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In this paper the dynamic response of the ground surface subjected to vertically
traveling two dimensional harmonic SH waves in the presence of a single or two
canyons is investigated using boundary element method. The models consist of one
and two semicircular canyons cut from a homogeneous, linear and viscoelastic half
space. The total response is computed by summing up the responses of free field and
scattered waves. The former is calculated from the closed form solution of propa-
gated waves in the half space and the latter from the boundary element method. For
this, surface irregularities are discretized by linear elements and influence coeffi-
cient matrices are obtained by using harmonic fundamental solutions. To validate
the technique, the response of a single canyon and its nearby ground surface due to
harmonic SH waves with different frequencies is determined and compared with the
existing closed form solution. Then, the response of double canyon is determined by
the same procedure. Results of analyses indicate that the distance between canyons
is a key parameter that affects the surface displacement amplitude of both canyons.
It is demonstrated that when this distance is increased, the response of both canyons
approach to that of a single one. Furthermore, it is shown that the interaction is also
very much dependent on the frequency of the incident wave.
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1. Introduction

The effect of surface topography on amplifica-
tion of incident seismic waves has been the subject
of extensive researches in the past forty years.
The seismic waves are diffracted by the surface
irregularities like hills and canyons. To investigate
this phenomenon, different methods have been
suggested which can generally be classified into
analytical and numerical approaches. Free field
solution of P, SV and SH waves can be obtained
analytically by superposing incident and reflected
waves in a half space. There are closed form
solution for wedge-shaped elastic medium [1] as
well as V-shaped canyons [2] and triangular hills
[3] subjected to incident SH waves. Closed form
solutions for two dimensional semicircular [4] and
semielliptical [5] canyons have also been obtained
by eigenfunction expansion method [6]. Analytical
solutions are also available for two dimensional

semicircular [7] and circular-arc cross-section
hills [8] on elastic half space subjected to harmonic
SH waves. In order to achieve more consistent
results in higher frequencies, different analytical
approach has been developed by Lee et al [9]. The
limitation of the closed form solutions is that their
applications are almost restricted to two dimensional
simple surface topographies. Therefore, numerical
methods are required to calculate the dynamic
response of topographies of more complicated
forms. In Aki-Larner method [10], the scattered
wave field is expressed in terms of discrete wave
number. This method was then extended to scatter-
ing of P, SV and SH waves in time domain [11]. The
method has been developed to consider arbitrary
surface topography and subsurface layering only
for incidence of SH waves [12].

Domain methods such as finite element and finite



JSEE / Summer 2009, Vol. 11, No. 272

A. Eslami H., S.A. Anvar, M. Jahanandish, and A. Ghahramani

difference methods have also been applied to study
the scattering problems. Diffraction of SH waves
was performed by finite difference method [13].
Finite element method is one of the most powerful
numerical methods in almost all geotechnical fields
as well as the wave scattering problem. However,
in such domain methods the fictitious boundaries,
considered for limiting the medium extent, reflect
back the outgoing waves into the medium. In other
words, the radiation condition is not satisfied. To
remove this deficiency, some techniques have been
proposed. It is evident that if the surrounding
fictitious boundaries are adopted far away from the
irregularity, its effects would decrease. But, analysis
of larger models require more computational time.
Other techniques such as infinite elements [14]
and absorbing boundaries [15] have been used in
diffraction of SH waves by Zhang and Zhao [16]
and Liu and Lu [17], respectively.

Boundary element method (BEM) is a numerical
method in which the radiation condition is satisfied
automatically. The method has been widely used in
dynamic analysis of homogeneous media and also
in scattering of SH waves, [18]. Semi-cylindrical
[19], and non-axisymmetric, [20], canyons subjected
to P, SV and SH waves have been analyzed by this
method. This method has been successfully applied
to two dimensional [21] and three dimensional
[22] ground response analyses. BEM has also been
combined with other methods and the resulting
hybrid techniques have been effectively used. In
discrete wave number boundary element method,
the direct boundary element method is combined
with green functions of discrete wave number. This
hybrid method has been applied to diffraction of
P, SV and SH waves in two [23], and three [24],
dimensional domains.

