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1. Introduction

In this paper, automatic detection and picking of the S-wave, in the problem of
passive seismic monitoring has been studied, and a method is proposed for detecting
S-phase onset time based on the eigenvalue analysis. By calculating eigenvalues
of the time domain covariance matrix of the earthquake record, a characteristic
function is defined, in which applying an adaptively determined threshold value,
the S-phase onset time is picked. The proposed method is capable of successful
determining S-phase onset time in local and near regional seismograms. Motivation
towards this research has been the growing number of operating seismic stations in
Iranian Broadband Network (BIN) and the necessity of providing earthquake pa-
rameters information fast and precisely. In addition, a doing well S-phase picking
algorithm can be used to increase the number of determined S-phases in databases
in which tomography studies are carried on. We tested the proposed method on 185
earthquakes recorded in the BIN, and evaluated the performance of the algorithm.
Weé also examined the other algorithm of S-phase detection based on Autoregressive
(AR) modeling of the seismograms on the same data, and compare the output of two
algorithms. This comparison implies that the results of the proposed method are
better than the AR based algorithm on our database.

Automatic earthquake signal phase picking is of
great importance in earthquake data processing.
Modern digital seismic networks, which are operat-
ing continuously all over the world, produce huge data.
The manual processing of the increasing amount of
such data is very time consuming and requires con-
siderable work force. Therefore, from early days of
digital seismology, a considerable effort has been done
in order to automate different steps of earthquake
signal processing. Consequently, nowadays, real-time
automatic procedures that include both data acquisi-
tion and data processing modules are commonly used

in every earthquake data processing centers, e.g. the
Earthworm System [1], which is supported by the
USGS, is operating in most US seismic networks.
The event and phase detector algorithms used in
real-time procedures are usually based on the STA
(short term average) / LTA (long term average)
algorithm (e.g. [2-3]). The fundamental of this method
is to compute the average amplitude of the signal, or
an improved version of it, in two running time
window, one with a short duration, and the other
with longer duration. The phase detection is then
achieved when the STA/LTA becomes larger than a
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predefined threshold level. The STA/LTA based
algorithms may be sufficient for rapid earthquake
location estimation. However, for precise location of
the earthquakes and further seismological studies,
such as tomographic studies, more accurate phase
picking algorithms are needed.

Seismic phases are detectable by exploring the
variation of local properties of the seismograms,
such as the frequency content, amplitude, statistical
properties and polarization. In order to detect
seismic phases using automatic algorithms, such
variations should be investigated on the seismogram
or on a characteristic function (CF). The concept of
the CF is first introduced by Allen [2], and is a time
series that efficiently characterizes the seismogram,
and responds to the desired changes as rapidly as
possible while preferably enhances them. The
performance of a phase picker algorithm relies
strongly on the CF, so it should be defined very
carefully depending on the properties of the analyz-
ing seismograms and the desired seismic phase. The
absolute amplitude, power, polarization indicators
and the envelope function of the seismogram are
usually selected as a CF both for P- and S-phase
onset detection [2-8]. While the automatic methods
of P-phase detection picking are more likely to
perform successfully, the scenario for S-phase is
usually more complicated. The S-phase detection and
phase picking, which we consider in this paper,
needs to be done against the background of the
P-phase coda. The S-phase commencement on the
seismogram is often emergent and buried in the
P-phase coda; though at very short distances, the
S-phase onset can be impulsive and have high ampli-
tude relative to the P-phase coda. Furthermore,
converted S-to-P or P-to-S phases at a sediment-
bedrock interface may be misinterpreted as the first
S-phase onset time [9]. For example, Sp precursor,
S-to-P conversion, appears on the seismogram
ahead of S by a time proportional to the depth of
the interface and the Vp/ V. ratio in the crust [10].
Hence, even manual S-phase picking is often uncer-
tain for many seismogram signals. Accordingly,
S-phase onset time will not be reported for many
seismograms, e.g., during 2008, the total number of
P (Pn and Pg) and S (Sg and Sn) phases reported
by the ISC bulletin were about 273000 and 118000
phases, respectively [11]. However, S-wave arrival
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time is very important to have a robust and reliable
earthquake location. At least one S-phase reading is
required at a station within approximately 1.4 focal
depth's distance from the source to derive a focal
depth that is accurate to within approximately
+1.5km [12]. Moreover, determination of shear
wave velocity is a key parameter to calculate
Poisson's ratio that is important in petrological
aspects [13-14]. Therefore, we need to have S-phase
onset time in dataset in which seismic tomographic
studies are done. The problem we are dealing with
in this paper is to detect the S-phase automatically
and to pick its arrival time, once the P-phase arrival
time is already available with high precision via
manual processing or automatic procedure (e.g. [15]),
and the preliminary location of the seismic event is
also available. We need the event location to be
known, in order to discard false detection of other
secondary phases instead of the first arriving
S-phases. This task simply is done by comparing a
rough estimation of receiver-to-source distance,
having the S-P time, with which existed in the
catalogue.

