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ABSTRACT

Shahid Beheshti University

One of the fields in data-based structural health monitoring that has not been
widely considered is data classification step. Application of semi-supervised
methods in data classification is getting more attention nowadays. In this study,
an efficient semi-supervised support vector machine algorithm is used for classifying
between healthy and unhealthy stages. For this reason, a combined model-based
and data-based approach is taken to determine damage sensitive features. A hybrid
approach has been utilized to generate feature vectors. Using vibrational data
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System Identification are almost the same.

1. Introduction

Civil infrastructures are present in any
society, regardless of culture, religion, geographical
location and economic development. The safest
and most durable structures are those that are well
managed. Measurement and monitoring often play
a key role in management activities. Structural
health monitoring (SHM) is a process that aims
to provide accurate and instant information on
different conditions of structure, which leads to
detecting defined type of damages. This type of
data is valuable for client to make decisions about
service condition of such structure. Among many
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of structure, dynamic properties are obtained by stochastic subspace state-space
system identification methods. Modal strain energy used as damage sensitive
features (DSF). Different states of healthy and unhealthy conditions of structure
are used to evaluate the effectiveness of proposed algorithm. Also, Support Vector
Machines (SVM) algorithm is utilized to compare results. It can be seen that the
use of unlabeled data will enhance the effectiveness of classification methods
especially in small-number of labeled data. When labeled dataset are large
enough, results for both supervised and semi-supervised support vector machines

monitoring strategies studied so far, vibration-
based damage detection shows very efficient
results toward civil infrastructure applications.
There has been much recent work in this area;
in particular, Doebling et al. [1] and Sohn et al. [2]
presented detailed reviews of vibration-based
SHM. Because of random and systematic variability
in experimentally measured dynamic response
data, statistical approaches are necessary to
ensure that changes in a structure's measured
dynamic response are a result of damage and not
caused by operational and environmental variability.

: wwwjseeonline.com
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Although much of vibration-based SHM literature
focuses on deterministic methods for identifying
damage from changes in dynamic system response,
we will focus on approaches that follow a
statistical pattern recognition paradigm for
SHM [3]. This paradigm consists of four steps:

1. Operational evaluation,

2. Data acquisition, (3)

3. Feature extraction, and

4. Statistical classification of features.

The work presented herein focuses on steps (4)
of this paradigm.

Traditional damage detection algorithms de-
veloped in framework of pattern recognition.
Although these algorithms are successful in ac-
curately distinguishing faulty from healthy systems,
they can rarely detect the location and severity of
damage. In addition, in SHM applications in buildings
and bridges, there is no real measured data from
different stages of damage, so the pattern recogni-
tion approach is to use supervised learning method
(the word unsupervised indicates the absence of
measurement data on the damage stage in the
structure at the time of training, unlike the word
supervised that uses both healthy and damaged data
for the training stage). Other challenges of data-based
methods include selecting appropriate statistical
model for damage sensitive features, and appropri-
ate metric for calculating distance between newly
extracted features from basic statistical model,
hence proper criteria for distinguishing between
healthy and unhealthy conditions.

There are important issues with using super-
vised learning. As an example, one could find that
in training phase, there must be a dataset for each
type of damage. There are two sources for
providing such data, physical testing and math-
ematical modeling. Both of the mentioned sources
have many practical problems, including modeling
problems such as complexity of model, as well as
test problems such as being expensive for all
scenarios and being unusable. In contrast to
supervised approach, there is another approach
that does not require raw information from different
damage classes to classify data, called unsuper-
vised. Of course, this method is only capable of
the first stage of damage detection (existence of
damage) and in some cases the second stage
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(location of damage) from the Rytter's hierarchy [4]
of damage detection [5-7]. This technique is often
called Novelty Detection or Anomaly Detection [8].

Semi-Supervised approach is another method
that can be very effective in classification when
the number of labeled data is small. In the last few
years, Semi-Supervised learning has attracted a
lot of attention, and many approaches have been
developed in this field of data classification [9-11].
In semi-supervised learning, a classification
function is evaluated from a few labeled samples
together with a large collection of unlabeled data.
Different algorithms suggested to make use of
unlabeled data in accordance with labeled ones to
improve the classification process [9, 12]. Semi-
supervised learning is based on regulating the
target function with the marginal distribution.
There have been two common assumptions on
such distribution, the cluster assumption [13] and
the manifold assumption [14].

