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In this study, a displacement monitoring technique using an economy camera based
on the vision-based method is proposed and developed. The structural displacement
can be extracted by utilizing an ordinary shiny device that is attached to one of the
elements of the structure and monitoring its motion by an economy video camera. In
the proposed vision-based methodology, shiny targets such as LED targets are used
to obtain more high-quality images with higher contrast that lead to getting better
displacement recording from the captured video. First, a LED centroid recognition
and scaling method are described to obtain the time history of structural movements
due to the ambient vibration. Next, the natural frequencies of the structure can be
determined by utilizing different classical system identification methods in the
frequency domain and time domain, like the Peak Picking method and the SSI
method. Finally, as a case study, the proposed methodology used for the Tabiat
bridge in Tehran, which is a three-dimensional steel truss bridge for pedestrians
over a heavy traffic highway, the results are compared with those obtained from the
high-accurate and expensive wireless seismic sensors. The results show that
although the vision-based proposed technique is a fast and low-cost method, it can
investigate the dynamic characteristics of the structure with reasonable precision.
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ABSTRACT

1. Introduction

Civil infrastructure such as large-scale buildings,
bridges, and lifeline systems are exposed to various
external loads throughout their service time. Vibra-
tion caused by earthquakes, wind, or human-made
excitation initiates structural damage during their
lifetime and subsequently, triggers catastrophic
failure. Structural Health Monitoring (SHM) is an
urgent and powerful diagnostic tool for damage
detection and catastrophe mitigation of mentioned
structures. The SHM includes these parts: data
acquisition, system identification, condition evaluation,

and maintenance. The SHM methods use responses
such as vibration and local responses such as strains
or a combination of both to assess the structure
during in-service conditions or extreme climatic
events. Most of these techniques are primarily
responsible for acceleration measurements that
require the installation of either contact or non-
contact sensors to collect wealthy quality data.

To face the problems of contact sensors, there
has been considerable development of noncontact
sensors over the last three decades. Sensors based
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on GPS [1-3] provided a comfortable operation
remote non-intrusive approach to the SHM. How-
ever, the GPS can be sensitive to electromagnetic
noise, environmental interference, and weather con-
ditions. Unlike GPS, noncontact laser vibrometers
and radar interferometry [4-7] provide high-quality
measurements. Nevertheless, these devices are
expensive and have restrictions on outdoor condi-
tions. The above challenges of noncontact sensors
are eliminated with the recent development of other
types of vision-based sensors that are integrated
with visual and mobile monitoring systems. Such
alternate smart sensing techniques include digital
and high-speed cameras, UAVs, and smartphone
sensors. These sensors are easier and user-friendly,
allow simple installation, and offer data recording
that is more reliable with high-resolution information
of the structures while they are highly cost-effec-
tive.

Moreover, there is a significant growth in econo-
my vision-based sensing technology and image
pro-cessing. High-speed cameras and consumer-
grade DSLR cameras have been used for data
acquisition. Cameras are determined by frames per
second (fps), pixels, bandwidth, and image con-
solidation. The current camera-based methods are
various in character and range from digital image
correlation (DIC) to motion magnification (MM).
The vision-based SHM methods consist of these
steps: camera calibration, image processing, motion
measurement, and damage detection. Still, the DIC
has become so general, that a low level of motion
related to high-frequency excitation makes it a
challenge. The motion magnification method is
developed to magnify the small movements of the
structure. The combination of the DIC and MM
improve system identification to identify structure
dynamic characteristic and displacement measure-
ment at low displacements under high-frequency
excitation [8]. Trebuna and Hagara [9] proposed a
modification of a high-speed correlation method to
estimate the dynamic characteristics of steel plates.
Feng et al. [10] developed a new vision-based
sensor to measure dynamic displacements from
video images without using a target-marker panel.
The recommended sensor included low-cost
charge coupled video cameras with telescopic
lenses for real-time extraction of displacements of
video images recorded at a rate of 150 fps.