Automatic S-phase picking algorithms usually
rely on inherent difference of P- and S-phase
characteristics as described thoroughly in [16-17].
The S-phase is always delayed as compared to the
P-phase arrival time at the station, and the amount of
the corresponding delay depends on the epicentral
distance and the earth velocity model. We have ben-
efitted from this property in our S-phase detection
method. Theoretically, first emerging P-phase
particle motion aligns in the direction of the pro-
pagation path, while S-phase oscillates in a plan
perpendicular to the wave propagation direction, called
the S-plane. Any S wave signal consists of SH and
SV components, which may or may not be well-
correlated at zero lag. Within the solid earth, the
particle motion of these components will be linearly
polarized and perpendicular to the ray direction.
Because of reflections at the earth surface, this
property can not be easily observed on the recorded
seismogram unless the wave arrives close to the
vertical direction. However, if the SV wave arrives
at the surface post-critically, then both the horizontal
and vertical components are shifted in phase [18],
then the registered signal is no longer linearly polar-
ized. Discriminating between P- and S-wave groups
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can be done using so called polarization analysis,
both in time and frequency domains, which tradi-
tionally known as the essential tool for identifying
the presence of S-phase on the earthquake record.
Traditional approaches to the polarization analysis
are very well known in seismology and have been
discussed in various papers (e.g. [6, 17, 18, 19, 20]).
For large epicentral distances, where P-phase
energy dominantly appears in the vertical component
and S-phase appears in the horizontal components,
the S-phase detector can be defined based on the
propagation of energy in the horizontal plane based
on polarization analysis. In this case, using STA/LTA
detection procedure, S-phase or other secondary
phases can be detected [21]. For example, Earle and
Shearer [5] have applied an STA/LTA detector on
the envelope function of the seismograms to derive
travel time curves using automatically picked phases.
Combination of the polarization analysis and the
wavelet transform has been proposed in many
studies (e.g. [6, 22, 23]). In [23], this approach has
been verified using regional seismograms recorded
more than 900 km far away epicenter. Autoregressive
(AR) modeling of the earthquake record has been
investigated for estimation of P- and S-phase onset
time, and online system of earthquake location [22,
24, 25]. It has been observed in [24] and [25] that
although for P-phase onset determination based on
the AR modeling, using single vertical component is
sufficient, for accurate estimation of S-phase, using
two or three components, seismic data is a better
choice. In this case, every component can be
processed separately and the earlier time can be
considered as the onset time. In addition, AR models
derived from every component can be analyzed
jointly to determine S-phase onset time [24].
Kuperchoch [26] used the AR forward prediction
of S-wave by applying an AR model to both hori-
zontal components. Afterward, comparing the
predicted waveforms with the incoming ones, a
prediction error is determined which provides a
CF, to which S-phase detection is done through an
iterative procedure.

In the current study, we aim to introduce a method
to determine S-phase onset time automatically for
local (less than 100 km) and near regional seismo-
grams (100-400 km). The method is based on the
eigenvalue analysis of the time domain 3D covari-
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ance matrix and Akaike's Information Criteria (AIC)
[27]. However, a 2D covariance matrix based on
horizontal components is also applicable. Motivation
towards this research has been growing the number
of operating seismic stations in Iranian Broadband
Network (BIN) and necessity of providing fast and
precise information of the earthquake parameters.
Implementing an automatic detection procedure on
BIN in combination of manual processing of data
may lead to fast processing and dissemination of the
earthquake data.

2. Autoregressive Modeling and AIC Criteria

Autoregressive (AR) modeling has been used in
many automatic phase picking procedures to obtain
accurate estimation of P- and S-phase onset time [22,
24, 25, 26, 28, 29]. A brief introduction to the AR
modeling and its rule in seismic phase picking is
presented in what follows.

Assume a segment of seismogram that includes
a seismic phase onset time whose precise time is
unknown; the rule of the AR modeling is to deter-
mine the precise phase onset time, in other words,
an optimum division point in this segment. This
process involves calculating the AR model of the
seismogram segment, x,n=1,.,N where Nis the
length of the segment, in two intervals; one, 1 =1, is
selected before the start of the phase and consists of
seismic background noise only, and the other, i= 2, is
selected after phase arrival time, which includes
seismic background noise as well as seismic signal.
It is required that x includes a sufficiently long
segment before and after the real onset time to
make an effective AR model fit for both intervals
separately. It has been assumed that both intervals
can be modeled as stationary processes with
uncorrelated Gaussian noise. In both intervals, 1= 1,
2, the data can be fitted to an autoregressive model

of the fixed order M, but independent coefficients,
a,=m=1...,M:

M i i
X, = Elamxm +€, (1)

with n=1,..., M, fori=1,and n=N-M+1.,...,N,
for i = 2. In this equation a’ is the autoregressive
process coefficient and €. refers to the Gaussian
distributed noise in the segments, which its mean
and variance are E{e'}=0 and E{(c!)*} =07, re-
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spectively. The AR coefficients in Eq. (1) are used to
model the data simultaneously in intervals [M +1, K]
and [K+1,N—M]. While K+1 is the boundary
between segments (i.e. the phase arrival). The
approximate likelihood function L for this modeling
procedure is:

L(X;K9M9®]9®2): (2)

n;/2 2
) Xp| __[ Z (X - Z am j— m)J
26; J=pi

where @, =0(a/,...,al,,c?) represents the model
parameters for interval p,=M+1, and ¢q =K
¢ =N-M,n =K-M,n, = N-M - K. The maxi-
mum likelihood estimation of the model parameters
is found at dlogL/06®,; =0, with the following
solution:

H(
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|
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The maximum value of the logarithmic likelihood
function for both models as a function of K, separat-
ing point of two intervals, is obtained as:

1
log(L(x K, M,0,,0,)) = = (K = M) 10g(07 ) -

2(N= M= K)log(63 ) + C )

where, C is a constant. By maximizing the joint
likelihood function Eq. (4) as a function of K, the
best feasible estimate of Kis calculated. Accordingly,
in phase picking problems, x, is interpreted as the
optimal phase onset time.