The studies of Geli et al [12], and Bard and
Tucker [25], showed that the observed amplification
measured in the field is greater than what is predicted
by numerical simulation. Sanchez-Sesma and
Campillo [26], showed that a relatively simple
irregularity may result in significant variations in
and around the irregularity. However, more precise
modeling results in more accurate results. Soil lay-
ering and surface irregularities in three dimensions
increase the complexity of the problem of the scat-
tering of the waves. The effect of multilayered soil
with irregular interface on the scattering of SH

waves has been considered by Ding and Dravinski,
[27]. The interaction of adjacent irregularities may
also cause the response of ground motion to differ
from the response of individual irregularities.

The effects of canyon and interaction of adjacent
semicircular canyons on the diffraction of harmonic
SH waves is investigated in this paper. It is demon-
strated that the frequency of incident waves and the
distance between canyons can considerably affect
the results.

2. The BE Formulation

The BE method is a powerful numerical techni-
que for the analysis of homogeneous elastic medium
in the static and dynamic states. Neglecting the body
forces, the governing boundary integral equation
for a two dimensional homogeneous, elastic and
isotropic medium can be obtained by using Betti's
reciprocal theorem as follows:
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where ξ denotes the source point and χ the obser-
vation point along the boundaries, u and p are
displacements and tractions of points on the
boundary, respectively, dL is the incremental length
along the boundary navigated counterclockwise, c
is the jump term which is equal to 0.5 for smooth
boundaries, and ),(*

   zu χξ  and ),(*
    zp χξ  are time-

harmonic fundamental solutions representing dis-
placement and traction at the observation point χ,
due to a unit harmonic point load applied at the
source point ξ in an infinite region. Fundamental
solutions for two dimensional time-harmonic anti-
plane problems are as follows [28]:
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where µ  is the shear modulus, 0K   and 1K  are the
modified Bessel functions of second kind and order
zero and one, respectively, r is the distance between
the source and the observation points, and ω and sC
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are the frequency and propagation velocity of SH
wave, respectively. sC   can be written as:

ρ
µ=sC                                                           (3)

where ρ is the mass density of the material.
The boundary integral equation can be determined

by discretization of the boundary into elements by
proper selection of nodes. Here, isoparametric
two-noded linear element is adopted. The convoluted
form of Eq. (1) is then written for every boundary
points as follows [28]:
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where q is the node number and it also corresponds
to qth degree of freedom. The column vectors }{       

eu
and }{         

ep , represent the nodal displacement and
traction vectors, respectively, and {N} is the inter-
polation vector, nElems is the number of linear
boundary elements and Le is the length of the eth

element. qc  is the jump term of node number q which
is equal to 0.5 for smooth boundaries, as mentioned
before. For corner nodes, the value of qc  can be
computed as:

π
α=
2qc                                                             (5)

where α is the internal angle of the corner in radians.
The integral over each element is carried out in the
local coordinate system using standard Gauss quadra-
ture technique. Successive application of Eq. (4) to
points at the boundary results in a system of linear
algebraic equations of the following form [29]:

[ ]{ } [ ]{ }                      pGuF =                                                (6)

where [ ]    F  and [ ]    G  are the influence coefficients
matrices and the vectors { }    u  and { }    p  contain the
nodal displacements and tractions of all boundary
nodes, respectively. After rearranging the known
and unknown displacements and tractions in Eq. (6),
the resulted matrix equation can be easily solved
for unknown displacements and tractions at the
boundary.

3. Singular Integrals for Linear Boundary Ele-
ments in Anti-Plane Problems

When the source point coincides with the obser-
vation point, the distance r between the two becomes
zero and singularities appear in both right and left
hand sides of Eq. (4). The elements in which the
singularity occurs are called singular elements.

3.1. Weak Singularities

The right hand side of Eq. (4) has two weak sin-
gular integrals depending on whether the source
point coincides with the beginning or the end nodal
point of the singular linear element. These singulari-
ties can be handled by means of analytical integra-
tion as described, hereafter.

Case 1: In this case the source point coincides
with point a; the beginning node of the element,
see Figure (1). All integrals over each singular or
non-singular element are carried out in the local
coordinate system in which s, the local coordinate
parameter, varies between -1 and +1.

