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The purpose of this study is to develop a model for a class of unbounded domains
with application in infinite beams on elastic supports. An unphysical layer is
included in the model in order to absorb the crossing waves into the unbounded
domain. To this end, the Perfectly Matched Layer (PML) is used along with a
displacement-based Finite Element scheme that provides an appropriate vehicle
for such problems. Most PML applications appearing in the literature have dealt
with lower order governing differential equations. The case of a beam on elastic
foundation, on the other hand, involves a fourth-order equation. The governing
equation is reduced into a series of four first-order equations by introducing
auxiliary variables. This leads to internal moments and shear forces that represent
non-linear behaviour in the artificial medium. The accuracy of PML results is
validated by comparison with regular finite element solutions of beams with
substantially long spans. The solution method is used to investigate dynamic
response of railroad tracks under earthquake excitations. The effect of various
parameters on seismic response and the resonance phenomenon has been examined.
Numerical results demonstrate the accuracy and efficacy of the method, which is
due to use of small bounded domains in the solution process.
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ABSTRACT

1. Introduction

Many engineering problems involve unbounded
domains. Examples can be cited from quantum
mechanics [1], electromagnetic waves [2], seismol-
ogy [3], and soil-structure interaction [4, 5] problems.
In these cases, the extent of the domain is very large
when compared with the characteristic wavelength
so that the solution of the wave equation requires
imposition of a radiation condition in the unbounded
directions. Waves radiate outwards from a source in
the unbounded direction without any spurious
return.

Dynamic problem of infinite beams on elastic foun-
dations has many applications in airport runway and

highway design. The application considered here is
vibration of railway tracks. There are several ways
to tackle such problems. Closed-form solutions of
beams on elastic foundations have been derived
by various researchers [6-9] in the last century.
Many scientists tried to use more general solution
techniques, such as boundary element methods
[10, 11], finite and infinite element methods [12, 13].
For material heterogeneities or geometric irregular-
ity, discretized procedures seem to be the only
practical solution methods. Because discretization of
large spatial domains can involve excessive number
of elements, a number of methods have been devised
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to find equivalent finite domains. Domain reduction
is typically accomplished through a geometric
truncation of physically bounded domain with an
artificial boundary that absorbs the outgoing waves.
An early paper published by Berenger [14] in 1994
introduced such absorbing boundary for the solution
of wave equations. An absorbing boundary layer is
a layer of artificial material placed adjacent to the
edge of the grid independent of the boundary
conditions. When a wave enters this absorbing
layer, it is attenuated exponentially. Thus, the wave
travelling through the absorbing layer is damped out
upon its return. A problem with this approach arises
in transition from one material to another, resulting
in reflected waves. In the same manner, reflection of
waves can result at the transition points of non-
absorbing and absorbing materials. Berenger has
shown that a special absorbing medium can be
constructed for preventing reflections at interfaces.
This so called perfectly matched layer (PML) was
originally devised for electromagnetic problems
(Maxwell equations). The same idea is applicable to
other physical problems such as Helmholtz equation
[15], acoustic wave propagation [16], elastic wave
propagation in elastic media [17, 18], viscoelastic
media [19], and in poroelastic media [20]. Basu and
Chopra [21] applied the PML technique using a
displacement based finite element method for
one-dimensional rods on elastic supports. Kang and
Kallivokas [22] used a mixed finite element formula-
tion (displacement-stress) for the same problem. The
latter two studies deal with second-order governing
differential equations.

This paper deals with semi-infinite beams on
elastic foundations, which involve fourth-order
differential equations. Application of the PML
procedure to this problem is the logical extension of
the rod problem. The fourth order governing
equation is reduced into a series of four first-order
equations, which are then transformed in frequency
domain. This leads to internal moments and shear
forces that represent nonlinear behaviour in the
artificial medium. The governing equations are
subsequently transformed back into time domain.
A weak form of the governing equations is obtained
by finite element discretization. This leads to a final
system of equations that is solved by a step-by-step
algorithm. Numerical solution is carried out in
MATLAB environment. Efficiency and accuracy of

the results are validated by comparison with results
of regular finite elements.

