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In this paper an approach is presented to predict the concentration and the trend   of
aftershocks of May 12 2008 Chengdu, Sichuan, China earthquake. The method
is based on inputting first aftershocks to Kohonen artificial neural network.
Artificial neural networks, which are inspired from human brain, consist of several
artificial neurons which are connected with some weight vectors to each other.
Artificial neural networks are able to classify a large volume of input data (i.e.
earthquake catalogue) simultaneously and in parallel, and can recognize seismic
patterns very well. Kohonen neural networks consist of several neurons that affect
mutually on each other to display important statistical characteristics of the input
space (i.e. first aftershocks). Combination of associative and competitive learning
rules results in formation of Kohonen's self-organizing feature map (SOFM) algo-
rithm. SOFM algorithm has converged; the feature map computed by the SOFM
algorithm indicates the concentration and the trend of aftershocks precisely. Kohonen
artificial neural networks have become powerful intelligent tools in recent years,
used widely in pattern recognition and data clustering.
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1. Introduction

Earthquake aftershocks are most common im-
mediately after the main shock. In the most popular
approach, aftershocks are collected by counting all
events within a predetermined space - time window
following a main event [1].

The average number of occurrences of after-
shocks decreases rapidly as time passes, which
depends on the geological conditions and the magni-
tude of main shock. Earthquakes of all magnitudes
have aftershocks which decay according to the
Omori law [2-3],
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Where )(tv  is the rate of the occurrence of
aftershocks and k, c are constant in time, but depend
on the magnitude of the earthquake. Omori law
persists up to a time 

cutoff
t  that also depends on

magnitude of the earthquake. The aftershocks
distribution shows the rupture of the main shock,
which is an important issue for estimating the risk
of future disastrous earthquakes.

Pattern recognition of aftershocks distribution
and aftershocks clustering is an important and com-
plicated issue in seismology. It is difficult because of
ununiform structures in the interested region and
stochastic nature of seismic signals.

Recent developments of neural classifiers indi-
cate that they are useful in solving many difficult
problems in seismology such as discrimination
analysis [4], seismic pattern classification [5],
seismic phase identification [6], and earthquake
prediction  [7].

In the present paper by application of Kohonen's
self-organizing feature map (SOFM) algorithm, the
possible prediction of the location of aftershocks
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Figure 1. Map showing the epicenter (star) and focal mechanism of the May 12, 2008 Chengdu, Sichuan, China earthquake. The
arrow shows the northerly motion of India, resulting easterly motion of Tibet plateau.

distribution of May 12, 2008 Chengdu, Sichuan,
China earthquake (30.99N, 103.36E, Mw =  7.9,
06:28:00 UTC) will be described, see Figure (1).
The Kohonen's self-organizing feature map (SOFM)
algorithm has been tested on the 1997 Birjand-
Ghaen, Iran and 1999 Izmit, Turkey earthquakes
[8].

2. Seismotectonic Setting

The high seismicity of central and eastern Asia
results from the northward collisional convergence
(at about 40mm/yr) of the India tectonic plate against
the Eurasian plate, see Figure (1). This active colli-
sion, which began about 50 million years ago, is the
cause of frequent large earthquakes between India
and Tibet and throughout Tibet and the surrounding
areas [9-10]. The convergence has uplifted the
Asian highlands and the Tibetan plateau to an aver-
age elevation of over 4876.8 meters (16,000 feet),
which is the highest and largest plateau on Earth
with hundreds of kilometers of displacement of
crustal blocks to the east and southeast in the direc-
tion of China [11].

As India kept on moving northward and intruding
into Asia by as much as 1,200kms, the regions north
of the Himalayas moved laterally to the east and
southeast along large strike slip faults such as the
Altyn Tagh, pushing into central China [12], see
Figure (1).

3. Seismicity of the Sichuan Province

The present seismicity of the Sichuan Province
is caused by the slower-moving lateral crustal
displacements which converge from the margins
of the high Tibetan plateau towards the Sichuan
basin and southeastern China. This deformation
from the plateau results in additional extrusion of
crustal materials which are pushed under the
weaker sedimentary layers of the Sichuan basin and
of the entire southeastern region of China.