Figure 1. Position of source and observation points in case 1
singularity.

The position of observation point varies between
points a and b. In Figure (1) the observation point
is located at the end of the singular element, point
b. As the observation point approaches the source
point, r goes to zero and s = -1 and singularity occurs
in the R.H.S. integral of Eq. (4), which takes the
following form upon substitution of Eq. (2).
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In Eq. (7), J is the Jacobian of the transformation.
Considering the following equations [30]:
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the integral in Eq. (7) can be written as:
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The first integral in Eq. (11) is not singular at s =
-1 and so the standard Gauss quadrature technique
can be applied to numerically evaluate it. The second
integral of Eq. (11) is still singular but because of
its logarithmic form can be numerically evaluated
using the logarithmic Gauss quadrature formulation
[29].

Case 2: Figure (2) shows the situation in which
the source point coincides with point b at the end
of singular element and the observation point is
located at point a. When observation point coincides
with the source point singularity occurs which
corresponds to s = +1. The singularity in this case
can be handled exactly the same as in case 1 except

Figure 2. Position of source and observation points in case
2 singularity.
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3.2. Strong Singularities

There is also strong singularity in the integral of
the left hand side of Eq. (4), which take the following
form upon substitution of Eq. (2).

e
ssL

T Ld
C

riK
n
r

C
iN   

  
 

 

  

  

  






 ω
∂
∂ω

π
−∫ 12

1}{                           (12)

Singularity occurs in this integral when the source
and observation points coincide in which case the

term n
r
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 becomes zero and the function 1K  tends to

infinity. As a result, their product and thus the inte-
grand are not uniquely defined. However, It can be
shown that for small values of r, the integrand
would be zero and consequently the above integral
vanishes for singular linear elements.

4. Determination of the Ground Response Sub-
jected to Harmonic SH Waves

Figure (3) shows the propagation of SH wave
into a half space. The direction of incident and
reflected waves and the direction of particles
motion in plane of wave front are all illustrated in
this figure; iθ  and rθ  are the angle of incident and
reflected waves, respectively. From the traction
free condition of half space surface it can be
shown that the angle and amplitude of incident and
reflected waves are the same. Details of stress
and displacement fields calculations in the domain
can be found in reference [31].

Figure 3. Propagation of SH waves in half space.



JSEE / Summer 2009, Vol. 11, No. 2 75

Effect of Canyons and Their Interaction on Ground Response to Vertically Traveling SH Waves

Figure 4. Canyon topography and the upcoming SH wave.

Now suppose that a canyon of irregular geom-
etry has been cut from a half space, and that the
dynamic response of this medium subjected to a two
dimensional SH wave is under investigation. The
medium is assumed to be homogeneous, viscoelastic
and isotropic and the incident wave to be traveling
vertically, ,0=θi  Figure (4). The total response of
the medium, both displacement and traction, can be
obtained by summing up two distinct responses as
follows:

s
z

ff
zz UUU +=                                                  (13)

s
z

ff
zz PPP +=                                                   (14)

where ff
zz U U ,  and s

zU  are, respectively, the total,
free field and scattered displacements and ff

zz P P ,
and s

zP  their associated tractions.

Figure 5. Natural boundary condition for the scattered field
problem.

5. Application of the Technique

5.1. Introduction

Based on the procedures outlined in section 4, a
computer program was developed. To limit the
medium extent and minimize computational cost in
the boundary element solution, enclosing elements
introduced by Ahmad and Banerjee [32], were
employed to represent the infinitely extending bound-
aries. These have been used by other researches
for diffraction of SH waves [33], as well as P and
SV waves [34].

In section 5.2 which follows, the results of the
verification of the presented technique and devel-
oped code as applied to the case of a half space
with single semicircular canyon will be presented.
In section 5.3, further results regarding the same
canyon will be studied. Finally, in section 5.4 the
response of a half space with two adjacent semicir-
cular canyons having different distances in between
will be investigated.