The cluster assumption says that if there is a
connection curve between two points through a
high density region, there are probably on the same
class label. Thus, the separation margin should be
in the lower density region of the space. Implement-
ing this theory results in developing Transductive
Support Vector Machines (TSVM) [15] and its
several applications, such as TSVM [16] or
Semi-Supervised Support Vector Machines (S3VM)
[17-18].

The manifold assumption states that the marginal
probability distribution underlying the data is
supported on or near a low-dimensional manifold,
and that the target function should change smoothly
along the tangent direction. Many graph based
methods have been proposed in this direction
[19-21].

In view of the above, it seems that large
unlabeled dataset gathered from structures in their
service states together with few labeled ones
could be a useful source for a machine to perform
an efficient classification in machine learning
paradigm of structural health monitoring. In this
regard, effectiveness of Semi-Supervised Support
Vector Machines for classifying datasets related to
different structural performance modes (healthy
and damaged) has been compared in this research
with supervised methods.
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2. Materials and Methods

2.1. Semi-Supervised Support Vector Machine
S3VM

This method is about the use of transduction
technique for learning from small training samples
instead of an inductive approach. In the inductive
settings, the learner tries to induce a decision
function which has a low error rate on the whole
distribution of examples for the particular learning
task. In many situations, one does not care about
the particular decision function, but rather classify a
given set of examples (a test set) with as few
errors as possible. This is the goal of transductive
inference. This method substantially improves the
excellent performance of SVMs. Especially for
very small training sets, this method reduces the
required amount of labeled training data down to a
twentieth for some tasks. This is the purpose of the
transductive inference.

The setting of Semi-Supervised Support Vector
Machine (S3VM) was introduced by Vapnik in [22]
and implemented by [23, 16]. For a learning task
P(X|y)=P(y|X)P(x), the learner L is given a
hypothesis space H of functions h: X — {-1.1} and
an independent and identically distributed random
variable sample S,_ .

train

()?].y,).(iz.yz).....(in.yn) (1

Each training example consists of a document

(i.i.d) of n training examples.

vector Xxe X and a binary label ye{-1.1}. In
contrast to the inductive setting, the learner is

also given an i.i.d. sample S, , of ktest examples.

test
XXy X, )

The transductive learner L aims to select a
function h;, =L (S
S.s: so that the expected number of erroneous

Sis:) from Husing S, and

train * train

predictions on test examples is minimized. In
linearly non-separable cases, the optimization
problem of S3VM is shown as follows:

1 - - .o
5 2+C§L(yi[w~xi+b])+

Y L(vi[w %] +b)) ®)
i=n+l

With L(t) = max(0;1-t).
Unfortunately, the last term makes this problem
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non-convex and difficult to solve [16, 23-28]. The
implementation of S3VM that is used in this paper
is to perform a standard gradient descent on
Equation (3). However, since the latter is not
differentiable, we replace it by Equation (4):

S
;ZW%H’:;;& @)

i=n+l

with L =exp(-3t?).
To enforce that all unlabeled data are not put in
the same class, an additional constraint is added,

l ~— . . 1 ©
;i;]W'Xier—;;)’i (5)

This is in analogy to treatment of the min-cut
problem in spectral clustering, which is usually
replaced by the normalized cut to enforce balanced
solutions [29].

Finally, note that unlike traditional SVM learning
algorithms, which solve the problem in the dual,
this approach directly solves the problem in the
primal. If we want to use a non-linear kernel, it is
possible to compute coordinates of each point in
the Kernel Principal Component Analysis (KPCA)
basis [30]. More directly, one can compute Cholesky
decomposition of Gram matrix, K =XX' and
minimize (2) with x; = (X, ,.....X

In [25], another way to enforce the cluster

i.n+m)'

assumption in SVM classification are proposed
called Low Density Separation (LDS) as a
graph-based algorithm. In many graph-based
semi-supervised algorithms, cluster assumption is
assigned to the algorithm by smoothening the
solution with respect to the graph, resulting in
small variation of output function between connected
nodes.

Let the graph G =(V,E) be determined from
data such that nodes are data points V ={x,}. If
sparsity is desired, edges are placed between
nodes that are nearest neighbors (NN), either
thresholding the degree (k-NN) or the distance
(e — NN). Many semi-supervised learning methods
operate on nearest neighbor graphs, [32-36].
Usually they do not require data points themselves,
but only their pairwise distances along edges. In
[25], it is assumed that edges (i, j) € E are weighted
by Euclidean distances d(i,j)=|lx; —x; |
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In such a case, pairwise similarities of two points
are determined by graphs, which leads to squeezing
distances in high density regions while leaving
them in low density regions. This idea has been
proposed before, e.g. in [37-38] and [39]. It has
been implemented and used in Isomap [40],
cluster kernels [16], and connectivity clustering [41].

