferential coordinates leads to the analytical equation in the radial
coordinate.It is the goal of this paper to employ the method for soil-structure
interaction analysis under seismic loads. The formulation of the method for seismic
loadings is detailed for both bounded and unbounded problems. The structure is
coupled with the unbounded domain on soil-structure interface. To demonstrate the
applicability, simplicity and accuracy of the method, numerical examples modelled
with the scaled boundary finite-element method are addressed. The results are
compared with the results obtained from the commercial finite-element software
SAP. Good agreement is achieved.
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1. Introduction

A structure interacts with the supporting soil
under dynamic actions, such as impacts and earth-
quakes. Dynamic soil-structure interaction analysis
plays an important role in the design and safety
assessment of structures, especially for large-scale
spatial structures, such as dams, nuclear power plants,
high-rise buildings and bridges. In a soil-structure
system, the volume of soil is much larger than the
structure’s, so the soil-structure interaction should
be considered. This system of the structure and soil
can be subjected to static or dynamic loads. In
statics, the unbounded domain can be truncated
sufficiently far away from the structure, as the stress
and displacement amplitudes decrease with increas-
ing the distance from the structure. However, in

dynamics it is not the case, and this procedure can-
not be applied. The truncated boundary reflects the
waves coming from the source of vibrations while
they must propagate toward infinity. This reflection
affects the actual response of the structure. To
analyze the system of soil-structure interaction, the
infinite soil is divided into an irregular bounded soil
that can exhibit nonlinear behaviour and a regular
unbounded soil that extends to infinity and behaves
linearly. The bounded domain including the structure
and the irregular bounded soil can be modelled by
the well-developed finite-element method. The
most challenging part of a soil-structure interaction
analysis is modelling the regular unbounded soil.
There is an important consequence in wave
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dynamics: waves which are moving toward infinity
are not reflected back to the domain. Boundary
conditions should be enforced on the boundary to
absorb the incoming waves [1].

There are two main methods for dynamic analy-
sis of soil-structure interaction problems. Direct
method is the easiest way to analyze this interaction.
In this method, local boundary conditions are used. It
leads to an approximate method. To capture the
infinity with a sufficient accuracy, the unbounded
domain is truncated sufficiently far away from the
structure and approximate boundary conditions are
enforced on it [1-2]. Substructure method is an
accurate method comparing with the direct method
so the computational domain can be smaller than
that for the direct method. As the artificial boundary
conditions are so close to the structure, more exact
boundary conditions have to be enforced on the
boundary. When the boundary condition is exact, it
can be applied directly on the soil-structure interface.
In this method, normally, the exact boundary condi-
tions are expressed as dynamic-stiffness matrix

)]([ ω∞S  on the boundary in the frequency domain.
In the time domain, displacement unit impulse in-
cluding convolution integrals represents the exact
boundary conditions )]([ tS∞ .

Various methods have been proposed in the
literature for the solution of wave equations in
unbounded domains. In general, these approaches
are classified into two broad categories: global and
local procedures [1-2]. Global procedures are divided
into the boundary element method [3], thin layer
method [4], exact non-reflecting boundary conditions
[5-6] and the scaled boundary finite-element method
[7]. Local procedures are divided into transmitting
boundary conditions [8-9], infinite elements [10-11]
and absorbing layers [12]. Global procedures are
used in the substructure method and local proce-
dures are used in the direct method.

The scaled boundary finite-element method has
been originally developed for the dynamic analysis of
unbounded domains. It was named at that time the
consistent infinitesimal finite-element cell method as
the original derivation for two-dimensional scalar
waves was mechanical-based. A finite-element cell
with the exterior boundary similar to the interior one
was introduced in the radial direction adjacent to the

structure-medium interface. The relationship based
on similarity and the limit of the infinitesimal cell
width tending to zero led to the consistent infinitesi-
mal finite-element cell equation. This equation was
derived in the frequency domain and then trans-
formed into the time domain. This technique was
later extended to two-dimensional vector waves [13]
and three-dimensional waves [14]. Wolf and Song
[15] applied this technique to two and three-dimen-
sional statics, dynamics and diffusion in unbounded
and bounded media. The crack tip stress intensity
factors in fracture mechanics were also calculated.