These crustal displacements along this seismic
belt are responsible for the large destructive earth-
quakes in the more densely populated areas of
southwestern China. Thus, Sichuan is among the
most seismically active regions, where frequent
strong (M ≥  6.5) earthquakes can occur..

Tectonic stresses from the strong convergences
have resulted in the formation of other major faults
in Sichuan province such as the Longmen Shan
fault zone, where the May 12, 2008 earthquake
occurred. Several destructive earthquakes have
occurred in the past and in sequence along the
Longmen Shan fault zone.

4. Artificial Neural Networks

Artificial neural network models have been
studied for many years in the hope of achieving
human-like performance in the fields of speech and
image recognition [13].
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Artificial neural networks, which are inspired
from human brain, consist of several artificial neu-
rons which are connected with some weight vectors
to each other. Artificial neural networks are able to
classify a large volume of input data (i.e. earthquake
catalogue) simultaneously and in parallel, and can
recognize seismic patterns very well. Artificial
neural networks have two useful properties (i.e.
abbreviation and generalization) for learning earth-
quake catalogues.

A neuron is an information-processing unit that
is fundamental to the operation of a neural network.
The block diagram of Figure (2) shows the model
of a neuron, which forms the basis for designing
artificial neural networks. Here three basic elements
of the neural model are identified [14]:
a) A set of synapses or connecting links, ),( njw  each

of which is characterized by a weight or strength
of its own. Specifically, a vector nx  at the input of
synapse n connected to neuron j is multiplied by
the synaptic weight .njw  The first subscript
refers to the input end of the synapse and the
second subscript refers to the neuron in question
to which the weight refers.

b) An adder (Σ) for summing the input vectors,
weighted by the respective synapses of the
neuron, the operations described here constitute
a linear combiner.

c) An activation function (ϕ) for limiting the magni-
tude of the output of a neuron.
In mathematical terms, we may describe a neu-

ron by writing the following:

Input Vector: )...,,,( 21 nx  x x  x  =

Weight Vector: )...,,,( 21         njjj wwww =                       (2)

Net Input: nnjj wxwxwxnet          +++= ...2211

Output Vector (activation): )( jjj neto   θ+ϕ=

Figure 2. The block diagram of the mathematical model of
an artificial neuron.

4.1. Properties of Neural Networks

The use of neural networks offers the following
useful properties and capabilities.
1) Generalization: refers to the neural network

producing reasonable outputs for inputs not
encountered during training (learning).

2) Learning: Learning is a process by which the
free parameters of a neural network are adapted
through a process of stimulation by the environ-
ment in which the network is embedded. This
definition of the learning process implies the
following sequence of events:
a) The neural network is stimulated by an

environment.
b) The neural network undergoes changes in its

free parameters as a result of this stimulation.
c) The neural network responds in a new way to

the environment because of the changes that
have occurred in its internal structure.

The procedure used to perform the learning
process is called a learning algorithm, the function
of which is to modify the synaptic weights of the
network in an orderly fashion to attain a desired
design.

4.2. Types of Learning

The type of learning is determined by the manner
in which the parameter changes take place [14].
v Learning with a Teacher: In conceptual terms,

we may think of the teacher as having the knowl-
edge of the environment, with that knowledge
being represented by a set of input -output
examples. The environment is, however, unknown
to the neural network of interest. Suppose now
that the teacher and the neural network are both
exposed to a training vector drawn from the
environment. By virtue of built-in knowledge, the
teacher is able to provide the neural network with
a desired response for that training vector. Indeed,
the desired response represents the optimum
action to be performed by the neural network.
The network parameters are adjusted under the
combined influence of the training vector and the
error signal. The error signal is defined as the
difference between the desired response and the
actual response of the network. This adjustment
is carried out iteratively in step by step fashion
with the aim of eventually making the neural
network emulate the teacher.
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v Learning without a Teacher: In the paradigm
known as learning without a teacher, as the name
implies, there is no teacher to oversee the learn-
ing process. That is to say, there are no labeled
examples of the function to be learned by the
network. In unsupervised or self-organized
learning, once the network has become tuned to
the statistical regularities of the input data, it
develops the ability to form internal representa-
tions for encoding features of the input and
thereby to create new classes automatically. To
perform an unsupervised learning we may use a
competitive learning rule. For example, a neural
network that consists of two layers - an input layer
and a competitive layer. The input layer receives
the variable data. The competitive layer consists
of neurons that compete with each other (in
accordance with a learning rule) for the opportu-
nity to respond to features contained in the input
data. In its simplest form, the network operates in
accordance with a winner-takes-all strategy. In
such a strategy the neuron with the greatest
total input wins the competition and turns on, all
the other neurons then switch off.