Orientation code matching (OCM) algorithm36
was used for image processing that abled tracking
of existing structure remotely. Walker [11] studied
the condition evaluation of timber structures using
virtual vision sensors. This study concentrated on the
specification of natural frequencies by monitoring
the severity value of each pixel coordinate over the
course of a few seconds of a video of vibration and
then using a Fast Fourier Transform (FFT) to obtain
the frequencies. The resulting natural frequencies of
the bridge were extracted to be analogous to the
accelerometers. The further advantages of virtual
visual sensors include the capability to use multiple
data points and not be bounded up to a single plane
of motion. The easily existing consumer-grade
cameras have shown an encouraging future for
their use in Structural Health Monitoring. Fukuda
et al. [12] developed a vision-based low-cost system
to monitor large-size infrastructure using a digital
camcorder and computer with preinstalled image-
processing software. The recommended technique
used dis-placement parameters based on a target
and motion of point for dynamic analysis of the
structures and was further upgraded by containing
time simultaneously measurement. In Feng and
Feng [13] the multipoint displacement for a three-
story frame structure was evaluated using two
advanced template matching techniques: the
unsampled cross-correlation and the OCM. The
extracted results from a camera, laser point dis-
placement, and accelerometers were measured.
With a good data acquisition capability of a camera,
the need to develop a unified image and video
analysis application was investigated by Luo et
al. [14]. A new technique, InnoVision, a video image
processing technique, was developed to address
challenges associated with vision sensors for SHM.
The three critical difficulties, limited lighting, multi-
point displacement, and camera vibration in the
field associated with vision sensors, were addressed.
Moreover, the digital cameras, the plenty of recent
low-cost and high-description video cameras found
their use in various Structural Health Monitoring
applications where the video camera was utilized
as a piece of remote monitoring equipment. The
MM technique by Chen et al. [15] utilized high-
speed to visualize and quantify the mode shapes of
structures. In a subsequent study, Chen et al. [16]
presented a video camera-based vibration
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measurement study as a proof-of-study in which
an antenna tower on top of a building was mea-
sured from over 175 m. The use of noncontact
techniques also offers an encouraging way for
modal identification. Feng and Feng [17] aimed to
link displacement mea-surement with the vision
method by simultaneous identification of structural
stiffness and excitation forces. The robust subpixel
OCM algorithm was applied to track the structural
displacement of the bridge. The problem correlated
with the use of cameras during different weather
conditions was appraised by Kim et al. [18] using
various image processing techniques. The results
showed only a 1% variation in camera-based
measurement with respect to accelerometers. As
presented above, the use of video cameras and the
related image processing algorithms form a large
diversity of noncontact methods for different
Structural Health Monitoring applications. Although
the recent use of vision-based sensors in numerous
applications of Structural Health Monitoring, there
are several challenges that are currently affecting
the efficiencies of vision-based methods. Factors
including weather conditions such as wind, rain,
light, snow, fog, and the surrounding vibrations as
well as the accuracy of camera-based measure-
ments under small-amplitude motion need to be
explored in the context of SHM.

In this paper, to overcome some of the limitations
of previous vision-based methods such as an ex-
pensive speed camera, the low contrast and effect
of haze on the captured images and obtain higher
quality results from the captured images with more
contrast, an image processing methodology is
proposed using shiny targets with an economy
camera. First, the method of matching and scaling
recorded videos is described. Then, the theory of
extracting natural frequencies of a structure due to
the ambient vibration in the time domain is briefly
stated. Then, as a field test, the geometry and
characteristics of the Tabiat bridge are described.
Afterward, extracted frequencies of the bridge
from the seismic sensors and the proposed method
are compared together.