Starting from the governing partial differential
equations and the scaled boundary transformation,
a new derivation consistent with that of the conven-
tional finite-element method (FEM) was developed.
With the new derivation, the method was re-named
Scaled Boundary Finite-Element Method (SBFEM)
for the first time. The original derivation of the scaled
boundary finite-element equations was based on
Galerkin's weighted residual method. Deeks and Wolf
[16] later used the principal of virtual work to re-
derive the scaled boundary finite-element equations.
The method was extended to model body loads in
[17].  For certain distribution of body loads, the con-
centrated loads and loads varying as power function
of radial coordinate, analytical solutions were derived.
Deeks presented a procedure to enforce side-face
displacements approximated by a power series in the
scaled boundary finite-element method [18]. Bazyar
and Song [19-20] extended the scaled boundary
finite-element method to model time-harmonic and
transient response of non-homogeneous elastic
unbounded domains. They later developed new
techniques to enhance the solution procedures for
modelling unbounded domains in frequency and
time domains [21-22]. In this paper, the scaled
boundary finite-element method is employed to model
soil-structure interaction problems under seismic
loads.

The outline of the paper is as follows: Summary
of the scaled boundary finite-element method is pre-
sented in Section 2. The coupling of the bounded and
unbounded domains in time domain under seismic
loading is addressed in Section 3. Numerical examples
are presented in Section 4. Conclusions are stated in
Section 5.
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2. Summary of the Scaled Boundary Finite-
Element Method

The scaled boundary finite-element formulation
for elasto-dynamics in both frequency and time
domains is detailed in [1]. Only a brief summary of
the formulations and solution procedures in 2D
problems is presented in this section.

In the scaled boundary finite-element method, a
so-called scaling centre O is chosen in a zone from
which the whole boundary is visible, see Figure (1a).
Only the boundary S directly visible from the scaling
centre is discretized (see Figure (1b), for typical line
element to be used for two-dimensional problems
and Figure (1c) for a typical surface element to be
used for three-dimensional problems). The nodal
coordinates of an element in the Cartesian coor-
dinate system are arranged in }{x and .}{y  The
geometry of the element is interpolated using the
shape functions )]([ ηN  formulated in the local
coordinates η. The geometry of the domain is de-
fined by scaling the boundary with the dimensionless
radial coordinate ξ pointing from the scaling centre
O to a point on the boundary, see Figure (1a). At the
scaling centre and on the boundary, ξ is chosen equal
to 0 and 1, respectively. Unbounded domains are
defined with ξ between 1 on the interface and ∞  at
the infinity. A point )ˆ,ˆ( yx  inside the domain is
expressed as (see Figure (1a)):

})]{([)},(ˆ xNx ηξ=ηξ                                        (1a)

})]{([)},(ˆ yNy ηξ=ηξ                                       (1b)

  ξ, η are called the scaled boundary coordinates.
The change of coordinates from yx ˆ,ˆ  to ξ, η is

Figure 1. (a) Representation of an unbounded domain in the
scaled boundary finite-element method; (b) three-
node line element on boundary; and (c) eight-node
surface element on boundary.

called the scaled boundary transformation.
Along the radial lines passing through the scaling

centre O and a node on the boundary, the nodal
displacement functions )}({ ξu  are introduced. The
directions of the displacement components are de-
fined in the original Cartesian coordinates as in the
standard finite-element method. Isoperimetric dis-
placement elements are used in the circumferential
directions. The displacements at a point (ξ, η) are
interpolated piece-wisely from the displacement
functions )}({ ξu
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where [I ] is a 2 x 2  identity matrix. Once the govern-
ing differential equations were expressed in the
scaled boundary coordinates, the Galerkin's weighted
residual technique or the virtual work method is
applied in the circumferential direction η. After as-
sembling the element equations, the scaled boundary
finite-element (SBFE) equation in displacement is
formulated in the frequency domain for two- and
three-dimensional problems as
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where s (=2 or 3) denotes the spatial dimension of
the domain. ][],[],[ 210 E E E  and ][ 0M  are coeffi-
cient matrices obtained by assembling the element
coefficient matrices as in the finite-element method
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in which )]([ 1 ηB  and )]([ 2 ηB  are the nodal displace-
ment-strain relationship matrices. Integrations are
performed over the elements on boundary (at ξ = 1)
only. ][ 0E  and ][ 0M  are positive-definite and
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symmetric and ][ 2E  is symmetric. The amplitude of
nodal forces )}({ ξR  on a surface is calculated as in
the finite-element method by integrating the surface
tractions over the circumferential directions η.
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The dynamic-stiffness matrix )]([ ω∞S  relates
the amplitudes of the nodal forces )}({ ξR  to those of
the displacements )}({ ξu )}).()]{([)}(({ ξω=ξ ∞ uSR
Eliminating )}({ ξR  and )}({ ξu  from equations, (3)
and (5) leads to an equation for the dynamic-stiff-
ness matrix )]([ ω∞S  on the boundary ξ =1.
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Eq. (6) is a system of nonlinear first-order ordi-
nary differential equations in the independent
variable ω to be solved numerically for the dynamic-
stiffness matrix.

