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ABSTRACT: In this paper a damage assessment procedure has been pro-
posed based on backpropagating feedforward neural network simulators
and a genetic algorithm identifier. Damage assessment is performed in fwo
steps. First, neural networks are utilized to locate possible damage states
associated with the changes in vibration signature. Second, generic based
identification procedure has been applied to evaluate the dynamic param-
eters of the structure at damaged locations. The stiffness of the damaged
parts of the structure has been identified by the genetic algorithm such
that the difference between analytically predicted and experimentally
observed response is minimized throughout the response time history. The
amount of stiffness reduction is assumed as the degree of damage. To verify
the performance of the proposed scheme, the location and degree of
damage in computer-simulated linear and nonlinear structures has been
detected. Also to investigate the performance of the proposed method in
conjunction with real data, experiments on a L scale model of a four-story
steel structure has been performed. 2

Keywords: Damage assessment; System identification; Neural network;

Genetic algorithm

1. INTRODUCTION

Following a strong motion earthquake, quick and critical
decisions have to be made on the safety condition of the
damaged structures. Structural damage assessment is also
essential in the economical repair and retrofit of aging
structures.

In today’s engineering practice the extent and the
location of damage can be evaluated through visual
inspection and simple nondestructive tests. However, in
some cases visual inspection may not be feasible and it is
not always reliable because a building with light or no
apparent structural damage could be structurally damaged
to an extent that it becomes unsafe to occupy.

In recent years, there has been a considerable demand
for more reliable techniques to detect the location of
damage. Researchers have proposed damage assessment
schemes based on analysis of measured dynamic response
of the structure before and after damage through using
non-destructive evaluation (NDE) techniques.

NDE techniques provide a more feasible method to
momtor the presence of defects or damage in the structure
through the measured structural response and have been
the focus of research studies for many years. Beck
and Jennings [i] have defined the stwuctural damage by

reduction in stiffness parameters. Next, the measured
response is compared with the response of the reduced
stiffness model subject to the same excitation. The
reduced stiffnesses are chosen such that the difference
between the responses is minimized. Casas and Aparicio
(2], Beck et al [3], Liu [4] have used modal output errors
and modal parameters, extracted from measured response.
The difference between these measured modal parameters
and computed modal parameters of the model are
compared and the stiffnesses of the model are determined
based on minimization of this modal space difference.

Ghanem et al [5], Saito and Hoshiya [6] have used the
extended Kalman filtering model to identify structural
parameters based on linear system models, either in time
or frequency domain. Ge and Soong [7] have presented
the regularization method to provide an estimate of the
underlying damage process of a system from noisy output
measurements by proposing a cost function. Chen and
Garba [8] have focused on analytical techniques that use
online measurements of responses, such as frequencies,
mode shapes, static displacements and damping ratio to
assess the presence of damage in structures.

Sorace [9] has proposed a procedure based on local
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and global permanent deformation measurements and on
site dynamic test to assess damage in steel structures not
supplied with monitoring systems. Agbabian etal [10] have
proposed a method of system identification in time-
domain based on excitation and acceleration response
records. Dipasqual and Cakmak [l1] have proposed a
procedure to detect the serviceability of damaged
structures after earthquake based on the changes in
fundamental period by analyzing recorded response of
the structure during earthquake. Hjelmstad and Shin [12]
have introduced a damage detection and assessment
procedure based on parameter estimation with an
adaptive parameter-grouping scheme. Damage is charac-
terized by a reduction in a constitutive property of a
parameterized finite element model between two time-
separated inferences, assuming that the baseline
parameters are known.

Among the promising NDE methods are those based
on the analysis of structural dynamic response measure-
ments to identify a suitable mathematical model correspond-
ing to the changing state of the physical structure.

In order to decide whether a structure that has
experienced a strong motion event can still be considered
safe or whether some repair is required, it is necessary to
define a damage index function. The calculated index
provides the basis for judgment about the post-earthquake
serviceability and safety condition of the structure, and
reference for retrofit decision making. When recorded
response data are available, such as in the case of instru-
mented buildings, the seismic demand can be easily
quantified, so that all uncertainties in damage calculation
are restricted to estimating the mechanical capacity. In the
absence of a monitoring system, only a posteriori global
field testing, properly accompanied by supplementary
localized diagnostic checks, can be performed. In this
hypothesis, damage is defined as a function of the changes
of a selected structural property commpared to its initial
value. Vibration tests are typically conducted, and param-
elers are computed from the obtained responses, the
reduction of stiffness is generally derived from these
measurements as the degree of damage [9).