Eq. (4) is the first term in Akaike's Information
Criteria, which is defined as:

AlC= )
-2 log (maximized likelihood function)+2 M

The first term of Eq. (5) measures the misfit of
the AR model and the second term, implies the
unreliability of the fit [27]. In the phase picking
applications, the order of the AR model, M, consid-
ered as a fixed parameter. Therefore, the only
variable term of Eq. (5) is the first term. The above
described optimization method is referred as AR-
AIC. Ideally, AIC function will linearly decrease from
M+1 to xi then increase from x, +1 to N-M.
Therefore, it results a “V”” shape function with the
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minima at x, , where x; is the onset time.

The AR coefficients in Eq. (1) are estimated
usually by Yule-Walker approach [30], Burge
algorithm [31] or the least squares approach. In this
paper, we have used a MATLAB function based on
the Burge algorithm to calculate AR coefficients. The
order of an AR model can be estimated by partial
autocorrelation function (e.g. [30]) or the application
of AIC[27]. If a small AR model order is used in the
process, the main statistical properties of the original
signal will be ignored; while a big model order causes
the modeling of the noise associated with data. Based
on [26], we assumed the order of AR model to be 4,
in this study.

Three different, but fairly similar, approaches have
been proposed for phase onset picking based on AR
modeling [29]. Figure (1), shows the three approaches
which are introduced briefly here. In first approach,
Figure (1a), the whole time interval is described by
two AR models. One model, F, is calculated in the
mterval 1 to K-1 and the other one, B, is calculated
from Kto N. Kis the division point of two intervals,
which is variable and N is the length of the segment.
In the second approach, Figure (1b), the F model, in
forwards direction, is calculated on the arbitrary
mterval 1 to I and the B model, in backwards direc-
tion, is considered on the interval N-1to N. Using F
and B model coefficients, the error prediction series
on the interval 1+ Mto N-Mand N-Mto 1+ M, are
calculated, respectively. The parameter M is the
model order. After that, using the variance of the
prediction error, AIC function is calculated at each
point. In the third approach, Figure (1c), the AR model

/ F Model \ .
! K1\ /"

B Model
(a)
F Model
? K
B Model
(b)
F Model
? K
1 | N

Figure 1. Three approaches used in the AR-based onset
time estimation methods, F model refers to forwards
model and B model refers to the backwards [29].
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(F-model) is obtained once in the first part of the time
series. The prediction error series is obtained for the
other points. For different K from 1+ Mto N- M, the
AIC function is calculated.

Normally, the AR model is applicable only for
stationary part of a signal. Accordingly, regarding
that the segment which contains the S-wave group is
not stationary; the third approach is taken in this
paper for S-phase picking.

One approach for S-phase detection based on the
AR modeling is using the sum of the AIC's of two or
three AR models obtained by fitting to each compo-
nent [22]. We have used this approach to make a
comparison between the results of the proposed
method and AR based automatic S-phase picker.

3. Automatic S-Phase Picker and Evaluation

The proposed S-phase picker is based on the time
domain 3D covariance matrix eigenvalue analysis and
the AIC function. The advantage of the proposed
method is that the CF and the detection rules, are not
complicated and do not require many predefined
parameters. Therefore, the algorithm can be imple-
mented easily. We emphasis on the idea of using
eigenvalue sequences to detect S-phases, as Magotra
[32] used to detect S-phase and other secondary
waves in an automatic algorithm of single station
location. Eigenvalues of covariance matrix give a
measure of the localized energy on the direction of
the three principal axes of the polarization ellipsoid.
In this work, we consider only the biggest eigenvalue
sequence, as it is more sensitive to the variation of
the seismic signal energy in the direction of wave
propagation. While the eigenvectors represent an
orthogonal base of the three-dimensional space and
form an ellipsoid that best fits to the data in least
squares sense [32]. If we assume that earth struc-
ture in the vicinity of the receiver is sufficiently
homogeneous that no phase shift is introduced by
local scattering effect, time domain covariance
matrix is calculated via the following equation [33]:

GH GHC cSZH

C3D = Gne Gi Gez (6)
cSZH GCZ cSZZ

where:

o. = E[n’], . = E[¢’], 62 = E[Z] (7)
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and,

where, E| ] refers to the expected value and n, e and
z indicate the north-south, east-west and vertical
components. Every element of the covariance ma-
trix reflects the magnitude of the association between
two components of the seismogram. Therefore, the
corresponding eigenvalues somehow reflect the joint
behavior of all three components. For this reason,
using the eigenvalue sequence is advantageous over
the other energy measurements which regards the
total energy of the seismogram as (n + e+ z*) and
simply show the envelope of the seismograms.
Figure (2) shows an example of seismogram and
corresponding total energy (dark line) and eigenvalue
sequence (light line). As it is obvious in the lower
plot of this figure, eigenvalue sequences are less
sensitive to the small amplitude and less correlated
background of S waveform in comparison with the S
waveform.