2.1. Solution Procedure for a Frequency-Domain
Analysis

The radiation condition at infinity is satisfied using
an asymptotic expansion of the dynamic-stiffness
matrix for high frequency as:

∑
=

−
∞∞

∞ ω+ω+=ω
m

i

ii iACiKS
1

)( )]([][][)]([                 (7)

The first two terms on the right-hand side represent
the singular term. The regular term is expanded as a
power series of order m in iω. Coefficient matrices

][],[ ∞∞ K C  and ][ )(iA  are determined by construct-
ing a general Eigen-value problem •(  stands for a
diagonal matrix) [10]:

200 ]][[]][[ λ= ΦΦ EM                                      (8)

As the asymptotic power series solution, see Eq.
(7), is only valid at high frequency, the dynamic-
stiffness matrix at low and intermediate frequencies
has to be evaluated by integrating Eq. (6) numeri-
cally. In an actual calculation, the dynamic-stiffness
matrix at a specified high frequency )],([, hh S ωω ∞  is
approximated by the asymptotic expansion in
Eq. (7). )]([ hS ω∞  is then used as the starting value
to integrate the scaled boundary finite-element

equation in dynamic stiffness, Eq. (6), for decreasing
ω to obtain the dynamic-stiffness matrix over the com-
plete frequency range. To avoid this computationally
expensive task of numerical integration, a Pade'
series and a continued-fraction solution for the
dynamic-stiffness matrix were developed in [21-22]
directly from the SBFE equation.

2.2. Solution Procedure for a Time-Domain Ana-
lysis

The original derivation of the SBFE equation in
time domain is detailed in [15]. Here, a brief sum-
mary is provided. The interaction force-acceleration
relationship in the frequency domain is formulated
as:

)}({))](([)}()]{([)}({ 2 ωωω=ωω=ω ∞∞ uiMuMR &&    (9)

From Eq. (9) and the definition of dynamic-
stiffness matrix )})()]{([)}(({ ωω=ω ∞ uSR  on the
boundary, the relationship between the acceleration
and the displacement dynamic-stiffness matrix is
obtained as:

)]([)()]([ 2 ωω=ω ∞∞ MiS                                      (10)

The interaction force-acceleration relationship is
expressed in the time domain as:

τττ−= ∫ ∞ dutMtR
t

)}()]{([)}({
0

&&                              (11)

where )]([ tM ∞  is the acceleration unit-impulse
response matrix. )]([ tM ∞  and )]([ ω∞M  form a
Fourier transform pair. Substituting Eq. (10) in Eq.
(6) and performing the inverse Fourier transforma-
tion of the resulting equation leads to the SBFE
equation in time domain involving the convolution
integrals as:
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where

11 ])][([)]([)]([ −∞−∞ = UtMUtm T                          (13)

and )(tH  is the Heaviside-step function. The
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upper-triangular matrix ][U  is determined from
the decomposition of the coefficient matrix ][ 0E  as:

][][][ 0 UUE T=                                                (14a)

])[
2

1(]][[)]([][ 1111 IsUEUe T +−= −−                   (14b)

11101212 ])[][]][[]([)]([][ −−− −= UEEEEUe TT     (14c)

1010 ]][[)]([][ −−= UMUm T                               (14d)

The time-discretization method is used to solve
Eq. (12) for )]([ tm∞  [15]. The acceleration unit-
impulse response matrix )]([ tM ∞  is then determined
as:

])][([][)]([ UtmUtM T ∞∞ =                                   (15)

To circumvent the convolution integral in a
time-domain analysis of unbounded domains, the
continued-fraction solution of the dynamic-stiffness
matrix was developed in [22].

The equation of motion of both bounded and
unbounded domains are formulated as that in classi-
cal structural dynamics, i.e. a system of ordinary
differential equations with time-independent coeffi-
cient matrices. This new solution procedure permits
the application of standard time-stepping schemes
to perform a transient analysis.

In the sub-structure method for dynamic analysis
of problems involving soil-structure interactions,
the nodal force-displacement relationships for the
bounded domain and the unbounded domain are
derived separately and coupled at the soil-structure
interface. Section 3 deals with the coupling of bounded
and unbounded domains under seismic loadings in
the time domain.