Reduction of stiffness in a structural element, which
has experienced a strong motion earthquake, is illustrated
in Figure 1.

Py P

{a) (b)

Figure 1. Behavior of a structural element, (a) before earthquake,
(b) during earthquake, (¢} after earthquake.
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Before earthquake and under working loads the
response is linear with stiffness equal to 4, (Figure la).
During strong motion earthquake the element undergoes
nonlinear behavior (Figure 1b), simultaneously some
damage occurs resulting a reduction in the stiffness of the
element. After earthquake event, again the response is
linear but with reduced stiffness equal to %, (Figure lc).

Recorded history of element contains useful informa-
tion for detecting damage state, especially, strong motion
records, which contain useful information about the
history of stress and strain that an element has expen-
enced during earthquake. Thus due to the limited number
of instrumented buildings, practically, damage may be
detected only by comparing the stiffness of the element
before and after earthquake. This is why in practical meth-
ods that are based on vibration tests, it is assumed that
damage is path-independent and is modeled through
reduction in the stiffness of structural elements.

In this paper a damage assessment procedure has been
proposed based on backpropagating feedforward neural
network {NN) simulators and a genetic algorithm (GA ) iden-
tifier. The objective of this kind of combination is to make
the best use of the power of NNs in pattern recognition
beside the robustness of GA in nonlinear optimization.

Damage assessment is performed in two steps. In the
first step, NNs are trained to simulate the response of the
structure at its pre-selected degrees of freedom. The
network is trained to simulate the nonlinear transfer
function between the acceleration or velocity of the two
adjacent degrees of freedom. When the trained NN is tried
to be tested for another adjacent location, some sirpulation
error will occur. The amount of error, which is due to the
difference between the behavior of trained and tested
location, may indicate the state of damage.

In the second step, genetic based identification
procedure has been applied to evaluate the dynamic
parameters of the structure at damaged locations. The
stiffness parameters of the damaged parts of the structure
are selected by the GA such that the difference between
the response of the analytically predicted and experimen-
tally observed response is minimized throughout the
response time history. The amount of stiffness reduction
is assumed as the degree of damage [13, 14].

To verify the performance of the proposed scheme, the
location and degree of damage in computer-simulated
linear and nonlinear structures has been detected. Also to
investigate the performance of the proposed method in
conjunction with real data, experimental study were
performed ona - scale model of a typical Iranian four-
story stee] structure.

2. DAMAGE LOCATION DETECTION

In recent years, neural networks application have attracted
increasing attention due to their capabilities such as
pattern recognition, classification, function approximation,
etc. However, few researchers have applied NNs in the
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field of damage assessment. Pandey and Barai [15] has
adopted backpropagation NNs to model a typical bridge
truss with simulated damaged states from its deformation
under static loads. Elkordy et al [16] have adopted
backpropagation NNs to model damage states of a five
story steel frame. The analytically trained networks
generated states of damape were used to diagnose
damage states obtained experimentally from a series of
shaking tests. Wu et al [17] have used the pattern-match-
ing capability of a NN to recognize the location and the
extent of individual member damage from the measured
frequency spectrum of the damaged structure. Tsou and
Herman Shen [18] have proposed a new architecture for a
NN by combining three multi-layer subnets that perform
the tasks of input pattern generation, damage location
identification and damage seventy deterrnination, respec-
tively. Teboub and Hajela [ 19] have employed the classifi-
cation ability of a NN to identify the damage in composite
material beams. Szewczyk and Hajela [20] have used a
modified counterpropagation NN to develop the inverse
mapping between a vector of the stiffness of individual
structural elements and the vector of the global static
displacements under a testing load. Masri et al [21] have
proposed an approach that relies on the use of vibration
measurements obtained from a “healthy” system to train a
NN for identification purposes. Subsequently, the trained
network is fed comparable vibration measurements from
the same structure under different episedes of response in
order to monitor the health of the structure.
Saberi, Nikzad and Ghafory-Ashtiany [22, 23] have
applied backpropagating NN to identify stiffness param-
eters of a Duffing system. They also have proposed a
method to identify the stiffness parameters of a nonlinear
systemn through backpropagating system restoring force
error [24].
In general, NN-based damage detection procedures
listed above inherently involves the following drawbacks:
<> So far the applied approaches are based on the use
of vibration measurements to train NN for identifica-
tion purposes. To diagnose damage correctly, NN
must be tramned with successfully diagnosed dam-
age states. Although training samples can be
developed over time as actual damage states are
experienced by the structure or they can also be
obtained from a destructive test program in which
the variations in vibration signatures are recorded.
Both of these methods of obtaining learning santples
are difficult to implementand make the approach