Since investigation of rail systems, as a lifeline,
requires study of seismic effects [23] some research-
ers have considered this problem. Banimahd and
Arbabi [24] used a macro-element to model the
track system. They investigated seismic vulnerability
and developed analytical fragility curves for
railroads. An attractive alternative would be the use
of PML for this problem. Another finite element
model [25] has been proposed for the investigation
of seismic behaviour of ballasted railway tracks
and was compared with the results of a shaking
table test [26]. In this model [25], an effective
excited length of the track was obtained and was
used to investigate the response of the track to the
Kobe earthquake. Train induced vibrations can be
used as an input source for artificial earthquakes
[27] as well as for detection of underground effects.
The PML method can facilitate the latter types of
applications because of the infinite nature of these
problems.

Response of railroad tracks to earthquakes,
considered in this paper, provides another potential
application of the PML approach. Lateral excitation
of track system is considered and subjected to two
different earthquake records. The influence of
certain earthquakes and dynamical properties of
system, the amplified rail response that is the
consequence of resonance phenomenon is shown.

2. PML Formulation for Semi-Infinite Beam

2.1. Governing Differential Equations

The governing equation of motion of an infinite
beam on elastic foundation, Figure (1a), can be
derived by invoking the Bernoulli-Euler beam
theory for the free body diagram, Figure (1b). The
magnitude of the continuously distributed support
reaction is proportional to the deflection of the
beam. That is, the elastic foundation yields a resist-
ive force .),( vktxq s −=

Using equilibrium of forces and moments for
the element in Figure (1b) and invoking the moment
curvature relation we get the equation of motion as:
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In this equation E is Young's modulus, I moment
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of inertia of the beam, A its cross-sectional area, ρ
its density and sk  stiffness of the foundation.

2.2. Frequency Domain Equations

The PML approach has been used for longitudi-
nal waves. Its application to the beam problem is a
simple extension of the latter. Considering the
time-harmonic displacement function of the form

),exp()(~),( tixvtxv   ω=  Eq. (1) can be transformed
to frequency domain resulting in:

pvAvk
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vdEI s
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Here v̂  is Fourier transform of the subtended
function that is in terms of x, and x is the coordinate
of  the beam within a semi-infinite domain .0 ∞<≤ x
The Fourier transform is taken with respect to t,
leading to v̂  that is a function of x only. Eq. (2) can
be modified by stretching the spatial variable to
complex coordinates [28]. To this end, we divide
the domain into two segments; a finite domain of
interest LBD , and an artificial truncated domain or
PML of finite length LPML, Figure (2).

Figure 1. a) Semi-infinite beam on elastic foundation, (b) free
body diagram of the beam element.

Figure 2. Truncated semi-infinite domain with a PML segment.

The solution of the semi-infinite beam has both
propagating and non-propagating terms. To decay
this solution within the PML and prevent wave
reflections, Eq. (2) is recast by stretching the real
coordinate  to x~  with the aid of mapping:

sds x    
x

)(~
0∫ λ=                                                      (3)

In Eq. (3), λ is a nowhere-zero, continuous com-
plex-valued coordinate stretching function:

]0[)(1)()( 21 tL  x     xf
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where

)(/)(),(/1)( 21 xfrcxf  xfrcxf pe
  ω=ω+=     (5)

with

skEIr     AEIc /,/ =ρ=                                (6)

Here c is the wave pseudo-velocity and r  is the
characteristic length of the beam. The so-called
evanescent and propagating attenuation functions

)(xf e  and )(xf p  are functions that must be chosen
so as they will attenuate the solution of the propaga-
ting and non-propagating terms simultaneously and
eliminate the wave reflections. Here they are
chosen as polynomials of the form:
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where 0f  is the maximum value of the attenuation
function and m is the degree of the polynomial
function. Eq. (2) can be rewritten in terms of the
stretched coordinate ,~x  i.e. by replacing x with .~x
Thus the governing equation of the perfectly matched
medium (PMM) becomes:

pvAvk
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vdEI s
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Since it is more convenient to solve the problem
in terms of the real variable x, the coordinate is
transformed back from the complex coordinate .~x
Assuming continuity of )(x λ  and invoking the chain
rule of differentiation result in:
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To proceed with the solution of the governing
equation, the fourth-order differential equation is
first cast into four first-order equations by introduc-
ing the following auxiliary variables
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Here, rotation ,φ  curvature M/EI=Ψ  and q =
V/EI are in terms of x. The differential operator of
Eq. (8) can be rewritten in terms of x using Eq. (9):
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Similarly, Eq. (8) can be recast in the frequency
domain by substituting the auxiliary variables into
Eq. (11):
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Multiplying both sides of Eq. (12) by ),(x λ  as
defined in Eq.(4), the following equation will be
resulted:
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PMM Eqs. (10) and (13) are in frequency
domain and in terms of x and the auxiliary variables.

2.3. Time Domain Equations

By inverting Eq. (10) back in time domain we
have:
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In this equation

ττ= ∫    dq  q
t

)(
0

                                                 (15)

Similarly inverse Fourier transform of Eq. (13)
yields the time domain form of that equation as:
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In this equation:

ττ= ∫    dv v
t

)(
0

                                                   (17)

Thus, a set of four time domain Eqs. (14a) to (14c)
and (16) with PML absorbing boundaries in the x
direction can be solved by appropriate discretization
schemes. Eq. (16) is implemented using the standard
displacement-based finite element method and the
pertinent matrices for the elements are generated by
the Galerkin methods. A weak form of Eq. (16) is
derived by multiplying it by an arbitrary weighting
function w residing in an appropriate admissible
space. Upon integration by parts over the entire
computational domain Ω gives:
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Another integration-by-parts and invoking (12.c)
yields:
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2.4. Finite Element Implementation

The weak form is spatially discretized by inter-
polation of v and w element-wise in terms of nodal
quantities using appropriate nodal shape functions.
Because for fourth-order differential equations, the
essential boundary conditions are the values if its
first order derivatives, for a beam under flexure
transverse displacement, v and rotation θ are the
essential boundary conditions. Thus, these two
parameters are chosen as nodal quantities leading to
a simple two-node beam element with Hermitian
shape functions. This leads to the system of
equations:

extffdkkddcdm =+′+++ int
&&&                            (20)

with

ττ= ∫        dt
t

0
)()( dd                                               (21)

(18)

(19)
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where d is a vector of nodal quantities. Pertinent
matrices, internal and external force vectors, in the
context of FEM, are assembled from the correspond-
ing element-level matrices and vectors:
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Here, N is a row vector of element-level nodal
shape functions, e

extf  is an elemental vector of exter-
nal forces including distributed and concentrated
loads. M and V are values of bending moment and
shear force at ends of elements. e

intf  is a vector of
element-level internal moments e

ψf  plus that of
internal shear forces .e

qf

2.5. Solution Process

Step-by-step numerical integration schemes, such
as the Newmark's average acceleration method can
be used along with Newton-Raphson iteration at
each time step to enforce the equilibrium and solve
the semi-discretized system of Eq. (20). In this
way, having the solution of Eq. (20) at time 1+nt  the
solution at nt  is obtained by the Newton-Raphson
iteration process. This requires a) calculation of

1+ψn  and ,1+nq  to find e
n 1+ψf  and ,

1

e
qn+

f  and b) a
consistent linearization [29] of e

n 1int +
f  at .1

e
n+d  This

is because ψ  and q  in Eq. (14) are in relation
with displacement. Therefore, Eq. (14a) is discretized
using a backward Euler scheme on φ  to obtain:
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time-step. With the initial condition ,01 =φ  adding
the terms of Eq. (23) together at each time step, the
sequence of 1+φn  can be written in the form of a
series:
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Eq. (14b) is then discretized in the same fashion
on ψ  to obtain its series form:
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The time-discrete form of element vector of
internal moments is:
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Linearization of Eq. (26) leads to:
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where  ∆  is a differential operator, and:
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This linearization leads to a tangent stiffness
matrix:
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The latter equation is incorporated in the effect-
ive tangent stiffness used in the time-stepping
algorithm.