5.2. Technique and Code Verification-Case of
Single Semicircular Canyon

To test the credibility of the outlined procedure
and verify the prepared code, the response of a
semicircular canyon of radius a subjected to a verti-
cally traveling SH wave, was studied and results
compared to cited solutions. The plane harmonic
SH wave, having a circular frequency ω and unit
amplitude, propagates in the homogenous, viscoelas-
tic and isotropic medium with shear wave velocity

.sC  Material damping of viscoelastic medium, β,
can be incorporated in the analysis by replacing
shear modulus µ with its complex value [35] as:

)21(*
      i β+µ=µ                                                (18)

which gives, by Eq. (3), the complex shear wave
velocity for viscoelastic material as:

The free field displacement, ,ff
zU  and traction,

,ff
zP  at the hypothetical canyon surface are deter-

mined analytically from the half space solution.
Since the canyon surface is traction free, Eq. (14)
gives:

ff
z

s
z PP −=                                                       (15)

along the canyon surface, where s
z

 P  is the traction
due to the scattered waves, and s

z
 P = 0 elsewhere

on the medium horizontal surface, see Figure (5).
With the natural boundary conditions being prescribed
along all domain boundaries, the displacements due
to scattering of the waves are determined by using
BEM, Eq. (6), as follows:
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which when premultiplied by 1][ −F  one gets:

{ } [ ]{ }                    

s
z

s
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The total displacement field of the medium is
now calculated by summing up the displacements due
to scattering and those due to free field response.
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)1(*
      iCC ss β+=                                                (19)

The canyon and its surrounding and underlying
medium is shown in Figure (6). In this figure, ABCD
represents the ground surface and dashed semi-
circular of radius 7a represents the enclosing
boundary; the radius was determined by trial and
error to get accurate results with minimum computa-
tional effort.

Figure 6. Semicircular canyon in a half space under vertically
incident SH waves.

For boundary element analysis, the medium
boundary was discretized into 248 linear elements by
252 nodes, of which 65 nodes and 64 elements are
located on the enclosing boundary. In order to prop-
erly define the corners and traction discontinuities,
some dummy nodes have to be introduced in the
model; two nodes are defined at one point. For the
case at hand, four dummy nodes are considered at
points A, B, C, and D in the model. Analysis was
then carried out for a 5% material damping, and the
results were compared to the closed form solution of
Trifunac [4]. The variation of surface displacement
amplitude thus obtained by boundary element method
versus the dimensionless distance x/a for the dimen-
sionless frequency of 1 is shown in Figure (7) by
dots. The dimensionless frequency is defined as:

sC
a

 

 

π
ω=η                                                          (20)

which contains the property of  the medium, ,sC  the
incident wave, ω, and canyon geometry, a. The
solid line in Figure (7) corresponds to the closed
form solution of Trifunac [4] obtained by using
complex shear wave velocity to incorporate the
material damping. Figure (7) indicates that closed

Figure 7. Distribution of displacement amplitude in and around
the canyon surface.

form and numerical solutions match perfectly.
With this technique and code validation, it can be
applied to other cases for which no solution is, yet,
at hand.

5.3. Extended Results of Single Semicircular
Canyon

Surfaces with irregularities when subjected to
seismic waves results in different responses along
the irregular surface and the nearby ground surface
as compared to the case of flat one. To determine
the extent of the free surface around the canyon
which is influenced by the presence of the semicir-
cular canyon in the viscoelastic half space when
subjected to SH waves, the amplitude of surface
displacement for higher values of dimensionless
distance x/a is shown in Figure (8). It clearly shows
that the displacement amplitude decreases by in-
creasing absolute value of x/a and that it fluctuates
around the constant value of 2, which is the displace-
ment amplitude of a half space surface subjected to
vertically incident SH wave in the absence of any
canyon, i.e. .ff

zU

Figure 8. Distribution of displacement amplitude in and around
the canyon surface for η = 1 and β = 0.05.

As ||    

ff
zz U U −  represents the amplitude of scat-

tered wave field, its variation versus x/a is shown in
Figure (9). This figure indicates that the amplitude of
scattered waves decrease gradually with increasing
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Figure 9. Distribution of scattered displacement amplitude in
and around the canyon surface for η = 1 and β = 0.05.

x/a but still has a considerable value even at far
away points; e.g. 0.085 at a point 9 times canyon
radius farther than the canyon edge.