% Models are required to provide the training cases
for the networks and the algorithns should be ro-
bust against systematic errors between the model
used for training and the actual structure.

<> Essential features of damaged structure should be
known and must be represented in the training data

of the NN.

<*  When the input testing pattern is beyond the rep-
resentative domain, the NN may fail to extrapolate
such pattern. So in most cases, NN may only be
applied to detect damage in the trained system.

To overcome these problems, in this study NNs have
been trained only to locate possible damage states associ-
ated with the change in vibration signature through
simulating the response of the system. To simulate the
response of the system, a backpropagating feedforward
NN is created as shown in Figure 2. At the input layer
previous values of the acceleration or velocity of two
adjacent degrees of freedom from the last few time steps
are fed to the network. At the output layer the network
predicts the acceleration of one of these DOFs at the
current time step. Number of input neurons (i.e. n and m}
and number of hidden neurons are problem dependent.

4y

Figure 2. Input and output of the NN-simulator.

Figure 3, schematically shows how NN detects the
location of the damage. First NN is trained to simulate the
nonlinear transfer function between base and first floor
acceleration or velocity (Figure 3a). Second the trained
NN is examined for the next floor, in which some simulation
error occur (Figure 3b). If the amount of error is negligible,
the NN is retrained to minimize this error (Figure 3c}. When
the error is considerahle, it indicates that, there may be a
type of damage in the system (Figure 3d). This procedure
may be utilized as many times as required to detect
damage in all parts of the structure.

The average network estimation error is shown in
Figure 4. For an undamaged structure, error for each floor
has approximately regular linear decrements (Figure 4a).
However for a damaged structure, for example damaged at
third floor, NN error shows irregularity at the location of
damage (Figure 4b).

Although detectable changes cannot (with present
knowledge) be directly attributed to a specific physical
parameter, this approach can provide a sensitive indicator
of the presence of potentially serious damage in the
monitored system.

It should be noted that the procedure is independent
of the structural model (linear or nonlinear) and it does not
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Flgure 3. Detecting damage location using single NN Simulator
{SNN).

Netwark Avg. Emmor

{a) Training Cyclas

1 Floor

3rd
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Figure 4. Training cycles vs. NN average error. (a) For undam-
aged structure, (b) for damaged structure.

require any prior knowledge of the system property.

The method explained above may be applied in two

ways:

1. Using only a single NN (SNN method) to train and
test all parts of the system for damage identifica-
tion, as shown in Figure 3; or

2. Using multiple NNs (MNN method) for damage
identification; In this case, for each partof the
system, one NN 1s created and trained once and is
tested for all other parts of the system. In this
method, damaged locations are verified several
times. The use of this method for two lower stories
is shown schematically in Figure 5.

The performed studies have shown that MMN is more
reliable especially in the case of high noise level [13].

The proposed method is general and it can be applied

to different type of structures. For example the location of

damage in an irregular shaped object may be detected as
shown in Figure 6.
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Figure 5. Detecting location of damage with multiple NNs (MNN).

Figure 6. Detecting damage location for an irregular shaped
object

3, DAMAGE EVALUATION

Genetic algorithm has been the subject of considerable
interest in Tecent years, since it provides a robust search
procedure for solving difficult problems an has been
applied to a wide range of optimization problems in
engineering, such as the design of structures and
parametric system identification. Dunn [25] has used GA
to identify the dynamic parameters of 2 and 12 DOF linear
systems. Furukawa and Yagama [26] have applied GA to
identify dynamic characteristics of nonlinear systems.
Friswell etal [27] have used the GA to identify the damage
location and the eigensensitivity is used to identify the
damage extent. Chou and Ghaboussi [28] have used static
measurements made from regular scheduled monitoring to
identify the changes of characteristic properties of the
structural members such as Young’s modulus and cross
sectional area, which are indicated by the difference of
measured and computed responses.