5. Kohonen Artificial Neural Network

Combination of associative and competitive
learning rules results in formation of self-organizing
artificial neural networks. Self-organizing feature
map (SOFM) neural network consists of several
neurons that are placed at the nodes of a lattice that
is usually one- or two-dimensional. These neurons
effect mutually on each other to satisfy the principal
goal of the self-organizing feature map which is to
transform input continuous space into a one- or two-
dimensional discrete map. Once SOFM algorithm
has converged, the feature map computed by the
SOFM algorithm displays important statistical
characteristics of the input space.

The theory of self-organizing Feature Maps
(SOFM) is fairly well understood and a number of
applications of SOFM have also been developed
[15-16]. In the neural network community, the
term self-organizing (unsupervised-learning process)
refers to the ability of some networks to learn
without being given the correct answer for an input
pattern. The SOFM algorithm is an unsupervised-
learning process, since there is no desired output
given during learning. The SOFM defines a mapping

from the input data space onto an output layer. When
the algorithm has converged, prototype vectors
corresponding to nearby points on the feature map
have nearby locations in input space.

Self-organizing Feature Maps are competitive
neural networks in which neurons are organized in a
2-dimensional lattice (grid) representing the feature
space and its algorithm creates a vector quantizer by
adjusting weights from common input nodes to m
output nodes arranged in a two dimensional grid as
shown in Figure (3).

Figure 3. Self-organizing feature maps are competitive
neural networks in which neurons are organized
in a 2-dimensional lattice (Kohonen Layer). 'X ' is
input vector,  'W ' is weight vector of neurons.

Output nodes are extensively interconnected
with many local connections. The spatial location
of an output neuron in the topologic map corresponds
to a particular domain or feature of the input data.
In a self-organizing map, the neurons are placed at
the nodes of a lattice that is usually one-or two-
dimensional. Higher-dimensional maps are also
possible but not as common. The neurons become
selectivity tuned to various input patterns (stimuli) or
classes of input patterns in the course of a competi-
tive learning process. The locations of the neurons
so tuned (i.e., the winning neurons) become ordered
with respect to each other in such a way that a
meaningful coordinate system for different  input
features is created over the lattice.

A self-organizing map is therefore characterized
by the formation of a topologic map of the input
patterns in which the spatial locations (i.e., coordi-
nates) of the neurons in the lattice are indicative of
intrinsic statistical features contained in the input
patterns, hence the name self-organizing map. The
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principal goal of the self- organizing map (SOM) is
to transform an incoming vector pattern of arbitrary
dimension into a one- or two-dimensional discrete
map and to perform this transformation adaptively
in a topologically ordered fashion.

5.1. Algorithm of Kohonen Artificial Neural Net-
work

The algorithm responsible for the formation of
the self-organizing map proceeds first by initializing
the synaptic weights in the network [14]. This can
be done by assigning them small values picked from
a random number generator. In doing so, no prior
order is imposed on the feature map. Once the
network has been properly initialized, there are
three essential processes involved in the formation
of the self-organizing map, as summarized below:
a) Competition: For each input pattern, the neu-

rons in the network compute their respective
values of a discriminant function. The discrimi-
nant function provides the basis for competition
among the neurons. The particular neuron with
the largest value of discriminant function is
declared winner of the competition. In simplest
form of competition, the network operates in
accordance with a winner- takes- all strategy. In
such a strategy the neuron with the largest total
input wins the competition and turns on. All the
other neurons then will switch off.