The variation of amplitudes of total and scattered
wave displacements for points at distances x/a
equal to 1.5, 2, 3, 5 and 10 versus dimensionless
frequency η and for β = 5% are illustrated in Figures
(10) and (11), respectively. In contrast to the ampli-
tude of total wave responses of nearby ground
surface for different x/a, Figure (10), which do not
show a consistent variational pattern, the amplitude
of scattered wave displacements, Figure (11) shows
similar variational trend versus η for different x/a.
All curves attain their absolute maximum value at
η =  0.45 and the amplitude of scattered wave
displacement decreases as η increases but with a
decreasing rate as x/a gets smaller.

Figure 11. Variation of amplitude of scattered wave response
of different surface points of a half space with
circular canyon for different η’s and β = 5%.

Figure 10. Variation of amplitude of total wave response of
different surface points of a half space with circular
canyon for different η‘s and β = 5%.

5.4. The Case of Two Adjacent Semicircular
Canyons

The boundary element method can be used to
investigate the interaction of two adjacent canyons
when subjected to vertically traveling plane harmonic
SH waves. The required steps to analyze this case
are similar to those for the case of a single canyon.
Therefore, the tractions due to free field response
along the hypothetical canyon surfaces are first
computed analytically. These tractions are then
reversed and exerted to the canyon surfaces to
evaluate the scattered displacements using BEM.
The total response is thus determined by summing
up the free field and scattered wave responses.

The case of a homogenous, viscoelastic and
isotropic half space with two semicircular canyons
with radius a, being a distance d apart subjected to
a vertically traveling plane harmonic SH waves,
Figure (12), of having different dimensionless
frequency, η, have been studied by the developed
and validated computer code and their results will
be presented hereafter. For all the cases material
damping has been considered. For the case of bound-
ary element solution, the boundary of medium
contains 332 linear elements and 338 nodes, includ-
ing 6 dummies, along the top surface and 64 linear
enclosing elements.

The amplitude of displacement along the ground
surface for dimensionless frequency of 1, when the
distance of two canyons is set equal to 0.5a, is
shown in Figure (13). The geometry of the surface
irregularities are also shown in this figure. As the
geometry of the model and the loading condition
are symmetric, the resulted displacement is also
symmetric. It is evident that the presence of canyons
has resulted in a maximum deviation in surface
displacement from that of a flat surface.

Figure 12. Double semicircular canyons in half space subjected
to vertically SH waves.
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The amplitudes of difference in displacement
between single and double canyons along the canyon
surface would be a suitable criterion of canyons’
interaction. This difference, when normalized by the
displacement amplitude of the single canyon can
serve as an indicator of the error of the analysis of
an individual semicircular canyon without consider-
ing its interaction with the existing nearby canyon.

100% ×
−

=
  

  

s

sd

u
uu

error                                    (21)

where su  and du  are displacements of single and
double canyons, respectively. Figure (14) shows the
variation of displacement amplitude response of
single and double semicircular canyons versus
distance for d/a  = 1, η = 1 and β = 5% along with its
error variation. In this figure, and for the double
semicircular canyons, the right hand side canyon
surface response is presented, with x' being mea-
sured from the center of right hand side semicircular
canyon. The maximum error, as defined in Eq. (21)
is 72.58% which occurs at x'/a equal to -0.904.

The response of each canyon of double semicir-
cular canyons very much depends on how far it is
located from the other one and also the incident
wave frequency. Analyses have been made for
distance of 2a, 4a and 8a and their results for right
hand canyon are shown in Figures (15), (16) and
(17), respectively for η equal to 0.45, 1 and 1.5. For
comparison, the response of a single canyon is also
shown in these figures.

It is clearly evident from Figures (15), (16) and
(17) that the transverse displacement of double

Figure 13. Displacement amplitude of ground surface for d  =
0.5a, η = 1 and β = 5%.

Figure 14. Displacement amplitude of single and double
canyons and resulted error for d/a = 1, η = 1 and
β = 0.05.