2. Proposed Vision Sensor System

Vision-based displacement sensors provide a
simple, cost-effective, and precise alternative for far

displacement monitoring. Numerous vision-based
displacement sensor systems are enabled by the
template matching techniques, with pattern mat-
ching [19], edge detection, digital image correlation
(DIC) [20], Hough transforms [21], the RANSAC
algorithm [22], the optical flow-based method [23],
the up sampled cross-correlation (UCC) and
orientation code matching (OCM) [24], etc.

Recently, efforts have also been made to investi-
gate the feasibilities of displacement measurements
utilizing the advanced onboard sensing capabilities
of the software technologies, such as embedded
high-resolution/speed video features, powerful fast
computers, open-source computer vision libraries,
etc.

Nonetheless, most of the existing vision-based
sensors have one or more of the following res-
trictions in practical applications: (1) The approved
template matching techniques give motion with
integer-pixel resolution since the minimum unit in a
video image is one pixel. Though in many appli-
cations, the pixel-level precision is acceptable, it is
often far from the required precision in case of
small structural vibrations; (2) Most current vision
sensor systems can only be used for post-processing
the recorded data. They thus cannot execute
real-time displacement measurement, which limits
their application for online monitoring; (3) It is
evident that the precision of the template matching
methods relies mainly on the image quality, which
is often difficult to guarantee in outdoor field condi-
tions such as brightness variation, partial target ob-
struction, partial shading, background disorderliness,
etc.

2.1. Template Matching and Scaling Factor
Determination

The vision sensor system simply consists of a
video camera and a notebook laptop. In the per-
formance, an area in the image of a sequence of
frames captured is selected as a template. The
template will be located in consecutive images
using template matching techniques. Therefore,
the displacements are recorded in pixels that can
be subsequently transformed into physical dis-
placement in millimeters via a scaling factor. To
develop measurement accuracy, subpixel registra-
tions must be incorporated into the template
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matching algorithm. In this study, based on the
OCM template matching algorithm and subpixel
bilinear interpolation, the software is developed to
accurately track structural displacements at user-
defined locations frame-by-frame (Figure 1). Also,
more details about OCM principle are in [19].
Then, to record structural displacements from the
video camera, the establishment of the relationship
between the pixel coordinate and the physical
coordinate is demanded. The scaling factor (e.g.,
with units of mm/ pixel) can be collected in two
ways: First, it is calculated from the known physical
dimension on the object surface and its analogous
image dimension in pixels; Second, it is calculated
by intrinsic parameters of the camera as well as
the extrinsic parameters between the camera and
the object structure. The first method scaling factor
is selected in this study.

After target registration, any texture on the
structural surface can be registered as a tracking
target, as long as it has pattern contrast compared
with the surrounding background, e.g., existing
surface features such as bolt/rivet connection, but
installing targets on structures and capturing
images from close distances have some limitations,
such as the need to install the camera in a fixed
place outside the monitored structure, and it is
almost impossible to take pictures from a close
distance in many structures such as bridges.
Therefore, it is necessary to use expensive high-
speed cameras to capture images with good
quality for image processing and extract structural
displacements. This issue can make the image
processing method uneconomical [16]. Therefore,
to overcome this limitation, this study suggests

Figure 1. Flowchart of vision sensor based on OCM.

installing bright targets on the structural elements and
recording the video with an economical camera
from a long distance to extract the structure's
displacements. These bright targets help provide
high-quality images with higher contrast for image
processing. For capturing images with higher con-
trast, it is more appropriate to use bright targets
with concentrated light, such as LEDs, which, if
taken at night, will reduce the image clarity and
contrast of the bright target and, as a result, the
quality of the captured images. It will be higher.
However, it should be noted that the proposed
method does not eliminate other limitations in
image processing methods, such as the camera
base vibration.

In this study, to observe and record a better
image by better quality, a target with a good shine
such as LED has selected. Then template matching
operated for displacement, the amount of time it
takes depends on the target searched within the
whole frame or part image of each video recorded
frame. To reduce the calculation time, the searching
area could be limited to a predefined region of
interest (ROI) near the template's Pattern.