The detection and identification of the structural
damage being categorized in the field of inverse problems,
in most cases is very difficult to directly formulate the
problem, since the system parameters can not be expressed
in terms of the output error. However, the problem can be
formulated as an optimization problem by evaluating the
parameters that minimize that output error. It is possible to
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use the GA to solve this optimization problem {28]. GA
may be utilized to minimize the difference between analyti-
cally predicted and experimentally observed response.

Genetic algorithm is a powerful search technique based
on the process of natural evolution [29]. This algorithm
detects the global minimum of the objective function
without the use of, or evaluating the gradient of the
objective function. This feature is very significant,
since in most optimization problems, evaluating the gradi-
ent of the objective function is not straightforward and is
very complex. In this algorithm the parameters are encoded
as strings that are called chromosomes. Each chromosome
is composed of a certain set of binary numbers that
represent the state of parameters in the design space. At
the beginning, the parameters are set random and initial
chromosomes are generated.

Genetic algorithm consists of the following three main
operational steps: Selection, Crossover and Mutation.

3.1. Step 1: Selection

In the GA, definite number of chromosomes are gathered
in a mating pool. For each chromosome the design param-
eters are decoded and the ohjective function is calculated.
According to the associated value of the objective
function for each chromosome, selection operator selects
the best chromosomes among the chromosomes in the
mating pool and the other chromosomes are extinguished.
Selection may be performed in several ways. Choosing
tournament selection in this study, the mating pool is
divided to smaller parts and for each part the best chromeo-
some or chromosomes are selected.

3.2, Step 2: Crossover

To generate even better chromosemes from mating poel,
the chromosomes are randomly paired off and a crossover
operator is applied to each pair. In this way new offspring
are created. Crossover simply divides each chromosome
of a pair into two or more parts and alternately replaces
each part of one chromosome with associative part of the
other one.

3.3. Step 3: Mutation

To extend the exploration range in the design space and
also to escape from local minima, sometimes the new
offspring are mutated just like nature. Mutation, which is
performed with a small probability, changes one or more
bits of a chromosome from 0 to 1 or vice versa.

In this study, three operators described above were
incorporated in a general purpose and flexible GA
software in C++ language with the flow chart shown in
Figure 7. As the identification part of the procedure, in this
study GA is utilized to evaluate the dynamic parameters of
the system under consideration.

After damage location detection through using NNs
procedure in Section 2, a computer-simulated model of the

Initializing Parameters

l

Generate Initial Population

J

| Evaluate Fitness Function for All Population

I

| Evaluate Population Statistics

l

Generate Parents

|

Parform Crossover

t
Generate Offspnng With Mutation

l

Update Popuiation

Next Generation

Figure 7. Flow chart of the GA software.

structure should be developed in which the stiffness of
the damaged parts has to be evaluated. The stiffness
parameters will be selected by the GA in way that
minimizes the difference between the response of the model
and the measurements throughout the response time
history. The amount of stiffness reduction is considered
as the degree of damage.

The main modules of the proposed GA identifier are
shown in Figure 8. GA tunes the stiffness parameters of
the model in such a way that the model response fits to the
measured response of the real structure. As it can be seen,
for each chromosome at each generation, the response of
the system’s model has to be computed. However at the
present state of the art in damage detection, time efficiency
should not be the main issue in developing a reliable
damage detection and assessment algorithm.

Moreover in the proposed procedure, damage
location is identified separately from damage extent. This
advantage enables the analyst to use substructure
concept to condense the model at undamaged parts of
the structure in order to speed up the computation. The
flow chart of the proposed procedure is shown in Figure 9.

Fitness
Evaluation GA
PR
laL LLALA
Measured
Res
ponss Chromosome
Decoder
T
Real Dynamic Stitiness
Structure Analysis
e _vr |
Excitation

Figure 8. GA identifier.
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Figure 9. Flow chart of the proposed procedure.
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4. VERIFICATION OF THE PROPOSED PROCE-
DURE

To verify the performance of the proposed scheme,
several tests were performed on computer-simulated
linear and nenlinear, plane and space frames. Also the
effect of change in some vital parameters on the
performance of the procedure is investigated. In order to
verify the performance of the proposed method in
conjunction with real data, experiments ona :'!— scale model
of a four-story steel structure has been performed. In this
paper only the results obtained from some of these tests
are presented.