One of the main conditions of cluster assump-
tion is that decision boundary should not cut clusters.
For similarity-based classifiers, this achieved by
applying low similarities to pairs of points in different
clusters. Parzen window density that estimates with
Gaussian kernel of width V E will use to determine
mentioned constraints, as follows:

. ' 1 n+m X'—X,-Z
p(X ): E Zexp[-%} (6)

If peV' is defined as a path on a graph G =
(V,E) with length of 1 :|p| and if (p,,pe.)€E
for I<k<|p
Let P;; denotes a set of all paths connecting x,

, this path connect nodes p, and Py

and x ;. The similarity of two points can be defined
by:

A1
max min —(X + X )
peP,; k<‘p‘ p(z Pk Pia

20 PeP; ; k<‘P‘

~ c,exp(—%(max mind (pk + Pra )D (7

=k(x;.x;)

P22

This k, called "connectivity kernel", is positive
definite and was suggested for clustering pre-
viously [41].

Kernel values do not depend on the length of
paths, which may lead to connection of otherwise
separated clusters by single outliers ("bridge"
points). To avoid this problem, max Equation (7) is
"softened" replacing it with

-1

p le (1 pd(py+Pi) -1
Ssmax 0 n +;(e ) (8)

Equation (7) is recovered by taking p — co.
The proposed method can be summarized as
follows:
1. Build nearest neighbor graph G from all (labeled
and unlabeled) data.
2. Compute the n x(n+m) distance matrix D° of
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minimal p -path distances according to:
. ot ’

Df; =— In|1+ min Z(ep (Pi+Pica) —l) from
p peP,'j i

all labeled points to all points.
3. Perform a non-linear transformation on DP to

Df;
get kernel K, K; ; =exp| ——

26

The linear case corresponds to c=o and

K:_%H"DPH"“", with pr being the pxp

centering matrix: H, =1,_; -1, /n
4. Train an SVM with K and predict.

Final LDS algorithm is summarized in [25]. A
MATLAB implementation of LDS can be obtained
at http://www.kyb.tuebingen.mpg.de/bs/people/

chapelle/lds/.

2.2. Evaluation of Damage Using Numerical
Experiment

In this section, a study on application of semi-
supervised algorithms presented in the previous
section is reviewed on a numerical example. A
numerical example description is provided next.
A simple model of a lumped mass bridge deck has
been used to illustrate various stages in the pro-
posed damage assessment, as well as to test its
performance. This model is based on numerical
experiment in [31].

This model consists of two interconnected
spring chains, each of which consists of flexural
springs and concentrated masses placed uniformly.
This simple model can be used to display simple
pedestrian bridges or a simple span of girder bridges:
where flexural springs represent different segments
of the girder and the lumped masses represent the
mass of deck. Due to the structure of the model,
its dynamic behavior includes global bending and
global torsional modes of the deck.

The specific model used in this research is
shown in Figure (1): which has 12 degrees of
freedom (DOF) with 12 lumped masses and 20
flexural springs. 12 vibration modes of this model
(in the baseline state) includes 6 flexural modes
(predominant) and 6 torsional modes (predominant).
The predominant word is used to describe the
state of the mode, because only if the structure is
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: | Baseline Model Parameters:

m; =125x10° kg Vie{l...12}
E[k;]=7.12x10° N /m Vie{l....20}

py, =0.01kgVie{l...20}

Rayleigh Damping : {; =&, =0.01

Figure 1. Bridge model and baseline model parameters.

completely different in terms of mass and stiffness
distribution, modes become purely flexural and tor-
sional, otherwise modes become flexural-torsional
where the flexural or torsional part is predominant.
Summary of modal frequency and dominance of
modes are presented in Table (1).

Table (2) presents 10 different damage states
considered in this study: states 1 to 5 represent the
healthy system, states 6 to 9 represent four different
damage states with different damage intensities
and in different locations. State 10 is a state where
a structural reinforcement is done in a specific part
of the girder, which leads to an increase in stiffness
in one of the springs.

Table 1. Different modes of bridge deck and corresponding
frequency.