3. Stochastic Subspace Identification (SSI)
Method

3.1. State-Space Model

The dynamic behavior of a structure is usually
represented in the time domain as:

( ) ( ) ( ) ( )+ + =U t U t U t F tM C K& &&                          (1)

where ( ), ( )U t  U tC &&&  and ( )U t  are the vectors
of acceleration, velocity, and displacement,
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respectively; M, C, and K denote the mass, damping,
and stiffness matrices, respectively and ( )F t  is the
force vector. The above second-order differential
equation can be converted to the first-order differen-
tial equation using state space representation:

( ) ( ) ( )= +t t tc cx A x B u&                                          (2)

where ( ) [ ( ), ( )]= Tt U t U tx &  is the state vector; Ac

and Bc are respectively the state matrix and input
matrix:

1 1 1
2 2

0 0
,− − −

   
= =   − −   

  n
c c

I
A B

M K M C M B               (3)

where In is the unit matrix and n is the number of
degrees of freedom of the structure.

The response of a dynamic structure is usually
quantified by accelerometers, velocimeters and dis-
placement meters, and therefore the observation
equation can be written as:

( ) ( ) ( ) ( )= + +y t U t U t U ta v dC C C& &&                             (4)

substituting the state vector, Equation (4) can be
rewritten as:

( ) ( ) ( )= +y t x t u tc cC D (5)

Equations (2) and (5) develop the state-space
presentation of the dynamic structure in a con-
tinuous-time form. In practice, the response data
are always recorded in a discrete form, so the
continuous-time model must be transformed to the
corresponding discrete format:

1+ = +
 = +

k k k

k k k

x x u
y x u

A B
C D                                             (6)

where ( )= ∆k k tx x  is a discrete time state vector;
( )= ∆ c exp A tA  is a discrete state matrix; B is a

discrete input matrix.
It should be emphasized that it is unavoidable for

the response signal to be contaminated with random
(noise) components. Commonly, such uncertainty
components are divided into process noise wk and
measurement noise vk. Thus, Equation (6) can be
expressed as the following discrete state space
model:

1+ = + +
 = + +

k k k

k k k

x x u
y x u

k

k

A B w
C D v                                    (7)

Assuming that the excitation acting on the
dynamic structure can be behaved as a white noise
process, the last two items on the right-hand side
of Equation (7) can be merged:

1+ = +
 = +

k k

k k

x x
y x

k

k

A w
C v                                                (8)

In Equation (8), the stochastic terms of both wk

and vk are assumed to be a zero-mean white noise
process with covariance matrices as

      = δ          
pqT

Q S
E

S R
k T T

p q
p

w
w v

v                              (9)

3.2. Identification of the System Matrices

The Hankel matrix is defined as:
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where the Hankel matrix 0|2 1−iY  consists of "2i"
block rows and "j" columns. It can be divided
into two parts: "the past" pY  and "the future" ,fY
both   of which consist of i block rows. In practice,
the Hankel matrix can be established directly based
on the response signal from the structure. The
so-called block Toeplitz matrix /

×∈ li li
l iT R  can be

divided:
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1
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where, Γ Δ,i i  are the extended observable matrix
and the inversely extended controllable matrix,
respectively.

Through SVD manipulation, the Toeplitz matrix
can be broken down as:

[ ]

( )( )

1 1
1| 1 2

2
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where U and V are orthogonal matrices, and T is a
non-singular matrix. One can use the unit matrix I
instead of T in practice.

Replacing T with I in Equation (13), and con-
trasting this equation with Equation (11)

1/2
1 1

1/2
1 1

Γ =

=Δ  

i U
T

i

S
S V                                                       (14)

According to Equations (13) and (14), 2/ 1+iT  can
be concluded:
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It is clear that 2/ 1+iT  can be calculated directly
based on the output records. Substituting Equation
(14) into the Equation (15), we have

1/2 1/2
1 1 2/ 1 1 1
− −

+= iA T VTS U  S                                       (16)

From Equation (12), the matrix C is a sub-matrix,
or the first l rows of ;iT  while the matrix G is the
last l columns of Δ .i  Therefore, both of the matrix's
A and C can be obtained.