Derivation of 1+nq  and internal shear force e
qn 1+

f
follow the same pattern. By invoking Eq. (14c) a
recursive expression results in discrete form:
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In the computer program developed, 1+nq  is
computed at each time-step but is dependent on the
solution of all past time steps. The discretized form
of the vector of internal shear forces for an element
is:
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Linearization of Eq. (32) gives:
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where  ∆  is a differential operator, and:
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Linearization gives the tangent matrix:
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The latter equation is incorporated in the effect-
ive tangent stiffness used in the time-stepping
algorithm.

Besides, the time-integral of d, Eq. (21), can be
approximated as:

t  nnn ∆11 ++ += ddd                                            (36)

Therefore, the terms involving d  in Eq. (20) may
be linearized as:
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The effective internal forces for each element in
the Newmark scheme can be written as:
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And the tangent stiffness matrix becomes:
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It should be noted that the tangent stiffness e
effk

is independent of the solution process and can thus
be computed only once. However, the internal force
vector e

effn 1+
f  has to be recomputed at each time

step because it is dependent on the solution at the
previous steps.

3. Model Validation

To validate the PML model, a concentrated
harmonic load, in the form of V (0, t) = P0 sin(0.35t),
was applied at the origin of semi-infinite beam on
elastic foundations. Here, P0 is the load amplitude,
and ω = 0.35 is the frequency of excitation. Since
values of deflection and slope at any point along
the beam tend to zero at large distances from the
origin, a comparison with beams of finite length has
been made. The semi-infinite beam solution yields
reasonable results for beams as short as LLB = 3π/
2C0  with 4

0 4/ EIkC s=  [30]. The accuracy of
the PML process for semi-infinite beams resting on
elastic foundations was compared with the results
of regular finite element analyses of a beam with
length  LLB and fixed end conditions, Figure (3). The
PML model had a length of LBD = 0.10LLB  and
sufficient mesh density. At low frequencies, the
maximum deflection of the beam can be computed
by a static analysis as well as by the finite element
model. The maximum deflection,  vmax (x = 0), in the
static case [30] is:

sk
CP

xv 00
max

2
)0( =                                            (40)

Figure (3) depict results for five different values
of ks and P0. It can be seen that the PML results
are indistinguishable from the regular finite element
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results in all cases.
Other properties of the aforementioned unbound-

ed dynamical system are given below:

][1065],/[8000
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243

4829
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mI  mNE
−

−

×==ρ

×=×=

4. Earthquake Excitations

Seismic analyses are becoming part of railroad
designs. The complex nature of rail systems, its
theoretically infinite length can be modeled with
many elements; making it difficult to simulate the
whole unbounded dynamical systems. The PML
model developed and applied in this study can
overcome such difficulties. In the present study,
only impact of the horizontal component of earth-
quake is considered.

Assuming the direction of the earthquake to be

Figure 3. Nodal response of beam on elastic foundation for
five different values of foundation stiffness and
load amplitude: (a) ks = 12 x 105, 2800, 15 and (b)
ks= 45000, 180.

perpendicular to the rail axis, the equivalent seismic
load vector is the product of the mass matrix with
the ground acceleration. The two earthquake records
considered here are that of the El Centro (US-1979)
and Kocaeli (Turkey-1999). The peak ground
accelerations (PGA) were normalized to 0.4  g,
Figure (4). The ballasted track can have nonlinear
lateral resistance [31]. However, only linear behav-
ior is considered here and the quake was equally
applied to the full length of the track model. The
stiffness of the rail and the subgrade was expressed
by an equivalent distributed spring. The mass of the
rail, travers and the ballast was further indicated by
an equivalent value.

Both soft and hard soils [32] were considered in
the parametric study. To determine the effect of the
ballast mass on the system, track models with rail
mass only (C1) and ballast mass included (C2) were
examined. Variations of the parameters, mass, lead
to different first natural frequencies, as well as
consideration of soft and hard soils. In these simple

Figure 4. Acceleration history of horizontal component of
(a) El Centro 1979 and (b) Kocaeli 1999.
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models, damping was excluded and will be added
in additional parametric studies. Input values of
the program developed for MATLAB are given,
Table (1). The mass of the ballast vibrating with the
track system was estimated as 4.42 times larger than
the track without consideration of the ballast mass.
The additional mass naturally produces larger
seismic loads. The parameter required for stretching
the PML model is the dominant frequency of the
exciting record, which can be obtained from ampli-
tude of its Fourier transform. These values were 1.9
for the El Centro record and 0.3 Hz for Kocaeli.