Mode Number Type of Mode Frequency (Hz)
Mode 1 Bending Dominant 1.69
Mode 2 Bending Dominant 3.30
Mode 3 Bending Dominant 4.74
Mode 4 Torsion Dominant 5.63
Mode 5 Bending Dominant 5.94
Mode 6 Torsion Dominant 6.30
Mode 7 Bending Dominant 6.85
Mode 8 Torsion Dominant 7.16
Mode 9 Bending Dominant 7.41
Mode 10 Torsion Dominant 8.01

Mode 11 Torsion Dominant 8.70
Mode 12 Torsion Dominant 9.15

Table 2. Healthy and unhealthy states of structure.

State Condition Description A[f)fgcl::d
1 Undamaged Baseline Condition
2 Undamaged k; = 0.99E[k;] Vi € {1....7}
3  Undamaged k; = 1.01E[k;] Vi € {1....7}
4 Undamaged k; = 0.99E[k;] Vi € {8.....14}
5 Undamaged k; = 1.01E[k;] Vi € {8.....14}
6  Damaged k; = 0.70 E[k,] 1
7 Damaged ki6 = 0.80 E[k46] 2and 8
8 Damaged k3 = 0.80 E[k3] 2 and 3
9 Damaged k3 = 0.70 E[k3] 2 and 3
10 Retrofitted ks = 1.25 E[k3] 2and 3
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To use these data in the classification phase,
30 experiments were performed on each state. As
mentioned above, five healthy states are defined,
including the state 1 as baseline state, and states 2
and 3 as states in which ambient conditions in -y
side of deck change dynamic properties of structure
due to a decrease or increase in temperature.
Similarly, in states 4 and 5, the structure is affected
by ambient conditions in +y side: In each experiment,
parameters defining the model are randomly dis-
turbed. For each spring stiffness? k,, its stiffness
value in rth simulation is obtained from Equation (9),
as follows:

ki =E[k;]+U(-py-pi) E[k;] 9)

where E[k;] is mean value of spring stiffness in
that state and is determined in Table (2). Para-
meter U(I,.1.) is a uniform probability distribution
between (I,.1,). The value of p, is presented in
Table (2). While change in stiffness parameters
presented in Table (2) denotes a systematic change,
induced by temperature, damage, etc., and is
constant in all experiments in each state, random
turbulence indicates statistical model and fluc-
tuations of performance in each state, so they
have different values in each state in each of 30
different experiments.

The disturbed model in each experiment is
excited by a Gaussian white noise as input force.
The resulting acceleration response is corrupted by
adding Gaussian white noise sequences with an
average of 10% of the quadratic root mean, to
simulate measured noise. Instrument arrangement
for interpreting acceleration response of structure
is defined on the basis of complete instrumentation,
i.e. 12 sensors measure acceleration responses of
all concentrated masses.

To prepare the required dataset, a code was
developed in MATLAB software, which uses
SAP2000 software interface called SAP API to
analyze the model. SAP2000 software was used
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to obtain model acceleration response. Here's how
it works: In the written code, first using the SAP
API, a mathematical model is created in SAP2000
based on the arrangement defined in Figure (1)
and parameters presented in Table (2), by model-
ing springs, lumped masses and support conditions.
Next, stiffness values of each spring are randomly
disturbed based on the range specified in Table (2)
and initial mean stiffness value presented in each
state, and then are assigned to corresponding
modeled springs. Then, Gaussian white noise is
added to the model as input force in the center of
the deck. White noise is defined with a mean value
of zero and a Gaussian distribution for 120 seconds
with a time-step of 0.001 and its sample frequency
rate is 1/120000. The loaded model is analyzed
by linear time history analysis and results of
acceleration history of each lumped mass are
recorded. As mentioned before, to consider
measurement noise of sensors, acceleration
history of each lumped mass is again perturbed by
a Gaussian white noise with an RMS of 10% and
stored in a file. This code prepared in MATLAB
generates each state of the model in each ex-
periment in SAP2000 software and stores output
data.

Sets of acceleration response measured in
each experiment are used to identify dynamic
properties of the structure using Subspace State-
Space System Identification (4SID) method.
Since the introduction of stochastic subspace
identification (SSI) by Peeters and Roeck [42],
subspace methods have become popular system
identi?cation tools used by civil and mechanical
engineering communities. The SSI algorithm is
just one member of the general subspace state-
space system identification (4SID) family [43] and
is recognized as a significant achievement of
theoretical dynamics and control communities [44].
Since 4SID was introduced to the civil engineer-
ing community as a set of output-only system
identification methods, a rigorous mathematical
mapping of state-space model parameters to
physical parameters of the system has yet to be
undertaken. The lack of a mathematical mapping
has limited 4SID as a purely black-box data-driven
tool whose results are dif?cult to interpret by
engineers.