4. Field Test: Tabiat Bridge

The vision-sensing techniques are further dem-
onstrated in the field test conducted on the Tabiat
Bridge. To verify the vision-based system identi-
fication method, wireless seismic sensors have been
tested separately. Tabiat Bridge is a famous two-
level pedestrian steel truss bridge with a 270 m

long span and 28 m height. The structural system
consisting of more than 6,000 truss elements and
joints, opened in 2013. Tabiat bridge is one of the
main attractions of Tehran located above a high-
way with heavy traffic in the city. Also, it has
access to lots of people every day as well as
pedestrians and athletes, and customers of restau-
rants and coffee shops located on the first level
of the bridge. Therefore, it is a good field structure
that experiences very good ambient vibration.

4.1. Seismic Sensor Data Acquisition

In this test, seismic sensors (Lennartz sensors)
were used along the bridge, and the results were
compared with the vision-based method to verify
vision-based method results. Measured data from
the sensor which has been installed at the mid-span
of the bridge were used as a common node to use
its results for obtaining mode shapes from different
field data recording. To conduct the ambient
vibration tests, four tri-axial seismic sensors,
LE-3D/20s from Lennartz Company, are utilized.
With these four sensors and selecting 1 common
node (node 1344 in Figure 2), 19 joints along the
bridge due to the ambient vibration were recorded.
Because each joint essentially acts as a multi-degree-
of-freedom (MDOF) system, the ambient seismic
data recorded by the LE-3D/20s would be adequate
for capturing the fundamental natural periods of
the system. The sensor has three velocity recording
channels in three orthogonal cartesian directions.
The sensor is connected to a data logger that
records the velocity data (Figure 3). This sensor
has three input channels with 24-bit ADC resolution.
The technical details of the instrumentation are
listed in Table (1).

Figure 2. Seismic Sensors location on the access way and
orientation from the bridge's 3D view.
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Figure 3. Seismic sensor along with the data logger and other accessories.

Table 1. Technical specification of sensor.
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4.2. Vision-Based Method Data Acquisition

To record data by vision-based method, the
target such as a red-light LED was installed on a
component, and data was recorded, so the bridge
responses are reflected by the measured rotations.
The economy video camera was located in the
location under the bridge at around 39 m away
from the target in mid span of the Tabiat Bridge
to capture and record vibrational responses.
Based on a wired sensor study, the first six main
frequencies of the Target Bridge are under 3 Hz.
The displacement sampling rate in this field ex-
periment was set to 3 Hz, which is sufficient for
this study as well as future analyses of higher-order
modes.

Sensors along the bridge near the joints on the
access way as shown in Figure (4). The LED point

Figure 4. Vision-based sensors location on the access way
and orientation from the bridge's 3D view.

was also contracted and stabilized on each member
as shown in Figure (5) and the ambient vibration of
the bridge was mainly because of passing traffic
through the adjacent highway as well as pedestrian

Figure 5. Vision-based Sensor setup from the bridge's 3D view.
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Table 2. LED technical specifications.

movement on the bridge. The air temperature was
around 27°C.

In following, in the vision-based method, the
LED was installed on an element of the structure of
the Tabiat Bridge. The LED target was obtained
by video camera tracking. The economy video
camera (Nikon, COOLPIX B700) with CMOS-
type sensor and 1280×720 pixels selected as a 240
FPS frame rate. The LED and camera technical
specifications have shown in Tables (2) and (3),
respectively.
4.3. Results of the Ambient Vibration Test

The ambient velocity of the Tabiat bridge joints
in three-orthogonal axes was recorded continuously
for 30 minutes, with a rate of 200 samples per
second. Data was recorded in two orthogonal

Table 3. Camera technical specifications.

lateral directions as well as vertical directions.
Parts of the reference sensor recorded data in the
three different directions are shown in Figure (6).
The velocity intensity reaches 0.5-1 mm/s in
directions.