Figure 15. Displacement amplitude of the right hand canyon
surface for different d/a, η = 0.45 and β = 0.05.

Figure 16. Displacement amplitude of the right hand canyon
surface for different d/a, η = 1 and β = 0.05.
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Figure 17. Displacement amplitude of the right hand canyon
surface for different d/a, η = 1.5 and β = 0.05.

Table 1. Comparison of computed maximum errors for different
values of d/a and η.

canyons surface converges to that of a single one
as the dimensionless distance d/a increases. To
study the sensitivity of response of double canyons
system with d/a and η, the case for different values
of d/a and η was solved and error as defined in
Eq. (21) were calculated; the maximum errors are
all shown in Table (1). Variation of error percent
versus d/a for three values of η are also shown in
Figure (18).

Considering the error percent in Table (1), and
the diagrams of Figure (18), the following conclu-
sions can be drawn. In this regard a maximum error
percent of 10 is considered acceptable.
1. For ≤η 0.1, the interaction of the two canyons

can be discarded for all values of d/a.
2. For given η, the error attains its local maximum

value at canyon distances corresponding to

Figure 18. Error distribution versus dimensionless distance
d/a, for some values of η.

multiple of incident wave wavelength. Thus,
more and more fluctuation in error percent
occurs for larger η's, see Figure (18).

3. The first local maximum of error percent for
each d/a is highlighted in Table (1). It is seen that
these maxima occur in the frequency rage of
0.3 ≤η≤ 0.45. This could be anticipated as it was
concluded in section 5.3 that for a single canyon
the maximum scattering occurs at η = 0.45 re-
gardless of the distance where it is monitored,
refer to Figure (11), and one expect to see higher
interaction between two canyons where, in the
frequency range, there is high scattering.

4. It is evident from Table (1) and Figure (18) that
within a 10% error bound, there is no need to
consider interaction of two canyons subjected to
vertically incident harmonic SH waves having
any frequency, if these are more than 20 times
canyon radius apart.

6. Concluding Remarks

The ability of the boundary element method in
considering the effects of irregular topography on
scattering of vertical plane harmonic SH waves
was investigated. Solution was sought by combining
closed form solutions of singular integrals with
boundary element method. In the latter, linear ele-
ments in conjunction with dummy nodes and
enclosing elements were utilized to acquire more
accurate results. It was concluded that the presence
of a semicircular canyon of radius a changes the free
field motion of a half space and affects the seismic
response of the ground surface even at points as far

?  d/a = 1 d/a = 2 d/a = 5 d/a = 10 d/a = 15 d/a = 20 d/a = 25 

0.05 2.8 2.3 1.6 1.2 0.9 0.8 0.6 

0.1 9.7 8.0 5.3 3.2 2.3 2.0 1.7 

0.15 21.8 17.6 9.5 5.4 4.8 3.4 2.7 

0.2 39.6 28.5 12.9 10.4 6.6 5.4 4.0 

0.3 76.0 45.4 29.8 18.3 14.3 10.3 6.8 

0.4 83.0 52.1 50.7 26.7 15.9 10.0 6.5 

0.45 80.9 52.2 50.8 24.6 13.9 8.6 5.6 

0.5 77.5 51.9 45.9 21.3 12.8 8.1 4.9 

0.6 69.0 53.3 36.5 22.6 10.7 6.2 3.5 

0.8 63.0 68.7 42.3 15.6 6.8 3.1 1.4 

1 72.6 122.9 36.9 15.0 5.4 2.2 0.9 

1.5 109.7 72.0 33.5 7.8 1.8 1 1.1 

2 223.5 120.9 30.6 4.7 1.2 1.1 1.8 
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as 10a. Also it was shown that the interaction of
two semicircular shaped canyons would very much
depend on the dimensionless frequencies. In double
semicircular canyons the response of each canyon,
as compared to a single one, is also highly affected
by the distance between the canyons. For material
damping of 5% and within a 10% error bound, the
interaction of two similar semicircular canyons
would be significant if the distance between the two
is less than 20 times canyons' radius, and in such a
case both canyons have to be modeled simultaneously
in the analysis.
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