The procedure we have proposed is applicable
through the following steps:

Step 1) Prefiltering: As a preprocessing of the data,
the high-pass Butterworth filter of order 2 is applied
on the 3-component seismograms to remove un-
wanted background noise below 2 Hz.

Step 2) Calculating the characteristic function:
The polarization analysis is done on the filtered seis-
mogram using the sliding time windows, which move
one sample to the right. In this study, a moving time
window of 30 samples (~1/2 second) is considered.
It is required that the selected time window be long
enough to include the lowest frequency content of
the signal. Using the biggest eigenvalue of the 3D
covariance matrices a sequence is obtained, which
serves as the CF, in which a picking algorithm is
applied in order to detect the arrival of S-phase wave-
form. As the P-phase onset time assumed to be
known, the CF is calculated within a time window,
beginning from the P-phase onset time and lasting to
the end on the earthquake signal coda, where the
S-phase expected to be detected.

Step 3) First estimation of S-phase onset: The CF
remains small for seismic noise or P-phase which
appears before the S-phase group, but increases
strongly as S-phase arrives and efficiently tracks the
variation of the energy in the 3-component seismo-
gram. The global maximum of the CF is mostly
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Figure 2. An example of a seismogram (high pass filter, 2 Hz) and corresponding total energy (dark line) and biggest eigenvalue
sequence (light line). The total energy time series has been smoothed by averaging in 30 sample time windows. Moving
time window of 30 samples are also used in eigenvalue analysis. In the upper plot, both total energy and eigenvalue
sequence are normalized to the maximum of the Z component. Sampling interval is 0.02 s.

related to the S-phase waveform. For shallow events,
the global maximum of the CF may be related to the
surface waves. The S-phase onset determination on
the CF is done using an iterative scheme. The initial
estimation of the S-phase onset time is obtained by
applying an adaptively selected threshold value on
the CF. The first point before the global maxima of
the CF in which the value of the CF drops below the
threshold value, THR (=0.15max(CF)), is regarded
as the first estimation of the S-phase arrival time.
The coefficient 0.15 is determined experimentally.
This value is selected regarding the values of the CF
in an interval between P-and S-wave group for sev-
eral signals. While the first estimation of S-phase onset
time, S

Initial®

seconds of CF around it and carries on towards the

is provided, the algorithm selects 12

final S-onset time picking. However, invalid picks
are discarded by checking the preliminary phase de-
tection and predicted S-phase arrival time using the
earth velocity model. Invalid early picks are usually
due to secondary P-phases (e.g. Pg), and late picks
belongs to the surface waves, which can easily be
discriminated from S-phases.

Step 4) Second estimation of S-phase: The AIC
function is applied on the selected time window of
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CF to highlight the boundary between S-phase and
its background. Accordingly, we obtained the second
estimation of S-phase onset time. The AIC function
originally used to calculate an optimal order for an
AR model, the criterion can be used to denote the
dividing point of two adjacent time series with
different underlying statistics. The AIC function can
be used for CFs, which should not be necessarily
defined using AR models [26, 34].

AIC(K) =(K-1) log{% §ICF} j +
p

9
Jj=

where, Nis the length of the CF within the time win-
dow. We used above equation to calculate AIC, for
every assumed K, division point, from the selected
time window of the CF around first estimation of the
S-phase. The S-phase onset time is assigned to the
global minimum of the AIC-function. The application
of above mentioned procedures are shown in follow-
ing examples.

Figure (3) shows 3-component seismogram of a
3.5 magnitude earthquake, which is recorded in the
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GHIR station in local distance (64 km), on 01.01.2005
at 01:31:31. The CF is shown at the top of the figure.
As it can be seen, the maximum of the CF, points to
the S-phase group. S-phase onset time, as the opera-
tor picked is shown in the figure by a dash line. In
this case, the first estimation of the S-phase onset
time is 3 samples after the manually picked onset
time. The selected time window which is needed for
further analysis is shown on the figure as well.
Figure (4) shows the AIC function (Left) as well as
the zoomed version of the analyzing window of CF
(Right). The global minimum of the AIC function

refers to the second estimation of the S-phase onset
time in the proposed procedure. In this case, the
difference (topem o b lgorithm) of automatically deter-
mined S-phase onset and the manual one is 14
samples.

In Figure (5), another example for showing the
performance of the proposed algorithm on a local seis-
mogram is shown. The 3-component seismogram
belongs to a 3.2 magnitude event recorded in BNDS
station on 04.01.2005, at 16:58:59. The epicentral
distance is 166 km. In the CF time series (left), the

global maximum is situated in the S-phase waveform.