44

Methods associated with 4SID are generally
categorized into two groups: realization-based and
direct 4SID methods [43]. Realization-based
4SID methods and their origins in the seminal work
of Ho and Kalman [45] and offer a means of
extracting state-space models from the extended
observability matrix. At the core of the realization-
based 4SID methods is the need for a reliable
estimate of system impulse responses, often termed
Markov parameters (MPs); the extended observ-
ability matrix is estimated directly from MPs. In
contrast, direct 4SID methods, also referred to as
data-driven subspace identification in the civil
engineering community [46], strive to estimate a
state-space model directly from an arbitrary set of
input and output sequences (i.e., without requiring
the estimation of system impulse response func-
tions). Extensive research in the 1970s and 1980s
(e.g., stochastic realization [47]) led to the
establishment of numerous direct 4SID numerical
algorithms such as multivariable output-error
state-space (MOESP) [48] and numerical algorithms
for subspace state-space system identification
(N4SID) methods [49]. Generally, direct 4SID
methods are simply referred to as subspace
methods or subspace system identifications. A
more detailed description of N4SID algorithm
can be found from works of Van Overschee and
De Moor [49-50].

MATLAB software were used to apply Sub-
space State-Space System Identification method.
A convenience of using N4SID is the availability
of a MATLAB function (i.e., n4sid) for its ex-
ecution [51]. Stored data of the previous section
is used to identify dynamic model of system.
Modal parameters are then extracted from the
identified model. Modal parameter data are then
used in combination with spatial information of
sensors (concentrated masses) to obtain shape
modes of structure.

In this study, measured data in time domain are
first converted into frequency response data. This
Frequency Response Function (FRF) is then used
to identify the state-space model of the existing
bridge deck. In MATLAB, it is possible to use
time domain data to identify dynamic models, but
the use of FRF data compresses very large datasets
to smaller samples. This can also be used to set
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the model behavior estimate in relevant frequency

ranges.

The state-space model is set as follows:

- A 48-order continuous time model is estimated.

- The model includes a feedthrough term.
Because once we set our analysis to frequencies
less than 11 Hz, but the bandwidth of the deck
is more than this value.

- In this study, covariance parameters were not
calculated to speed up calculations.

FRF value varies widely along the frequency
range. A specific weighting is used to ensure that
low values are emphasized equally with high values.
Using the Normalized Root - Mean - Square - Error
NRMSE, the percentage of consistency between
data and the model can be observed.

Using the iterative nonlinear least-squares
refinement of the model, consistency between data
and the model can be improved. The stability of
modal parameters should be controlled by changing
the order of the model. The order 48 used in these
calculations has shown high stability in frequency
and damping. The stability diagram generated for
the baseline experiment is shown in Figure (2). In
the control theory, the model order is calculated
using residual error analysis on the predicted
model. In the civil engineering, frequency and
damping stabilization diagrams are used to cal-
culate the model order.

After preparing the model, modal parameters,
including natural frequencies (fn), damping coeffi-
cients corresponding to modes (dr) are extracted.
Mode shape after extraction from the model is

Stabilization Diagram

20+ : o Stable in Frequency v
18 x I + Stable in Frequency and Damping
o + Not Stable in Frequency
16 H+ + Averaged Response Function
+ + ++ + + o+ 101
14 + + +; +'(4q
5 + + + +
S 12 + + J+ 2
e} Tt f 2
3 10 4l o Tl 10° g
3 ++ o+ 4 1 ©
o ) 3
s 8 ++ ++ + + =
++ C + j"«‘
6o + o + '\,44
/ e +0 + e 01
4 ‘0 / ++ + +
wf 9 :
ot lf; ) + .
(e o
0 102

2 3 4 5 6 7 8 9 10
Frequency (HZ)

Figure 2. Frequency stabilization diagram for the experiment of
state 1.
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used to calculate the modal strain energy as a
feature vector used in the classification section. By
considering the mathematical model of the deck, it
is possible to calculate the relative stored energy
in each mode and through calculating relative
deformations of each spring (using E = —k(Ax)?).

After calculating modal strain energy for each
mode in each experiment, a dataset with dimensions
of 10x30 (which contains 30 of 12x1 feature vector)
is yielded for all states defined in Table (2). This
dataset will be used to compare semi-supervised
method presented in previous chapter.