The predominant frequency responses of the

Table 1. Numerical input data in PML solution of earthquake
excitation.

Figure 5. Acceleration response spectram of (a) El Centro 1979 and (b) Kocaeli 1999.

Table 2. Maximum horizontal displacement (m) of all beam nodes under earthquake excitation for different conditions.

earthquake excitations are determined to investigate
their effects on the seismic response of the system.
The response acceleration spectra of the El Centro
and Kocaeli excitations are 7.14 and 2.17 Hz,
respectively, Figure (5).

Using the PML model, lateral response of the
track is calculated at its origin, Figure (6).

The deflection amplitudes of the beam for the C1
and C2, with corresponding foundation stiffnesses
and lateral loading, are shown in Table (2) along with
the first natural frequency of the system.

Table (2) shows the response for C1 and C2. In
C1, the first natural frequency of the beam on soft
subgrade is 6.72 Hz, which is close to the predomi-
nant frequency of the El Centro ground acceleration
(7.14 Hz). Consequently, the response amplitude for
El Centro is 4.1 times larger than that of Kocaeli.
The same value for hard subgrade is only 2.7. On the
other hand for C2, the response for the El Centro
record is only 1.1 that of Kocaeli in soft subgrade
and 1.9 for hard subgrade. By including the additional
mass of the ballast, the first natural frequency for C2
and soft subgrade is 3.19 and 9.04 for hard subgrade.
It can be observed that in this case, the predominant
frequency of the Kocaeli is closer to that of the track
on soft subgrade as compared to that of the El Centro
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Figure 6. Displacement response of the track at the origin for different data of earthquake excitation, region and mass, respectively:
(a) El Centro; soft subgrade, rail mass only (b) El Centro; hard subgrade, rail mass only (c) Kocaeli; soft subgrade, rail
mass only (d) Kocaeli; hard subgrade, rail mass only (e) El Centro; soft subgrade, ballast mass included (f) El Centro; hard
subgrade, ballast mass included (g) Kocaeli; soft subgrade, ballast mass included (h) Kocaeli; hard subgrade, ballast
mass included.
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record. This was the reverse of the results obtained
for C1. Thus, by considering time domain dynamic
analysis, the amplified rail response, which is the
consequence of resonance phenomenon, can be
computed. It can be seen that the PML approach for
supported infinite beams, developed in this study,
can be a useful tool for the assessment of railroad
dynamic responses under earthquakes as well as for
seismic vulnerability assessments.

5. Conclusions

In this study, a PML approach was used in the
solution of semi-infinite Bernoulli-Euler beams on
elastic foundations. The governing equations for
perfectly matched medium (PMM) were obtained by
modification of the beam equations for an elastic
medium. This involved a continuous, complex-valued,
coordinate stretching. The PMM could be interpreted
as an inhomogeneous viscoelastic medium. Auxiliary
differential equations (ADE) were employed in
frequency domain in order to convert the fourth-
order differential equation to four first-order
equations. The counterpart of these equations in
time domain involves convolutions. Implementation
of the governing equation in displacement-based
FEM, needs recasting the equations into a format
that contains only displacements as unknowns. The
proposed scheme produces internal moments and
shear forces from ADEs. These nonlinear forces lead
to a tangent mass matrix that can be incorporated
into the solution along with the effective tangent
stiffness matrix.

The efficiency and accuracy of the PML results
were validated through a rudimentary trial-and-
error procedure and by comparison with numerical
solution of a long beam. The solution process can be
easily applied to viscoelastic foundations, and
Timoshenko beams, as well as various loading
conditions. The response of railroad tracks subjected
to earthquake excitations, shows its dependent on
both system properties (foundation stiffness, mass)
and predominant frequencies of the seismic record.
Such factors can cause resonance in the track
response.
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