Due to the ambient excitation, the recorded
data contains the main dynamic properties of the
bridge. Considering the expected frequency range
of the bridge (0.5-10 Hz) the noise and its elimina-
tion could be important. For this purpose, examining
the data and applying their frequency content before
and after the filter application has been studied.

As shown in Figure (7), the time history diagram
before and after the noise filtration has no specific
effect on the output results and their Fast Fourier
Transform (FFT) before and after the filter is
almost the same in the desired frequency range.
Figure (8) shows the displacement time history of
LED that is extracted from the vision-based method
in two different directions. Also, the Fast Fourier
Transform of extracted time histories is shown in
Figure (8).

4.3.1. Data Analyzed by Stochastic Subspace Iden-
tification (SSI)

In the previous section, the mathematical theory

Figure 6. Seismic Sensor Time history of data for the common node.
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Figure 7. Time history diagram of seismic sensor data in the reference node before the filter, after the filter and with Fourier
Transform.

Figure 8. Time history diagram of Vision-based data.
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of stochastic subspace identification was studied
briefly [13, 25]. This method needs less inputting
information and it can extract dynamic characteris-
tics for multiple modes together [26]. Also, this
method has some restrictions. For example, when
using a subspace recognition path to extract
dynamic characteristics, the system sequence of
the identification model must be selected. When

Figure 10. Data stability diagram of vsion base sensor.

Figure 9. Seismic sensors data stability diagram of seismic sensor.

there are large amounts of data, the SSI algorithm
needs more memory and calculation time [27].
Thus, the SSI method has been used to obtain the
natural frequencies of the bridge for both recorded
data from the seismic sensors and vision-based
sensors. Figures (9) and (10) shows SSI diagram for
the seismic sensors data and vision-based sensors,
respectively. The obtained results from different
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Figure 11. Natural frequencies extracted from seismic sensors
and vision-based method.

Table 4. Comparison of structure main frequencies.

methods are compared in Table (4) and Figure (11).
The results show that the proposed technique can
estimate five natural frequencies of the bridge with
very good accuracy without using any high-quality
and expensive sensors.

Figure (12a) shows the motion of the bolt on one
of the connections of the bridge in two orthogonal
directions and their Fast Fourier Transforms (FFT)
that are extracted from captured videos with an
economical camera. To observe the capability of a
shiny target. This test has been done under similar
conditions such as distance of the camera to the
structure, video recording condition, etc.

As shown in Figure (12b), SSI diagram of the
extracted bolt motions does not give any clear
frequencies for the structure while using shiny
target shows acceptable dynamic characteristics
results.

Figure 12. The data acquisition results do not extract the frequencies responses.
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5. Conclusion

In this paper, a new technique has been pro-
posed for vision-based system identification using
shiny targets. In this technique, a LED is attached
to one of the main elements of the structure that
experience significant vibrations due to the ambient
loading. Then, the motion of the LED target is
captured by an economy camera and converted
to displacement using template matching and
scaling factor techniques. A truss steel bridge is
used as a field study for which dynamic frequen-
cies are obtained using seismic sensors and
vision-based methods. The proposed system
identification method could detect the first five
frequencies of the bridge in good agreement with
those obtained from the seismic sensors data. The
present study results show that using shiny targets
helps to identify structural displacements more
clearly. Thus, dynamic characteristics of structure
could be extracted more accurately. In other
words, system identification through displacement
measurement using the proposed vision-based
method can provide more accurate gauge-free
measurements of the dynamic displacements for
various types of structures through simple installa-
tions and economy cameras.

Figure 12. Continue.
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