3. Coupling of Bounded and Unbounded Do-
mains under Seismic Loads in Time Domain

In the substructure method as shown in Figure
(2), the nodal force-displacement relationships for
the bounded domain and the unbounded domain are
derived separately and coupled at the generalized
structure-soil interface. The equation of motion of
the bounded domain can be written as:
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Figure 2. Soil-structure interaction analysis by sub-structure
method.

where [M], [C] and [K] are mass, material damping
and static-stiffness matrices of bounded domains,
respectively; )}({)},({ tu tu &  and )}({ tu&&  are displace-
ment, velocity and acceleration vectors, respectively.

)}({ tP  is the external load vector. The subscripts s
and b denote the nodes of the bounded domain and
nodes associated with the generalized structure-soil
interface, respectively, see Figure (2). )}({ tRb is the
interaction force vector which represents the contri-
bution of the unbounded domain on the structure-soil
interface and is expressed as:

∫ τττ−= ∞t dutMtR 0 )}()]{([)}({ &&                           (17)

where )]([ tM ∞  to be determined from Eqs. (12) and
(15).

In this paper, the bounded domain is also mod-
elled using the scaled boundary finite-element method.
The same equation as Eq. (6) is derived for bounded
domains with only sign differences as:
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Static-stiffness matrix )]0([][ =ω= bSK  in Eq.
(16), is obtained from an Eigen-value problem re-
sulted from Eq. (18) for ω = 0 as detailed in [15].
The mass matrix [M ] is determined by assuming
low frequency behaviour for bounded domains as:

][][)]([ 2 MKSb ω−=ω                                      (19)

Substituting Eq. (19) into Eq. (18) leads to a
Lyapunov equation to be solved for mass matrix
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(Reference [15] is advised for the details). Material
damping [C]  can be determined using the Rayleigh
method as in the finite-element method.

To take into account the seismic forces, in Eq.
(17), dynamic force is applied as seismic accelera-
tion )}({ tu g

b&&  leading to interaction force vector on
the soil-structure interface as:

∫ ττ−ττ−= ∞t g
bbbb duutMtR 0 )}()()]{([)}({ &&&&               (20)

Having substituted Eq. (20) into Eq. (16), the
time integration can be performed by the Newmark
method with the parameters γ and β. The predictors
for displacements and velocities are expressed
as:
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where ∆t is the time step. Eq. (20) is discretized
with respect to time as:
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Integral of )}({ tu g
b&&  is obtained by an average

manner. Substituting Eqs. (21b) and (22b) into the
nth term in the above series the interaction forces
are reformulated as:
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where nbF }{  depends on the response at previous
time steps and is known at time station n.

Substituting Eqs. (21) and (24) into Eq. (16) re-
sults in:
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where the effective stiffness [D] of the coupled
system is expressed as:









β−








γ

−







=









][][
][][

][][
][][

][][
][][

][][
][][

2

bbbs

sbss

bbbs

sbss

bbbs

sbss

bbbs

sbss

KK
KK

t
CC
CC

t

MM
MM

DD
DD

     ∆∆
            (27)

At time station n, the terms at the right-hand
side of Eq. (26) are known. Having obtained the
accelerations from Eq. (26), the displacements and
velocities can be determined from Eqs. (21). Note
that in the above equations )}({)},({ tu tu &  and )}({ tu&&
are absolute displacement, velocity and acceleration
vectors, respectively.

In the case of rigid foundations, no soil is consid-
ered under the structure, and the structure is assumed
as a bounded domain. No interaction between the
structure and the soil is available. Equation of motion
of bounded domains in time domain is expressed as:

)}({)}(]{[)}(]{[)}(]{[ tPtuKtuCtuM sss =++ &&&        (28)

In the absence of dynamic external forces, dy-
namic force is applied as seismic acceleration )}({ tug&&

leading to:
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The time integration can be performed by the
well-known Newmark method.

4. Numerical Examples

To illustrate the effect of soil-structure interac-
tion on dynamic response of structures and to
demonstrate the simplicity and accuracy of the
scaled boundary finite-element method (SBFEM),
two examples are addressed. For each example, two
cases are taken into consideration:
a) Rigid foundation: in this case, the soil is neglected

and the base is assumed to be fixed. The results
are verified by the finite-element method (FEM)
using the commercial software SAP 2000 [23].

b) Flexible foundation: in this case, the unbounded
soil is considered and the effect of interaction
between the soil and the structure is investigated.
The results are compared with the results ob-
tained from SAP 2000 and the ability of the scaled
boundary finite-element method in modelling
unbounded domains is illustrated.
Acceleration time history of Tabas earthquake

shown in Figure (3) is considered as seismic input
motion in both examples.