b) Cooperation: The winning neuron determines
the spatial location of a topological neighborhood
of excited neurons, thereby providing the basis
for cooperation among such neighboring neurons.
Topological neighborhood function is symmetric
about winning neuron and attains its maximum
value at the winning neuron. The amplitude of the
neighborhood function decreases monotonically
with increasing lateral distance, see Figure (4).

c) Synaptic Adaptation: This last mechanism
enables the exited neurons to increase their
individual values of the discriminant function in
relation to the input pattern through suitable
adjustments applied to their synaptic weights. The
adjustments made are such that the response of
the winning neuron to the subsequent application
of a similar input pattern is enhanced.
The algorithm is summarized as follows [14]:

1) Initialization: Choose random values for the

Figure 4. Gaussian topological neighborhood function (hj,i). The
winning neuron determines the center location of
neighborhood function. Topological neighborhood
function is symmetric about winning neuron and
attains its maximum value at the winning neuron
(dj,i=0). The amplitude of the neighborhood function
decreases monotonically with increasing lateral
distance (dj,i). The parameter σ is the "effective width"

of the topological neighborhood and measures the
degree to which excited neurons in the vicinity of
the winning neuron participate in the learning
process.

initial weight vectors wj(0). The only restriction
here is that the wj(0) be different for j =1, 2,…,
l, where l is the number of neurons in the lattice.
It may be desirable to keep the magnitude of the
weights small.

2) Sampling: Draw a sample x from the input space
with a certain probability, the vector x represents
the activation pattern that is applied to the lattice.

3) Similarity Matching: Find the best-matching
(winning) neuron i(x) at time step n by using
the minimum- distance Euclidean criterion.

lj      wxnmirgaxi                        j
j

 ..., 2, 1,,)( =−=                (3)

4) Updating: Adjust the synaptic weight vectors of
all neurons by using the update formula, see Eq.
(4). Where η(n) is the learning-rate parameter,
and hj,i(x)(n) is the neighborhood function centered
around the winning neuron i(x), both η(n) and
hj,i(x)(n) are varied dynamically during learning
for best results.

))(()()()()1( )(, nwxnhnnwnw                            jxijjj  
−η+=+        (4)

5) Continuation: Continue with step 2 until no noti-
ceable changes in the feature map are observed.
Once the SOM algorithm has converged, the

feature map computed by the algorithm displays
important statistical characteristics of the input
space.
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5.2. Feature Map of Kohonen Artificial Neural
Network

A nonlinear transformation called a feature map,
is presented here which maps the input space onto
the output space. The feature map has some impor-
tant properties [14].
a) Approximation of the Input Space: The

feature map, represented by the set of synaptic
weight vectors {wi} in the output space, provides
a good approximation to the input space. The
feature map computed by the SOM algorithm
stores a large set of input vectors by defining a
smaller set of prototypes {wj}, in order to provide
a good approximation to the original input space.

b) Topological Ordering: The feature map com-
puted by the SOM algorithm is topologically
ordered in the sense that the spatial location of
a neuron in the lattice corresponds to a particular
domain or feature of input patterns. The topologi-
cal ordering property is a direct consequence of
the update formula, Eq. (4), that forces the
synaptic weight vector wi of the winning neuron
to move toward the input vector x.

c) Density Matching: Regions in the input space
from which sample vectors x are drawn with a
high probability of occurrence, are mapped onto

Figure 5. Epicenter map of the main shock and aftershocks of the May 12, 2008 Chengdu, Sichuan, China earthquake, see
Table (1).

larger domains of the output space, and therefore
with better resolution than regions in input space
from which sample vectors x are drawn with a
low probability of occurrence.

d) Feature Selection: Given data from an input
space with a nonlinear distribution, the self-orga-
nizing map is able to select a set of best features
for approximating the underlying distribution.

6. Methodology

According to Table (1), Figure (5) shows the
epicenter map of aftershocks of the May 12, 2008
Sichuan earthquake. To predict aftershocks distri-
bution of this earthquake, a two dimensional (9*9)
Kohonen neural network was used (MATLAB 6.5
Software). The total number of weights in the neural
network is 81.