CF

i dia,
fidls el iddul'l
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0 400 800 1200 1600 2000
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2800 3200 3600 4000 4400 4800

Figure 3. A 3-component seismogram (high pass filter, 2 Hz) of 3.5 magnitude earthquake, recorded in the GHIR station in local
distance (64 Km) (case no. 1, Table 1). The horizontal axis shows the number of samples. Sampling interval is 0.02 s.
The CF (top) shows abrupt increase in the S-phase waveform. The maximum of the CF belongs to the S-phase wave-
form. The dash line implies the S-phase onset as determined by the operator. The rectangular on the plot shows the
selected window for further analysis. Sampling interval is 0.02 s.
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Figure 4. The AIC function (Left), analyzing window of CF (Right). The global minimum of the AIC function refers to the second
estimation of the S-phase onset time. Sampling interval is 0.02 s.
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The CF increases while the S-phase appears on the
related seismogram. Figure (6) illustrates the auto-
matic second estimation. To do this, the AIC function
(Left) and the CF around the first estimation of S-
phase onset (Right) are shown. The global minimum
of the AIC indicates the second estimation of S-phase
onset. In this case, the differences of the first esti-
mation and second estimation regarding the manual
picks are -49.5 and 17.5 samples, respectively.
Figure (7) illustrates another example for a near
regional event. The seismogram is recorded by CHTH
station, from an earthquake with magnitude of 3.2 in
epicentral distance of 210 km, which occurred on
07.05.2006, at 00:48:23. A zoomed version of the CF
and AIC function is shown in Figure (8). Figure (9)

depicts a stated window around S-phase arrival time
for seismogram shown in Figure (7). The manual
detection, theoretical arrival time, first and second
estimation of S-phase are shown in this figure. In this
case, the differences of the first and second estima-
tion regarding the manual picks are -90.5 and -46.5
samples, respectively.

Figure (7) illustrates another example for a near
regional event. The seismogram is recorded by
CHTH station, from an earthquake with magnitude
of 3.2 in epicentral distance of 210 km, which oc-
curred on 07.05.2006, at 00:48:23. A zoomed version
of the CF and AIC function is shown in Figure (8).
Figure (9) depicts a stated window around S-phase
arrival time for seismogram shown in Figure (7).
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Figure 5. The 3-component seismogram (high pass filter, 2 Hz) of a 3.2 magnitude event, recorded in BNDS station in 2005.01.04,
at 16:58:59. The epicentral distance is 166 km (case no. 6, Table (1)). Sampling interval is 0.02 s. In the AIC plot (top),
the maximum is situated in S-phase group waveform. The S-phase onset as the operator picked shown by dash line.
The dotted line shows the first automatic estimation. The rectangular indicated to the selected window for next step.
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Figure 6. The AIC function (Left) and the CF around the first estimation of S-phase onset (Right) are illustrated. The global mini-

mum of AIC, indicates the second estimation of S-phase onset.
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Figure 7. Example of a near regional event (High pass filter, 2 Hz). The seismogram is recorded by CHTH station, from an earthquake
with magnitude of 3.2 in epicentral distance of 210 km (case no. 185, Table 1). Sampling interval is 0.02 s. The S-phase
onset as the operator picked shown by dash line. The dotted line shows the first automatic estimation. The rectangular
indicated to the selected window for next step.
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Figure 8. The AIC function (Left) and the CF around the first estimation of S-phase onset (Right) are illustrated. The global minimum
of the AIC, indicates the second estimation of the S-phase onset time.
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Figure 9. A zoomed window around S-phase arrival time for seismogram shown in Figure (7). The light dash line (no. 1) indicates
the manual detection (1758.5), the solid line (no. 2) indicates the second estimation of S-phase (1808), the dark dash line
(no. 3) shows the theoretical S-arrival time (1812), and the dotted line (no. 4) shows the first estimation of S-phase (1849)
by the automatic procedure.
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The manual detection, theoretical arrival time, first
and second estimation of S-phase are shown in this
figure. In this case, the differences of the first and
second estimation regarding the manual picks are
-90.5 and -46.5 samples, respectively.

We have examined the performance of the
proposed method, by using a database including
185 seismograms selected from BIN data bank. The
seismograms are recorded in different broadband
stations with 50 samples per second, and belong to
the earthquakes most of which have a magnitude
range from 2.8 to 3.8 and epicentral distance of about
50 to 300 kilometers. The locations of events and

station are shown in Figure (10) and event’s magni-
tude versus receiver to source distance is depicted
in Figure (11). The proposed algorithm has been
applied on this data set, and S-phase onset times are
picked automatically. In order to have insight to
accuracy of automatically picked S-phase onset time,
a comparison has been done between the automatic
picks and manual picks, which are already available
for seismograms. We also applied the algorithm on
horizontal components, to test whether the results are
stable in this case. In addition, we want to know
whether using 3-component is essential or not. The
results are summarized in Table (1). The second

40°
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42° 44° 46° 48° 50° 52° 54° 56° 58° 60° 62° 64°
Figure 10. The location map of seismic events (circles) and stations (triangles).
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Figure 11. Magnitude of events versus receiver to source distance.
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Table 1. Information of database and results of S-phase onset picking.