The information about applied dataset is
presented in Table (3).

Table 3. Information on dataset.

Points Labeled
300 60

Dataset  Classes Dimensions

SHM1 6 12

2.3. Experiments

As mentioned earlier, in this study, a comparison
between a semi-supervised algorithm and support
vector machines are presented. For SVM, we
use the Spider machine learning package for
MATLAB [13].

For each algorithm introduced before, the
classification procedure was performed for five
conditions regarding the number of labeled data.
The classification was carried out for 2-labeled
data for each class, then this was repeated for
4-labled, 6-labeled, 10-labeled and 15-labeled data
representing 6.7%, 13.3%, 20%, 33.3% and 50%
of data being labeled in each class. Therefore,
labeled data selected for training sets are chosen
by 2 to 15-fold cross-validation process.

For each algorithm, values for a number of
parameters have to be fixed. In practical appli-
cations, this is usually done by cross-validation
(CV). While this is no major problem for two
parameters (like SVMs have), it is impractical for
five parameters of the LDS algorithm. To reduce
this number, we fix three of them in advance, as
shown in Table (4).

Table 4. Free and fixed parameters.

Algorithm  Free Parameters Fixed Parameters
SVM c,C

LDS G, p

o=w,k=n+m,56=0.1
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We are interested in the best possible per-
formance, and simply select parameter values
minimizing the test error. As presented in Table (5),
we select combinations of values on a finite grid

as follows:
Table 5. Parameters.

Parameter Value

Width, o 273,272,271 20 21 22 23
Exponent, p 0,29 2',22 23 24 40

Penalty, C 107, 10° 10, 10?

Degree, k 10, 100, all
Regularize, A 42 41 40 41 42

3. Results

One of the issues to be considered in this
section is that SVM-based algorithms have the
ability to separate between two data classes, i.e.
they are in the form of a dichotomy, but data
separation should be performed between six data
classes in this study. The usual way to use SVMs
in multi-class problems is to compare one class
with all other data classes, also called One-vs-rest.
Another way is to use SVMs to compare two
classes of data, in which all classes must be
compared in pairs. In this research, the second
method has been used, which leads us to confusion
matrixes.

In the field of machine learning and specifically
the problem of statistical classification, a confusion
matrix, also known as an error matrix [10] is a
specific Table layout that allows visualization of
the performance of an algorithm, typically a
supervised learning one (in unsupervised learning
it is usually called a matching matrix). Each row
of the matrix represents instances in an actual
class while each column represents instances in a
predicted class, or vice versa - both variants are
found in literature [11]. The name stems from the
fact that it makes it easy to see whether the system

is confusing two classes (i.e. commonly mislabeling
one as another).

As described in previous sections, the dataset
used in this section was prepared and used based
on the classification algorithms introduced for the
various states defined in Table (1). To compare
algorithms, three acceptable criteria in the field of
classification have been used. These criteria are
Accuracy, Precision and Recall, which are suitable
for displaying type I and II errors of classification
algorithms. Statistical hypothesis testing defines
two types of errors: Type I error, also called false
positive, is equal to the rejection of positive samples,
a simple example of this error could be a doctor
diagnosing a disease in a patient while disease
does not exist in the patient. In contrast to type I
error, type II error is defined, which is also called
false negative, indicating that negative samples are
not rejected, such as when a doctor does not
diagnose a disease that exists in a patient. Therefore,
the Precision criterion is equal to the ratio of the
number of positive samples to the number of positive
samples provided by the algorithm. The high value of
this criterion indicates a slight error rate of the first
type. Recall criterion is the ratio of the number of
correct positive samples provided by the algorithm
to the actual number of positive samples in the total
data in the dataset.

As stated before, data have classified in 10
conditional states. First five states are representing
healthy states. Thus, in this study results are
arranged in a way that states 1 to 5 are combined
to a unique healthy state. Consequently, results will
be divided between six dissimilar states. Confusion
matrixes are presented in Tables (6) and (7).

Corresponding values of accuracy, precision
and recall for confusion matrices shown above
are displayed in Table (8). It should be noted that
these tables are just for 6-L test procedure.

Again, the value of accuracy for each algorithm

Table 6. Confusion matrix for testing data - LDS algorithm - 6-Labeled data.