4.1. Computer-simulated Tests
4.1.1. Test (I): Linear Braced Plane Frame

In the first test, detecting the location and degree of
damage in a concentrically X-braced plane frame is shown.
Properties and geometry of the model used for this test are
shown in Figure 10.
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Story Mass = 20000Kg
Beams and Columns.
Area = 54.3cm?
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Bracings:
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Figure 10. Mcdel of test ().

In this test, damage has been simulated by equating
the cross section area of one diagonal element of the third
floor to zero. The response of the systemn due to ambient
excitation is computed and NN with the architecture shown
in Figure 11 has been used to detect the location of
damage. For most of the performed tests, the performance
of the architecture with two hidden layers was better than
that of a single layer.

0, (-44t)
U, (t-34a1)
input Ui (t-2at) oail;(;:;
Gir-at)
00 (e
U (t-at)

Figure 11. Architecture of NN.

As it can be seen in Figure 12, except in Figure 12c,
network average error for the third floor is greater than the
other floors. Based on this result, it is concluded that there
may be a damage in third floor.

To estimate the stiffness of the brace in third floor, GA
1s applied with a population of 100 chromosomes, each
having 16 bits length (8 bits for the stiffness of each di-
agonal). Tournament selection is applied by choosing one
point crossover operation and the mutation probability of
0.02. Using the square root of sum of squares (SRSS) of
the roof acceleration error as the objective function, after
2000 generations the following results have been obtained:

U Damaged brace area = 5.53cm?
U Undamaged brace area =6.93cm*,

1t should be noted that since only the horizontal response
of the model is considered for damage detection, only the
shear stiffness of each story or the sum of the area of both
braces might be evaluated. This is why in this test both for
damaged and undamaged braces the area is evaluated
approximately equal to half of really undamaged brace
{i.e. 123cm?),
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Figure 12. Network average simulation error.

4.1.2, Test (Il); Nonlinear Braced Plane Frame

In this test, the structural model is the same as before
except that nonlinear behavior is assumed for the braces
as shown in Figure 13.

A

Tension
-

Compression

ILL_L/ :

Figure 13, Hysteresis ioop of each diagonal bracing before
damage.

To simulate the damage state, the stiffness of one of
the diagonal brace at the third floor is reduced to zero. The
system response due to the recorded ambient excitation at
its base level has been evaluated. The excitation records
are scaled such that all the braces become plastic, even if
it is for a short interval of time. The dynamic response of
the aforementioned system is computed for a duration of 2
seconds utilizing Hilber’s method with time steps of 0.01
seconds. Again NN has been used to detect the location
of damage. The architecture of the NN used for this test is
shown in Figure 14.

As it can be seen in Figure 15, except for Figure 15¢,
network average error for the third floor is greater than the
other floors. Thus it is concluded that there may be a
damage in the third floor.

To estimate the stiffness of the braces in the third floor,
GA 1s applied with a population of 100 chromosomes, each
having 32 bits length (8 bits for the stiffness of each
diagonal and 2 x 8 bits for the value of yield forces).

Tournament selection is applied by choosing one point
crossover operation and the mutation probability of 0.02.
Using the SRSS value of the roof acceleration error as the
objective function, after 2500 generations the following
results are obtained:

QO Damaged brace area= (0. 3cm?.

O Undamaged brace area=11.7cm?,

In this test due to the difference between tension and
compression yield forces of bracing elements, unlike the
previous test, area of each diagonal brace is evaluated
with a good accuracy.

U -9a1)

U; (1-84t)

Input

Flgure 14. Architecture of NN.

4,1.3. Test (III): Two-Way Concrete Slab

To further show the application of the proposed method,
damage in two-way concrete slab with linear behavior is
simulated by reducing the modulus of elasticity in one of
the elements of its model in one direction (Figure 16).

NNs, scanning through line A-A, have detected the
correct location of damage as it can be seen in Figure 17,
Using GA identifier, the damaged value of stiffness for
element No. 19 is estimated to be 970 KN/cm?, which has
only 3 percent error from its actual value.