Figure 3. Acceleration time history of Tabas earthquake.

Figure 4. Geometry of a frame-like structure.

Figure 5. Mesh for the frame-like structure on rigid foundation:
(a) SBFE mesh; (b) FE mesh.

4.1. A Frame-Like Structure

For the first example, a frame-like structure shown
in Figure (4) is analyzed. This example is designed
to introduce the concept of soil-structure interaction
and to illustrate the effect of soil-structure interac-
tion on the dynamic response of structures. For
simplicity, the dimensions of the structure and
material properties of both the structure and the
foundation to be detailed later are selected in a
dimensionless fashion. A consistent set of units is
used in the analysis. Plane stress condition is con-
sidered. The material properties are defined by the

modulus of elasticity E = 104, Poisson's ratio v = 0.2
and mass density ρ = 1. The analyses are performed
directly in the time domain by using the time integra-
tion Newmark method with γ = 0.25 and β = 0.5.

Both rigid and flexible foundations are consid-
ered. In the case of the rigid foundation, the base of
the structure is assumed to be fixed. In the scaled
boundary finite-element analysis, one sub-domain is
introduced, see Figure (5a). The scaling centre is
chosen at the inner corner C1. The boundaries of the
sub-domain are discretized with three-node elements.
Side faces passing through the scaling centre are
not discretized. Acceleration time history of Tabas
earthquake is applied. The time step is selected as
∆ t = 0.01. An extended finite-element analysis is also
performed using commercial software SAP 2000 to
provide a reference solution. The mesh consisting
of four-node rectangular elements is shown in
Figure (5b). The density of the finite-element mesh
on the boundary is the same as the scaled boundary
finite-element mesh.
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Figure 6. Horizontal displacement at point A of the frame-like
structure.

The horizontal displacement at point A on left
top of the structure shown in Figure (4) is plotted in
Figure (6). As there is no material damping for the
structure and the rigid foundation is assumed, it is
observed that the response of the structure is not
damped. The results obtained from SBFEM and
FEM agree very well, showing the ability of the
scaled boundary finite-element method for modelling
bounded domain problems.

Figure 7. Mesh for the frame-like structure on flexible founda-
tion: (a) SBFE mesh; (b) FE mesh.

Figure 8. Horizontal displacement at point A of the frame-like
structure on flexible foundation.

displacement is not damped, and the oscillation
is occurred, see Figure (8). When the propagating
waves impinge on the truncated boundary, they
are reflected back toward inside the domain, and
therefore, they disturb the response of the structure.
However, in the scaled boundary finite-element
method, propagating waves go to the infinity and will
be absorbed there. The results obtained from the
SBFEM and FEM are in an acceptable agreement
by about 6s. After time t = 6, the waves reflected
back from the truncated boundary in the finite-

In the case of the flexible foundation, it is assumed
that the structure is resting on a half-plane, and the
material properties are defined by the modulus of
elasticity E = 2400, Poisson's ratio v = 0.2 and the
mass density ρ = 1. The scaled boundary finite-
element mesh is shown in Figure (7). To satisfy
similarity condition, a part of the unbounded domain
surrounding the structure is modelled as bounded
domains. Here, three bounded sub-domains are
introduced. The scaling centres are located at the
centres of the sub-domains (C3, C4 and C5). The
remaining part of the half-plane is modelled as an
unbounded domain. Its scaling center is chosen at
C1. A scaled boundary finite-element analysis with
the mesh with length L = 5, see Figure (7a), is
performed. An extended finite-element analysis is
performed using SAP 2000 to provide a reference
solution. The mesh consists of four-node rectangular
elements is shown in Figure (7b). Simple Dirichlet
boundary conditions are enforced on the truncated
boundary far away from the soil-structure interface.
The time step is selected as ∆ t = 0.02.

The horizontal displacement caused by seismic
load at point A is portrayed in Figure (8). In the re-
sults obtained from the finite-element analysis, the
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element method contaminate the response of the
structure.

It is observed by comparing Figure (6) with
Figure (8) that the dynamic interaction between
the structure and the foundation strongly affects the
structure response. When the dynamic soil-structure
interaction is considered for this example, the response
is damped. The radiation damping of the unbounded
domain leads to rapid decay of the vibration, see
Figure (8). This phenomenon does not occur when
the foundation is rigid, see Figure (6).