Predicted New-Class 1 Healthy State  Class 6 Class_7 Class 8 Class 9 Class_10
True New-Class 1 105 3 3 0 0 9
True Class 6 4 17 1 0 0 2
True Class 7 1 4 17 0 0 2
True Class 8 0 0 0 18 5 1
True Class 9 0 1 0 6 17 0
True Class 10 0 0 0 0 0 24
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are calculated for each test (regarding the number shown in Figure (3). In Figure (4) and Figure (5),
of labeled data those tests are called 2L, 4L, 6L, the mean value for Recall and Precision for
10L and 15L for test with 2, 4, 6, 10 and 15 labeled each state are again displayed for each classifi-
data in the training set, respectively), and are cation test, respectively.

Table 7. Confusion matrix for testing data - SVM algorithm - 6-Labeled data.

Predicted New-Class 1 Healthy State  Class 6 Class_7 Class 8 Class 9 Class_10
True New-Class 1 119 0 0 0 1 0
True Class 6 2 20 0 0 2 0
True Class 7 4 1 17 0 2 0
True Class 8 5 0 15 4 0
True Class 9 2 0 4 18 0
True Class 10 1 0 0 0 0 23

Table 8. Accuracy, Precision and Recall for Confusion Matrices presented before.

Predicted class New-Class 1 Class 6 Class_ 7 Class 8 Class 9 Class_10

Precision 0.95 0.68 0.81 0.75 0.77 0.63
LDS 6L Accuracy 0.83
Recall 0.88 0.71 0.71 0.75 0.71 1.00
SVM 6L Accuracy 0.88 Precision 0.89 0.95 1.00 0.79 0.67 1.00
Recall 0.99 0.83 0.71 0.63 0.75 0.96
1
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Figure 3. Value of Accuracy for each algorithm in each test.
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Figure 4. Values of Recall in each test.
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Figure 5. Values of Precision in each test.

4. Discussion

We now investigate details of classification
problem by LDS algorithm. Since overall results of
the accuracy of these methods are not comparable
to verified results of mentioned algorithms, we
decided to consider five states of healthy structure
being a unique healthy state. For this matter, con-
fusion matrices should be corrected by merging
results of classes 1 to 5 in on new class. In order to
compare effects of the number of labeled data,
classification is performed for different levels of
labeled data that is available in the training set.
The focus of discussion will be on performance of
mentioned algorithms considering different labeled
data number.

In Tables (6) and (7), the confusion matrix
calculated for the test with 6-labeled test are dis-
played for LDS and SVM algorithms, respectively.
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These tables were determined as a basic formats
of results of this study, and other results were
calculated from these matrices. In Table (8),
corresponding values of three criteria were dis-
played. Those criteria were visualized for whole
data. The discussion will be developed in three
parts for accuracy, recall and precision criteria.
The overall accuracy for SVM is approximately
good, but it even touches very small values in 2-L
and 4-L tests. As the number of labeled data
increases, accuracy also increases, but for 15-L
test (50% labeled) accuracy descends a little.
LDS algorithm shows higher overall accuracy in
2-L test, but in other tests it lies below SVM (in
6-L and higher). In 2-L, accuracy of LDS is near
85%, that clearly shows the better functionality of
semi-supervised algorithms in lack of labeled data.
In 4-L, SVM reaches to the near of other methods,
and in 6-L a higher, the overall accuracy of SVM
get higher than LDS. In 4-L, SVM and LDS are
showing approximately similar values, with the
accuracy almost 78% and 85%, respectively,
which is almost comparable by results of [25] for
dataset USPST and COIL20.

In Figure (4), recall metric is displayed for
mentioned algorithms in three different plots. Each
plot contains five different diagrams of recall values
for each state for five specific training conditions,
and also mean value of all five mentioned conditions.
For all states, results will be discussed in two parts,
first the mean value of recall will be studied and
then recall for each state will be compared to each
other with regard to number of labeled data. The
pattern of mean recall values for six new classes are
almost similar in all three techniques, noting that
mean-value for new class 1 is around 1, declaring a
very high accuracy in this healthy state (which is the
combination of first five health state). This result
implies that algorithms are very delicate to healthy
state, maybe because of well-managed feature
vector. Considering the mean value of recall, two
semi-supervised techniques are showing better
results than SVM. Specifically speaking about the
pattern of results, it can be seen that results for
states 6, 9 and 10 are a bit higher in SVM. Best
results for the mean value for LDS method is
attained from state 10 (retrofitted model), with
value about 90%. In SVM, the highest recall