JSEE: Spring 2000. Vol. 2. No. 2 / 38



K. Saberi-Haghighi, et al

Hetwork Network Nétwork
Avg. Error CAVGEION e V0 B
0030 NG e e e e s s o] ]
0.015 - QOB o s % .......... .
0 - - 0
Training Testing Tralning Testing
Network HNetwork Network
Avg. Error Avg, Emor _Avg. Error.
ooxw. - © 0,030 e
N . G e e
0.015 0.016. -
0 0
Tralning Testing Training Testing
Figure 15. Network average simulation error.
A
30 | a)| 323333
PROPERTIES OF THE MODEL:
o 24 |25/] 26| 27| 28 | 28 o 36x8 Nodes Isoparametric Serendipity Elements.
= o Elements Dimension = 1 x 1m, Thickness = 0.15m,
15 e 20 21|22 23 oy
eme a  Modulus of Elasticity = 2000KN/cm?,
A4 12 113 |14 |15 |18 | o7 o Modulus of Elasticity of Element No 19.
X {Damaged Element) = 1000KN/cm?.
6§ | T8 || o Poisson's Ratio=0.2.
o Mass=375 Kg/m,
{ o | 1 2 3| 4| s
A
Bxim
Figure 16. Model of test (lIl).
Network Newark Nertwork Network
\AVQ- Emror Avg. Emor Avg Emor Avg. Ermor
0.020 AN — — 0.020 o I
4L I §
0.010 g3 0.010 &
| lq 5:
] -
o 0
Training Tesling Training Testing
Network Network i w Network
Avg. Ermor Avg. Error Avgewa?Tr:r Avg Emor
0.020 € "' 0.020 o — @
ﬂ‘ _‘2 A
0.010 g 0040 j g {
Training Testing Tralning Testing
Neatwork Network Network N etwork
Avg. Emor Avg. Eor Avg. Eqror Avg. Emror
0.020 @ 0,020 n
-\__—_—_ !
- o
1 A
0.010 8 0.010 q |2 (2 q
b BB E e
N LD
0 ; 0 i
Training Testing Training Teating

36 / JSEE: Spring 2000, Vol. 2. No. 2

Figure 17. Network average simulation error.



Damage Assessment Using Neural Network and Genetic Algorithm

4.1.4, Test (IV): Linear Braced Space Frame

To further show the flexibility of the proposed methed, the
damage in a linear braced spaee frame has been detected.
Properties and geometry of the model used for this test are
shown in Figure 18,

> ¢ @8 A G G ¢

E £

2 b

T T
T he]
SE BE
] &3
£3 3
av a°

- -~ T h _T - - »
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Frame on Axis (b}

Dam: Column
/ at 1st Ftoor

Virual Bracing

Frame on Axis {3)

PROPERTIES OF THE MODEL:

E=210GPa
Story Mass = 20000Kg
Beams and Columns:
Area = 54 .3cm?
Inertia = 2490cm’*
Virtual Bracing as Diaphragm:
Arga = 100cn?
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Figure 18. Mode! of test (IV).
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In this test, damage is simulated by reducing by half,
the modulus of elasticity of column on axis ‘B3, at first
floor. The response of the system due to a recorded
ambient excitation is computed. Same as before, NN has
been applied to detect the location of damage. As itcan be
seen in Figure 19, damage in frame on axis (B) is apparent.

Next, only the damaged frame, which has been detected
on axis (B), is considered. Applying the same procedure,
the damaged column is detected and its modulus of
elasticity has been estimated.

O Damaged column: E = 109400MPa.
O Undamaged colurnns: E = 194400MPa.

4.2. Sensitivity Analysis of the Procedure

In order to survey the sensitivity of the procedure in
conjunction with the change in the geometry of the model,
state of damage and noise in acquired data, several
computer-simulation tests were performed. Two and three
dimensional frames with 1 to 6 spansand 4, 6, 10, 15 stories
are modeled and the behavior of each has been analyzed
for a total of about 200 tests. The results of these tests are
presented in this section.

4.2.1. Effect of Geometry of the Model

To investigate the effect of number of spans and stories of
a plane frame on the amount of error in evaluating the
degree of damage, models with the following vanations
are analyzed:

Number of spans: 1,2,3,4,5,6

Number of stories: 4, 6, 10, 15

Damage location: at middle stories
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Figure 19. Network average simulation error.
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Damaged part: one column in one story

Degree of damage: 50%

Noise amplitude: 5%

As it can be seen from the results shown in Figure 20, by
increasing the number of spans or stories, error in evaluat-
ing the degree of damage increases.