The input vectors of Kohonen neural network
are latitude and longitude of aftershocks which occur
during two days after the main shock, see Table (1).
After enough input vectors have been presented,
weights will specify clusters or vector centers that
sample the input space such as probability density
function of the input vectors. In addition, the weights
are organized such that topologically close nodes
are sensitive to inputs which are physically similar.



JSEE / Fall 2009, Vol. 11, No. 3 117

Prediction of Aftershocks Distribution Using Artificial Neural Networks and Its Application on the May 12, 2008 ...

Table 1.  Aftershocks data of May 12,  2008 Chengdu, Sichuan, China earthquake (www.emsc-csem.org).

Region Mag. (mb) Lon. (E) Lat. (N) Time (UTC) Date 
Eastern Sichuan, China 5.8 103.77 31.32 06:43:13,7 2008/05/12  
Eastern Sichuan, China 5.6 103.86 31.17 06:54:18,4 2008/05/12  
Eastern Sichuan, China 5.5 103.64 31.27 07:34:42,2 2008/05/12  
Eastern Sichuan, China 4.7 104.46 31.86 08:08:24,8 2008/05/12  
Eastern Sichuan, China 5.1 103.53 31.25 08:11:03,3 2008/05/12  
Eastern Sichuan, China 5.1 104.03 31.57 08:21:40,4 2008/05/12  
Eastern Sichuan, China 4.9 104.00 31.40 08:26:12,2 2008/05/12  
Sichuan/Gansu Border REG, China 5.0 105.02 32.28 08:47:25,3 2008/05/12  
Sichuan/Gansu Border REG, China 4.8 105.08 32.12 08:54:16,2 2008/05/12  
Eastern Sichuan, China 5.2 103.76 31.23 09:07:04,7 2008/05/12  
Sichuan/Gansu Border REG, China 4.9 104.85 32.16 09:23:34,5 2008/05/12   
Eastern Sichuan, China 5.5 104.07 31.58 09:42:25,1 2008/05/12  
Sichuan/Gansu Border REG, China 4.6 105.07 32.44 10:16:23,3 2008/05/12  
Eastern Sichuan, China 5.2 103.41 31.02 10:23:40,3 2008/05/12   
Eastern Sichuan, China 4.5 104.03 31.52 10:43:15,3 2008/05/12   
Eastern Sichuan, China 5.7 103.75 31.24 11:11:02,7 2008/05/12  
Eastern Sichuan, China 4.7 103.93 31.54 11:28:40,8 2008/05/12  
Sichuan/Gansu Border REG, China 4.8 105.00 32.23 11:33:21,3 2008/05/12   
Sichuan/Gansu Border REG, China 4.9 104.92 32.31 11:41:13,5 2008/05/12   
Sichuan/Gansu Border REG, China 4.9 105.43 32.57 12:04:36,2 2008/05/12   
Eastern Sichuan, China 4.9 104.77 31.92 12:15:40,8 2008/05/12   
Eastern Sichuan, China 4.9 103.52 31.06 13:40:57,2 2008/05/12   
Eastern Sichuan, China 4.8 103.61 31.28 14:10:27,6 2008/05/12  
Sichuan/Gansu Border REG, China 5.1 104.66 32.16 14:15:25,9 2008/05/12   
Sichuan/Gansu Border REG, China 5.2 105.72 32.80 14:46:09,3 2008/05/12   