No. Displacement Magnitude SNR S-op Shitial S-AIC-3 S-AIC-2 AR-AIC-3 AR-AIC-2
1 63.71 3.5 39 944 947 958 958 977 977
2 67.5 3.1 83 957 948 954 954 969 969
3 42.55 3.9 67 805 819 815 815 828 828
4 184.2 34 54 1591 1616 1586 1586 1621 1621
5 63.47 33 60 920 932 935 935 951 972
6 166.7 3.2 32 1526.5 1576 1544 1544 1596 1597
7 153.6 2.5 46 1441 1443 1436 1436 1452 1452
8 84.77 3.8 90 1013.5 1009 1013 1013 1108 1107
9 176.6 3 45 1591 1673 1628 1626 1640 1680
10 71.75 3 61 963.5 964 974 970 1005 1005
11 152.3 3.2 25 1437.5 1510 1470 1457 1568 1568
12 173 3.5 57 1524 1575 1515 1514 1583 1578
13 45.68 3.5 70 845 860 848 849 889 888
14 134.5 3.7 43 1344.5 1351 1331 1338 1357 1345
15 1154 3.7 96 1186.5 1183 1180 1179 1186 1199
16 48.17 33 86 812.5 807 824 824 843 851
17 178.5 33 68 1602 1623 1585 1585 1624 1621
18 34.32 3.6 79 791.5 802 811 814 831 831
19 183.9 2.8 26 1626 1625 1614 1614 1631 1631
20 72.55 3.6 45 961 948 941 941 958 958
21 178.3 3.2 54 1618.5 1648 1644 1649 1663 1663
22 256.1 3.2 -12 2122 2150 2135 2131 2173 2169
23 133.6 3.6 11 1321.5 1327 1329 1329 1427 1427
24 150.5 3 48 1438 1461 1455 1454 1470 1474
25 102 3.5 86 1084 1091 1074 1074 1090 1094
26 75.84 3 58 1035 1066 1080 1080 1130 1130
27 86.38 3.5 47 1071.5 1061 1089 1137 1201 1201
28 84.61 3.2 83 1009 1031 1037 1036 1052 1099
29 93.05 33 66 1094 1083 1086 1086 1104 1104
30 87.78 3.7 91 1065.5 1157 1072 1072 1195 1195
31 163.4 3 49 1484 1489 1484 1484 1500 1500
32 105.2 3.4 79 1185 1179 1187 1187 1242 1242
33 95.1 3.2 66 1108 1068 1109 1080 1149 1149
34 93.4 34 71 1107.5 1073 1142 1141 1156 1173
35 82.48 3.1 81 1046.5 1034 1049 1057 1084 1077
36 433.3 3.5 17 3097.5 3144 3143 3143 3158 3158
37 433.3 3.5 22 3465.5 3512 3511 3511 3526 3526
38 435 3.6 7 3458.5 3563 3511 3513 3582 3660
39 126.4 3.2 55 1264 1248 1240 1232 1263 1263
40 59.2 3.7 96 886 878 866 867 886 882
41 265.9 3 4 2221 2255 2256 2251 2271 2288
42 234 3.7 30 1880.5 2079 1921 1921 2338 2308
43 204.1 3.7 17 1738 1766 1768 1768 1783 1786
44 90.44 3.9 84 1086.5 1074 1079 1079 1095 1094
45 122.3 2.8 60 1277.5 1337 1301 1299 1349 1353
46 432.9 3.5 19 3451.5 3544 3501 3551 3569 3565
47 137.1 3.5 43 1348 1397 1384 1387 1403 1402
48 332.8 3.2 26 2702 2693 2700 2694 2712 2712
49 235.6 3.9 34 1895 1864 1881 1882 1998 2004
50 86.48 3 49 1063.5 1042 1046 1044 1071 1071
51 141.4 3.2 67 1394.5 1387 1389 1385 1443 1443
52 46.61 3.2 100 846.5 861 858 858 876 877
53 147.6 34 69 1438 1478 1477 1479 1493 1492
54 89.51 3.1 68 1049.5 1033 1034 1034 1052 1052
55 97.79 3.5 86 1102.5 1104 1105 1104 1120 1138
56 152.3 3.5 59 1431 1456 1441 1440 1460 1460
57 244.4 3.5 37 1985 2005 1998 1998 2011 2011
58 266.7 3.8 56 2167 2167 2152 2151 2166 2187
59 144 2.2 35 1393.5 1417 1379 1379 1417 1417
60 139.3 3.6 83 1379 1537 1372 1370 1423 1816
61 87.41 3 72 1066.5 1084 1094 1096 1113 1113
62 140.4 2.7 44 1377 1408 1390 1389 1410 1423
63 96.68 3 43 1060 1056 1058 1058 1073 1073
64 71.1 3.1 87 967 960 962 961 976 976
65 95.75 3 102 1081.5 1077 1073 1073 1086 1086
66 66.53 3.4 86 945.5 948 949 949 968 968
67 368.3 3.1 -16 2957.5 3041 2971 3047 3057 3072
68 87.9 3.2 64 1074 1064 1069 1066 1085 1085
69 85.16 3.6 77 1064.5 1075 1078 1078 1094 1094
70 81.55 3.5 68 1055.5 1065 1066 1064 1082 1082
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Table 1. Continue...