When the above tests are repeated assuming the
damage extent in all columns of one of the stories, the
results are somewhat different. As shown in Figure 21
although, same as before, increase in number of stories,
increases the error but increasing the number of spans
results in decreasing the error.
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Figure 20. Effect of geometry of the model on performance of
the procedure.
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Figure 21, Effect of geometry of the model on performance of
the procedure.

4.2.2. Effect of the Degree of Damage

To investigate the effect of the degree of damage on the
amount of error in evaluating the damage, the following
two-dimensional models of frames are analyzed:

Number of spans: 3

Number of stories: 4, 6, 10, 15

Damage location: at middle stories

Damaged part: one column in one story

Degree of damage: 10, 25, 50,75%

Noise amplitude: 5%
Results obtained from these tests are shown in Figure 22,

When the damage is assumed to be in all columns of
one story instead of being in one column, the results in

38 / JSEE: Spring 2000, Vol. 2, No. 2

terms of error is shown in Figure 23. Atit can be seen, for
both cases, increase in degree of damage results in
decrease in damage evaluation error, as it could be
expected.
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Figure 22. Effect of degree of damage on performance of the
procedure.
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Figure 23. Effect of degree of damage on performance of the
procedure.

4.2.3. Effect of Damage Location

To investigate the effect of the location of damage on the
amount of error in evaluating the degree of damage, the
following plane frame models are analyzed:

Number of spans: 3

Number of stories: 4, 6, 10, 15

Damage location: at lower, middle and upper stories

Damaged part: all columns in one story

Degree of damage: 50%

Noise amplitude: 5%
The obtained results shown in Figure 24 indicate that,
evaluation error for middle stories is less than lowers or
upper stories, which is due to the effect of boundary
conditions on the behavior of the models.

4.2.4. Effect of the Noise in the Data

In order to investigate the effect of noise on the accuracy
of the proposed method, the following plane frame models
have been analyzed:

Number of spans: 3

Number of stories: 4, 6, 10, 15
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Damage location: at middle stories

Damaged part: all columns in one story

Degree of damage: 50%

Noise amplitude: 5, 10, 15,20%
Obtained results shown in Figure 25, indicate increase in
noise amplitude results in increase in the damage
cvaluation error, but the procedure is still stable even for
significant amphitude of noise in acquired data.
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Figure 24, Effect of location on performance of the procedure.

30

[
w
i

N
(=]

-
w

o

—B—6
—4—10 I—
——15

Error in Evaluating
The Degree of Damage

[ Number of

Stories

w
|

o
o
o1

15 20

Noise Amplitude (%)

Figure 25. Effect of noise on performance of the procedure.

4.2.5. Effect of Distance between Damaged Locations

To investigate the effect of distance between damaged
locations on the amount of error in evaluating the degree
of damage, the following models of plane frames are
analyzed:

Number of spans: 3

Number of stories: 4, 6, 10, 15

Damage location: at middle stories

Damaged part: all columns in two stories

Degree of damage: 50%

Noise amplitude: 5%
Results obtained from these tests are shown in Figure 26.
It can be seen that for the cases, in which the damaged
stories are far apart, the error is smaller.

4.3. Experimental Verification of the Proposed Proce-
dure

To investigate the performance of the proposed damage
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Figure 26. Effect of distance between damaged locations on

performance of the procedure.

detection procedure in conjunction with real data, experi-
ments on a L scale model of a typical four-story steel
structure in ﬁan have been performed. Geometry of this
model is shown in Figure 27.

The mode! is made up of three longitudinal frames on

axes (1), (2), and (3). In these frames the beams are
connected to columns through Khorjeeni (satchel)
connection. The beam profiles are attached to the columns
by top and seat angles placed on the sides of the columns.

Columns are built up of two UNP 50x25 and beams on axes
(1) and (3) consist of one IPE B0 and on axis (2) consist of
two IPE 80. Longitudinal frames are connected to each
other by the roof beams, spaced at approximately 450mm
[30].

In longitudinal direction the connection of beams to
columns are semi-rigid, so stability is attained. In addition,
gusset plates are welded to frames on axes (1} and (3) in
order to add bracing to the frames. On these plates holes
are provided to configure different type of bracings, using
angle profiles and friction type bolts. In this way, damage
to one diagonzl element may be simulated by removing

1.850

Frames on Axes (1to 3)

Figure 27. Half scale four-story steel structure model.
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associated element in the model. In transverse direction
stability against lateral loads 1s attained by “X” bracings
on axes (A) and (C). The mass of 1%, 2™ and 3" floors is
about 8100 kg and 5500Kg at the 4™ floor.