JSEE / Wl. 23, No. 3, 2021



Semi-Supervised Support Vector Machines Algorithms as Classification Methods in Structural Health Monitoring

value for mean value is around 80%, but it is for
classes 10 and 9, respectively. For class 1 (healthy
state), SVM result in higher mean recall value
than LDS. For class 6 (in which the near-support
element's stiffness is reduced to 70% of its
initial value), LDS results are the highest
(approximately 80%), and SVM is the lowest
(approximately 70%), but the difference is not
considerable. Each algorithm does have higher
mean recall value for state 6 than 7, but that
pattern for state 8 and 9 is not similar for each
technique. For SVM, recall value for state 8 is
less than 9, which is logical since state 9 presents
a more severe damage than state 8 in a similar
position. In LDS, mean recall value for states 8
and 9 are relatively close, in a way that for state
8 is a little higher.

Now, state-by-state comparison of recall values
for different number of labeled data is presented.
Almost every test shows a great recall value for
state 1 (healthy state). In 2-L test, semi-supervised
algorithms show much better results than SVM,
implying that the efficiency of semi-supervised
algorithms in low labeled tests are appropriate.
For example, recall values for 2-L test in state 6
for LDS and SVM are respectively 70%, 70%
and 30%. However, between LDS and SVM, the
former generates better results in 2-L test. This
outcome is followed by 4-L test, except that SVM
shows a great result in state 6 but in other states
its results are similar to 2-L tests. Again, in 4-L
test, LDS shows better results than SVM. For
6-L and others, recall value is in a similar range
of [70%, 90%], that indicates with more labeled
data, the efficiency of semi-supervised and
supervised algorithms is similar. Generally speaking,
almost in every test, recall value in state 9 is
higher than state 8 for SVM, which is rational
because the reduction in stiffness is greater in
state 9, but in LDS its reverse, which is a negative
point. SVM has low recall value for states 6-9 in
2-L (about 20% to 30%), but for state 10 its
outcome is desirable (about 70%), and it maintains
the pattern of mean-value results. In class 8,
SVM does not show good recall value, and
LDS's outcome for class 9 does not fit the pattern
of mean-value. From these diagrams it can be
mentioned that 6-L is a minimum number of labeled
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data SVM needs to extract acceptable results,
but for LDS 2-L is sufficient.

The precision criteria for each algorithm,
which are calculated from confusion matrices
and are presented in Figure (5), are to be studied
next. Then again, we consider mean-value for
comparing the pattern of results and review each
labeled test condition to rate performance of
methods. The pattern of mean value is approxi-
mately similar for SVM, but it is different for
LDS. The main difference is state 9 in LDS has
greater precision than state 8, but in SVM it is
reversed. This criterion has a greater mean value
in state 1 for LDS than others, but in state 6 and
7 LDS gets lower values than other two methods.
State 10 has a very good mean precision value in
SVM, but it is not proper in LDS. The pattern for
SVM methods is somehow similar, being high for
class 6 and 10, class 7 is higher than 8 and 9, but
in LDS the pattern is different and has higher
value in state 9 and lower in state 10. The
precision mean-value for class 9 is smaller than
class 8 for SVM, and it is reversed in LDS. Back
to confusion matrices, this can be explained by
considering the greater number of predicted data
for class 9, that it actually belongs to class 8. This
brings the idea that LDS method is sensitive enough
to small changes in material properties and also for
SVM maybe another feature vector can be used to
overcome these issues. It also shows the greater
sensitivity for LDS in damage locations not close to
supports. For class 7 to 9, the results of SVM are
better match to actual results and are better than
LDS. Now studying the class by class for various
labeling conditions, for 2-L and 4-L tests, all
techniques are showing great precision in class 6.
The value of this metric in class 7 for 2-L for SVM
is a better than LDS (being about 1 to 90% and
80%, respectively), but in class 8 and 9 the LDS
has the highest value.

5. Conclusion

In this paper, we try to investigate the efficiency
of the semi-supervised algorithm to classify
between the healthy and damaged states of
structures. In the pattern recognition paradigm,
the extraction of the feature vectors is executed
by determination of the dynamic properties of the
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structure in a model-based approach utilizing
subspace state-space system identification pro-
cedure, while the classification process is
accomplished by the LDS Algorithms semi-
supervised techniques. To compare the prac-
ticality of the classification algorithm, we use a
well-known supervised algorithm (SVM). The
LDS show suitable results for low-labeled-data
tests, but as the number of labeled data gets
higher, the efficiency of the SVM reaches the
other algorithm.
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