Eastern Sichuan, China 5.2 103.75 31.28 15:05:31,4 2008/05/12  
Eastern Sichuan, China 5.1 103.56 31.07 15:28:53,3 2008/05/12   
Sichuan/Gansu Border REG, China 4.5 105.18 32.45 15:54:27,3 2008/05/12   
Eastern Sichuan, China 4.8 103.73 31.35 16:28:54,9 2008/05/12   
Eastern Sichuan, China 4.9 103.55 31.17 17:03:12,0 2008/05/12   
Eastern Sichuan, China 4.8 104.53 31.95 17:52:23,9 2008/05/12   
Eastern Sichuan, China 5.1 103.70 31.28 17:54:33,7 2008/05/12   
Eastern Sichuan, China 4.6 104.03 31.73 18:26:19,7 2008/05/12  
Sichuan/Gansu Border REG, China 4.6 104.85 32.43 18:55:25,7 2008/05/12   
Eastern Sichuan, China 4.8 103.79 31.57 19:53:23,0 2008/05/12   
Eastern Sichuan, China 5.5 103.89 31.49 20:08:48,6 2008/05/12  
Eastern Sichuan, China 5.3 104.50 31.81 20:45:30,6 2008/05/12   
Sichuan/Gansu Border REG, China 4.9 104.97 32.34 20:51:25,5 2008/05/12   
Eastern Sichuan, China 4.6 103.50 31.39 21:08:14,5 2008/05/12  
Sichuan/Gansu Border REG, China 4.5 104.71 32.22 23:38:12,5 2008/05/12   
Eastern Sichuan, China 5.4 103.51 31.32 23:46:23,4 2008/05/12  
Eastern Sichuan, China 5.3 103.53 31.34 23:54:50,6 2008/05/12   
Eastern Sichuan, China 4.7 104.15 31.54 00:22:21,3 2008/05/13  
Eastern Sichuan, China 4.9 104.67 31.83 02:15:13,9 2008/05/13   
Eastern Sichuan, China 5.1 103.63 31.25 03:00:38,7 2008/05/13   
Sichuan/Gansu Border REG, China 4.8 105.35 32.53 05:25:46,5 2008/05/13   
Sichuan/Gansu Border REG, China 4.6 105.48 32.4605:36:27,7 2008/05/13  
Eastern Sichuan, China 5.9 103.28 30.99 07:07:09,0 2008/05/13  
Sichuan/Gansu Border REG, China 5.0 105.44 32.43 07:19:17,7 2008/05/13   
Sichuan/Gansu Border REG, China 5.1 105.07 32.33 07:53:02,5 2008/05/13 
Eastern Sichuan, China 5.0 103.95 31.45 08:20:51,7 2008/05/13  
Eastern Sichuan, China 5.0 104.46 31.77 10:16:07,3 2008/05/13  
Sichuan/Gansu Border REG, China 5.0 105.41 32.27 12:51:37,9 2008/05/13   
Sichuan/Gansu Border REG, China 4.8105.30 32.64 13:13:05,5 2008/05/13   
Sichuan/Gansu Border REG, China 4.6 105.31 32.46 13:31:37,2 2008/05/13   
Sichuan/Gansu Border REG, China 4.5 105.30 32.53 15:10:32,9 2008/05/13   
Eastern Sichuan, China 4.8 104.50 31.85 16:23:51,4 2008/05/13   
Eastern Sichuan, China 4.7 103.44 31.11 19:51:56,1 2008/05/13   
Western Sichuan, China 4.5 103.59 32.01 00:08:19,6 2008/05/14   
Eastern Sichuan, China 5.7 103.49 31.36 02:54:36,8 2008/05/14   
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Table 1. Continued...