4.2. A DAM Located on a Half-Plane

For the second example, a real large-scale dam
(Koyna Dam in China) located on a half-plane is
examined. Real dimensions and material properties
for the dam and the foundation are considered in this
example. The geometry of the dam is shown in
Figure (9).

Figure 9. Geometry of the dam.

Figure 10. Dam on a rigid foundation: (a) Scaled boundary
finite-element mesh ; (b) Finite-element mesh.

Figure 11. Horizontal displacement at point A of a dam on a rigid
foundation.

the acceleration time history of Tabas earthquake
is applied. The time step is selected as ∆ t = 0.002 s.
A finite-element analysis is performed using the
commercial finite-element software SAP 2000 to
verify the validity of the SBFE results. The mesh
used in the analysis has 32096 degrees of freedom.
The density of the finite-element mesh is shown in
Figure (10b).

Plane-strain condition is considered. The analy-
ses are performed directly in the time domain by
using the Newmark method with β = 0.25 and γ = 0.5.
Material properties are defined by the modulus of
elasticity E = 40GPa, Poisson's ratio v = 0.2 and the
mass density ρ = 2600 kg/m3. Again, both rigid and
flexible foundations are addressed. In the rigid case
and in the scaled boundary finite-element analysis,
the dam is divided into three sub-domains shown in
Figure (10a). The scaling centers are C1, C2 and
C3. Linear elements have used for mesh discritization
resulting in 1296 degrees of freedom. Once more,

The horizontal displacement at point A is plotted
in Figure (11). The scaled boundary finite-element
results are in a reasonable agreement with the
finite-element results obtained from SAP 2000.
As it is observed again in this example, when the
foundation is rigid, the response of the dam is not
damped.

In the case of flexible foundation, it is assumed
that the structure is resting on a half-plane with the
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modulus of elasticity E = 30 GPa, Poisson's ratio
v = 0.2 and the mass density ρ = 1900 kg/m3. The
scaled boundary finite-element mesh is shown in
Figure (12a). Yet again in this case, the dam is
modeled as three bounded sub-domains. The scaling
centres are located at the centres of the sub-domains
(C2, C3 and C4). The half-plane is modeled as an
unbounded domain. Its scaling centre is chosen at
C1. Bounded domains (structure) and the unbounded
domain are coupled at the interface between the
structure and the half plane.

The horizontal displacement response at point A
is plotted in Figure (13). To validate the accuracy of
the SBFE results, an extended finite-element mesh is
analyzed using SAP 2000. For more contrast, a
close-up of the frame has been presented, see
Figure (12b); however, for accurate results in a long
time, the soil has to be extended to a much more
depth. The results of the finite-element analysis are

Figure 13. Horizontal displacement at point A of dam on flexible
foundation.

Figure 12. Dam on a flexible foundation: (a) Scaled boundary
finite-element mesh; (b) Finite-element mesh (Sap).

also portrayed in Figure (13). It is observed that two
results agree well before the waves reflected at the
outer boundary of the extended mesh reach the
structure.

By comparing Figures (11) and (13), the strong
effect of dynamic interaction between the structure
and the foundation on the response of the dam is
observed. The radiation damping of the unbounded
domain leads to rapid decay of the vibration as shown
in Figure (13), while this phenomenon does not
occur when the foundation is rigid as illustrated in
Figure (11). No significant change in the amplitude
of the displacement response is observed.

5. Conclusions

The scaled boundary finite-element method is
employed to perform a dynamic soil-structure inter-
action analysis directly in the time domain. Seismic
loads are applied to the structure as dynamic loads.
Both bounded and unbounded domains are modelled
with scaled boundary finite-element method. Only
the boundary is discretized reducing the spatial
dimension by one. Radiation condition at infinity is
satisfied rigorously. No fundamental solution is
needed. As only the boundary of the sub-domains is
discretized, the mesh generation is simpler than the
one in the finite element method. This also reduces
the size of the equation of motion of the global
system. Newmark implicit time integration method is
used to perform the time integration. Finite-element
analyses using commercial software SAP 2000 are
carried out to verify the results of the scaled bound-
ary finite-element method. Strong effect of soil-
structure interaction on dynamic response of the
structure is demonstrated. Numerical examples are
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addressed to illustrate the accuracy and applicability
of the scaled boundary finite-element method. Rea-
sonable agreement with the results of the scaled
boundary finite-element and the extended finite-
element method is observed.
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