No. Displacement Magnitude SNR S-op Snitial S-AIC-3 S-AIC-2 AR-AIC-3  AR-AIC-2
71 214.2 24 4 1774.5 1800 1800 1805 1816 1813
72 59.08 3.2 55 904.5 906 906 905 920 925
73 86.05 3.2 81 1070 1106 1062 1062 1150 1159
74 175.8 33 50 1532 1522 1519 1519 1538 1538
75 154.8 2.5 43 1454.5 1507 1496 1511 1529 1526
76 142.1 3 31 1379 1418 1422 1422 1477 1499
77 105.4 3.1 43 1151 1189 1194 1193 1222 1224
78 132.6 3.7 73 1338 1338 1337 1337 1353 1353
79 448.9 3.7 17 3612 3758 3642 3660 3784 3779
80 59.17 3.4 77 884.5 887 885 885 904 898
81 107 3 43 1209.5 1249 1241 1229 1266 1266
82 114.7 3.7 84 1245 1251 1256 1251 1272 1272
83 154.1 3.1 58 1446.5 1482 1477 1477 1495 1494
84 230.2 33 32 1895.5 1895 1901 1892 2032 2041
85 72.83 3.7 108 957 943 946 946 965 965
86 151.9 3.1 7 1441.5 1433 1427 1427 1444 1447
87 110.7 3.1 72 1179 1164 1160 1160 1176 1179
88 231.8 3.1 29 1904 1944 1942 1942 1961 1961
89 283.4 3.5 23 2338.5 2360 2361 2360 2380 2380
90 142.3 3.1 43 1359.5 1371 1376 1376 1440 1440
91 131.6 3.7 67 1332.5 1330 1325 1325 1339 1339
92 231.6 33 19 1878.5 1905 1908 1906 1919 2038
93 153 3 49 1462 1444 1443 1443 1472 1476
94 85.4 3.2 67 1050.5 1073 1076 1077 1134 1094
95 143 3.1 60 1388 1402 1399 1398 1462 1445
96 142 2.9 42 1390.5 1422 1405 1404 1436 1443
97 38.8 3.4 112 767.5 759 760 759 776 776
98 115 3.4 76 1218 1221 1213 1210 1224 1229
99 186 3.4 56 1640 1695 1624 1624 1641 1647
100 136 3 54 1408.5 1440 1412 1409 1455 1455
101 165 3 39 1497 1490 1519 1519 1539 1600
102 266 3 2 2335.5 2356 2343 2362 2382 2377
103 183 3 56 1712.5 1724 1709 1709 1725 1725
104 168 2.9 82 1521.5 1525 1522 1522 1538 1538
105 167 3.4 86 1501 1524 1521 1520 1540 1540
106 106 2.6 42 1171.5 1169 1186 1171 1222 1222
107 281 3.6 17 2349 2496 2379 2547 2566 2567
108 253 3.2 49 703.5 743 733 719 733 750
109 256 33 42 2020 2130 2063 2063 2182 2151
110 189 3.5 11 1636 1642 1645 1645 1663 1663
111 90.3 33 59 1069.5 1054 1066 1066 1084 1084
112 221 3.2 49 1875 1901 1891 1892 1911 1910
113 136 3 32 1353.5 1406 1393 1393 1410 1411
114 75.1 32 63 982.5 1090 1020 1019 1155 1155
115 221 3.9 43 1868 1894 1889 1889 1938 1907
116 166 3 33 1525 1538 1543 1543 1633 1622
117 141 3.2 47 1341 1405 1383 1383 1426 1426
118 84.5 3 66 1089.5 1085 1087 1087 1134 1104
119 86.4 33 84 1043.5 1032 1064 1064 1157 1155
120 128 3.5 38 1292.5 1458 1285 1276 1479 1479
121 189 3.1 41 1608.5 1643 1643 1641 1656 1656
122 92.9 3.7 70 1111.5 1087 1114 1114 1230 1231
123 218 3.4 43 1873.5 1942 1884 1886 1957 1957
124 163 2.7 18 1511.5 1514 1512 1509 1526 1529
125 166 2.7 30 1522 1519 1518 1518 1533 1533
126 116 3.4 33 1228 1277 1273 1269 1288 1288
127 160 39 67 1500.5 1531 1518 1514 1534 1538
128 157 3.4 25 1465.5 1463 1465 1479 1488 1483
129 146 3.6 98 1389 1441 1432 1431 1461 1461
130 196 33 51 1708 1711 1706 1705 1722 1723
131 193 35 66 1676.5 1712 1702 1702 1719 1720
132 204 2.5 -4 1724.5 1707 1708 1704 1752 1753
133 191 3.1 44 1659.5 1700 1676 1669 1687 1700
134 192 2.6 6 1660.5 1713 1666 1665 1721 1721
135 163 2.6 63 1509 1528 1511 1511 1531 1541
136 166 2.6 34 1504 1517 1499 1499 1518 1514
137 162 2.6 49 1473.5 1521 1508 1508 1526 1526
138 186 3 80 1614 1608 1604 1604 1621 1621
139 188 2.6 17 1614.5 1629 1619 1619 1638 1639
140 168 3.5 56 1528 1548 1548 1548 1582 1582
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Table 1. Continue...