The response of the model is recorded using three
SS-1 Velocity meters. These devices are arranged in three
different configurations shown in Figure 28. For each
configuration, the response of the model due to ambient
excitation is recorded.

Similar to previous tests on computer-simulated
models, here the measured responses of the model are fed
to NN to detect the location of damage. In this test,
damage is simulated by removing bracing elements of
second floor (Figure 29). The architecture of NN used for
this test is the same as for test in section 4.1.1. Figure 30
shows the network average error. As it can be seen,
simulation error for second story is slightly greater than
other stories, which indicates that there may be a type of
damage in the second floor.

After detecting the location of damage, GA is applied
to estimate the stiffness of the braces in the second floor.
The following result is obtained:

U Damaged brace area=0.12cm?.
J Undamaged brace area= 12.3cm?’.

These theoretical and operational results from various
simulated damage conditions indicate the reliability of the
proposed procedure.

5. CONCLUSION

In this paper new damage assessment procedure is
presented using the pattern recognition capability of
backpropagating NNs and the global optimization power
of GA-based algorithm The procedure is performed in two
steps. In the first step, NNs are utilized to locate possible
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Figure 28. Three different configurations for measurements.
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Figure 30. Network average simulation error,
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damage states associated with the changes in vibration
signature. Second, genetic based identification procedure
has been applied to evaluate the dynamic parameters of
the structure at damaged locations. The stiffness of the
damaged parts of the structure has been identified by the
GA such that the difference between analytically predicted
and experimentally observed response is minimized
throughout the response time history. The amount of stiff-
ness reduction is considered as the degree of damage.
Since the location of damage is detected in the previous
step, in this step only the stiffness of the damaged parts
has to be estimated. This feature reduces the search space
by utilizing substructure approach and results in unique
outcomes.

To verify the performance of the proposed scheme,
several tests were performed on computer-simulated
linear and nonlinear, plane and space frames. Also the
effect of some vital parameters on the performance of the
procedure is investigated. In order to investigate the
performanceé of the proposed method in conjunction with
real data, experimentsona 2~ scale modet of a four-story
steel structure has been performed. The results obtained
from these tests are promising. Although presence of
nonlinearity and/or noise may degrade the accuracy of the
results, it is shown that the proposed approach is still a
robust method for detecting and evaluating the damage.
Concluding remarks resulting from this study are listed as
follows:

% Inprocedures, which are based on non-destructive
evaluation tests, stiffness reduction is the best cri-
terion for estimating the degree of damage.

*»  Utilizing NNs, any changes in the behavior of struc-
ture can be studied, and consequently, the location
of damage may be detected.

% GA isareliable algorithm for system identification.

% Detecting the damage location separately from dam-
age degree, reduces the computational time for
evaluating the degree of damage, rejects the trivial
selutions and also enables the analyst to apply sub-
structure approach to eliminate the number of DOF
of the model. It is also possible to apply Neuro-sub-
structure approach for nonlinear dynamic systems
[13].

- Investigating the effect of change in geometry of

the model, state of damage and noise in acquired

data on accuracy of the procedure, results in fol-
lowing issues:

= Increase in number of structural elements de-

creases the accuracy of the procedure,

» Increase in degree of damage increases the

accuracy of the procedure.

= Increase in distance between damaged loca-

tions or distance from boundaries of the model
increases the accuracy of the procedure.

» Increase in noise amplitude in acquired data
decreases the accuracy of the procedure, but
the procedure will be stable even for great
noise amplitude.

Following issues remain to be resolved before the
proposed approach becomes an applicable method for
structural damage assessment:
s+ The performance of the procedure in conjunction

with different combination of damage locations and

extent has to be investigated.

%+ The performance of the method in conjunction with
real data acquired from real structures and the effect
of nonstructural elements has to be examined.

< It will be useful to investigate if it is possible to
reduce the number of measurements for damage as-
sessment.

The procedure may be incorporated in an integrated
general software for damage assessment. The major
modules of such a software are shown in Figure 31. In this
study only the shaded modules were considered.
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Figure 31. Damage assessment modules.
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