7. Results

Figure (6) presents the values of the synaptic
weight vectors, plotted as stars in the input space.
These stars (synaptic weight vectors) are the syn-
thetic epicenter of future aftershocks of Chengdu,
Sichuan, earthquake which are predicted by the two
dimensional (9*9) Kohonen neural network. The
epicenters of real aftershocks of this earthquake are
plotted as pluses in Figure (6). As shown in Figure
(6) Kohonen neural network has successfully
predicted concentration of the aftershock zone and
trend of future aftershocks of Sichuan earthquake.

8. Discussion

Kohonen artificial neural networks are competi-
tive neural networks in which neurons are organized
in a two-dimensional lattice (grid) representing
the feature space and its algorithm creates a vector

Region Mag. (mb) Lon. (E) Lat. (N) Time (UTC) Date 
Sichuan/Gansu Border REG, China 5.2 104.00 32.22 05:54:58,9 2008/05/14  
Eastern Sichuan, China 5.2 104.06 31.44 09:26:44,5 2008/05/14  
Sichuan/Gansu Border REG, China 5.0 105.13 32.45 10:00:33,7 2008/05/14  
Sichuan/Gansu Border REG, China 4.7 105.05 32.24 10:44:37,6 2008/05/14  
Eastern Sichuan, China 4.5 104.29 31.95 12:27:58,7 2008/05/14 
Eastern Sichuan, China 4.5 103.99 31.50 17:17:22,3 2008/05/14  
Eastern Sichuan, China 4.9 103.80 31.30 17:33:24,3 2008/05/14  
Eastern Sichuan, China 5.2 104.15 31.70 21:01:07,3 2008/05/14  
Eastern Sichuan, China 4.8 103.88 31.43 22:10:15,9 2008/05/14  
Sichuan/Gansu Border REG, China 4.7 104.25 32.08 00:09:35,1 2008/05/15  
Eastern Sichuan, China 4.6 104.02 31.49 04:27:36,1 2008/05/15  
Sichuan/Gansu Border REG, China 5.0 104.41 32.02 05:27:47,9 2008/05/15  
Sichuan/Gansu Border REG, China 4.8 104.25 32.14 18:05:26,3 2008/05/15  
Sichuan/Gansu Border REG, China 5.1 104.70 32.57 21:55:49,4 2008/05/15  
Eastern Sichuan, China 4.9 104.06 31.41 22:10:35,4 2008/05/15  
Eastern Sichuan, China 4.4 104.54 31.88 22:34:35,5 2008/05/15  
Eastern Sichuan, China 5.1 104.06 31.53 03:34:27,5 2008/05/16  
Eastern Sichuan, China 5.5 103.53 31.42 05:25:49,0 2008/05/16  
Sichuan/Gansu Border REG, China 4.6 104.82 32.53 06:34:41,9 2008/05/16  
Eastern Sichuan, China 4.9 103.69 31.26 16:14:45,0 2008/05/16  
Eastern Sichuan, China 5.0 103.74 31.34 20:16:52,6 2008/05/16 
Sichuan/Gansu Border REG, China 4.7 105.26 32.28 22:33:08,5 2008/05/16  
Sichuan/Gansu Border REG, China 4.4 104.55 32.02 07:38:43,9 2008/05/17  
Sichuan/Gansu Border REG, China 4.8 104.64 32.09 13:32:13,6 2008/05/17  
Sichuan/Gansu Border REG, China 5.9 105.05 32.29 17:08:25,7 2008/05/17  
Eastern Sichuan, China 4.6 103.82 31.45 20:26:08,5 2008/05/17  
Sichuan/Gansu Border REG, China 4.4 104.10 32.05 00:45:58,1 2008/05/18  
Eastern Sichuan, China 4.6 103.67 31.73 03:51:41,8 2008/05/18 
Eastern Sichuan, China 4.5 103.81 31.46 09:25:13,2 2008/05/18 
Eastern Sichuan, China 4.5 103.04 31.71 12:37:07,2 2008/05/18   
Sichuan/Gansu Border REG, China 5.0 105.15 32.56 04:09:02,0 2008/05/19 
Sichuan/Gansu Border REG, China 5.1105.42 32.50 06:06:54,9 2008/05/19   
Sichuan/Gansu Border REG, China 5.3 105.02 32.29 17:52:34,2 2008/05/19  
Eastern Sichuan, China 4.5 104.22 31.76 00:57:36,4 2008/05/20  
Sichuan/Gansu Border REG, China 4.4 105.20 32.45 03:42:30,9 2008/05/20  

 

quantizer by adjusting weights from common input
nodes to output nodes arranged in a two dimensional
grid. The feature map computed by the SOFM
algorithm stores a large set of input vectors by
defining a smaller set of prototypes {wj} (i.e. stars in
Figure (6)), so as to provide a good approximation
to the original input space. Therefore, Kohonen
neural network can be used to predict concentration
of aftershock zone and the trend of future after-
shocks.

Firstly, since patterns with a high probability of
occurrence are mapped on to a larger area of the
feature map, Kohonen’s SOFM algorithm reflects
statistical variations in the aftershocks region.

Secondly, higher density patterns have better
resolution than patterns that have low probability of
occurrence; therefore, the concentration of after-
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shocks can be obviously detected.
However, Kohonen networks work best when

input vectors distribution is closed, therefore, this
program functions best for local aftershocks zones.

An additional application of this method is dis-
crimination between aftershocks of two different
main events, where there is no clear boundary
between the aftershocks.
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