No. Displacement Magnitude SNR S-op Snitial S-AIC-3 S-AIC-2 AR-AIC-3  AR-AIC-2
141 93.1 3 77 1102 1063 1112 1080 1126 1132
142 126 3.5 88 1293.5 1275 1302 1302 1320 1322
143 184 3.1 39 1620.5 1610 1608 1608 1625 1625
144 168 33 80 1516.5 1516 1510 1510 1529 1524
145 333 27 94 2688 2774 2691 2687 2806 2795
146 264 33 54 2169.5 2271 2210 2110 2394 2406
147 171 3.2 81 1557.5 1589 1570 1564 1596 1615
148 210 33 56 1785 1810 1807 1806 1820 1821
149 188 34 95 1643.5 1745 1686 1755 1774 1774
150 734 37 12 988.5 962 966 967 985 1068
151 693 3.1 36 957 944 952 948 981 981
152 206 29 53 1764.5 1758 1746 1745 1763 1763
153 88.6 3 33 1092.5 1088 1084 1083 1101 1102
154 155 27 40 1430.5 1452 1439 1451 1470 1467
155 149 3.6 47 1455.5 1442 1443 1441 1500 1500
156 154 34 41 1449 1440 1432 1428 1446 1446
157 228 34 48 1884.5 1875 1860 1848 1886 1882
158 127 3 36 1350 1356 1350 1348 1359 1359
159 284.7 3.9 3 3048.5 3064 3054 3055 3074 3074
160 136 3 28 1353.5 1381 1353 1352 1370 1371
161 344 3.6 73 780 832 787 787 806 806
162 208 3.5 31 1762 1793 1771 1767 1813 1813
163 489 3.6 107 821.5 802 830 811 842 842
164 78.9 32 77 1006.5 998 997 997 1013 1013
165 218 3.5 6 1798.5 1760 1766 1763 1816 1824
166 126 34 32 1280.5 1289 1287 1285 1304 1304
167 60.57 3.1 20 897 976 899 898 1015 996
168 148.1 34 52 1425 1515 1440 1426 1537 1614
169 375.8 37 7 3054.5 3030 3077 3065 3095 3095
170 173 3 55 1536 1595 1553 1551 1604 1587
171 194 3.9 42 1684.5 1679 1678 1681 1692 1691
172 66.83 3.6 36 943.5 940 943 941 974 978
173 85.3 32 45 1067.5 1060 1066 1066 1140 1140
174 76.6 3 29 1007.5 991 993 991 1005 1008
175 127 33 22 1286 1315 1302 1301 1315 1329
176 236 37 51 1890.5 1872 1874 1873 1895 1899
177 104 3.1 40 11255 1087 1101 1089 1135 1206
178 30.9 3.1 74 741.5 735 728 728 746 747
179 286 33 80 732 766 731 730 746 782
180 137 33 53 1312.5 1396 1316 1315 1524 1536
181 175 3 45 1539.5 1530 1526 1526 1544 1544
182 101 3.5 32 1169 1173 1178 1175 1193 1193
183 173 3.1 50 1562 1589 1574 1572 1590 1591
184 342 3.1 2 2788 2808 2806 2806 2829 2830
185 210 32 22 1758.5 1849 1808 1974 1808 1974
column of the table shows the epicentral distance of  algorithm.

every event while the third column includes its local
magnitude. The signal to noise ratio (SNR) of P-phase
waveform is shown in fourth column. The columns 5
to 7 show the S-phase onset sample as the operator
is picked (S-op), the first estimation of S-phase
(Spiear

time by the proposed algorithm (S-AIC-3), respec-

) and the second estimation of S-phase onset

tively. The eighth column shows the S-phase onset
time as determined using horizontal components (S-
AIC-2).

Time difference between the manual S-phase
onset time and automatically detected ones are
shown in the Figure (12), for both first and second
estimation of S-phase onset obtained from proposed

JSEE / Wol. 14, No. 3, 2012

In order to show the advantage of using AIC
function using presented CF over the AR-AIC
method and to see how the proposed method
performs in comparison with the AR-AIC method,
we also examined the database using AR-AIC on
3-component as well as 2-component seismogram.
The analysis is done in the selected time window
around the first estimation of the S-phase. As an
example, the AR-AIC functions for seismogram
previously shown on Figure (3) are illustrated in
Figure (13). Results obtained for our database are
shown in ninth column of Table (1) for AR-AIC
method using 3-component seismogram, see Figure
(14), and in tenth column for AR-AIC method by
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Figure 12. Time differences between manually and automatically detected S-phase for first (stars) and second (open diamonds)
estimations for the receiver to source distances of the events.
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Figure 13. The AIC function obtained for the seismogram shown in the Figure (3) by means of 3-component, global minimum refers

to the S-phase onset.
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Figure 14. Time differences between manually and automatically detected S-phase for AR-AIC3 (stars) and S-AIC3 (open

diamonds).

using just horizontal components.

To have a convenient comparison of the results
obtained from different algorithms, the schematic
pie diagrams are prepared as Figure (15). As it can
be seen, the overall results obtained from second
estimation of the proposed method are better than
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the other methods, even using 2-component seismo-
gram. However, the best results are achieved using
3-componet seismogram. The results obtained from
the AR-AIC method for 3-component seismograms
are the same as 2-component seismograms with a
few differences of a 1-3 % in every sector.
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Figure 15. Pie diagrams for comparing results of different algorithms on our database. The percentages of absolute number of
sample difference of automatically picked S-phase with manual ones are shown for each algorithm. (a) Results of first

estimation, S ... (

b) Results of the second estimation from the proposed method. (c) Results of second estimation of

the proposed method by using horizontal components. (d) Results of AR-AIC using 3-Component, (e) Results of AR-AIC

using horizontal component.

4. Conclusions

In this paper, an automatic method for S-phase
picking in local and near regional distances is pre-
sented. The advantage of this method is using a CF
defined as eigenvalues of a 3D covariance matrix.
The CF simply tracks the variation of the localized
energy of the seismogram. In every window, the value
of the CF is related somehow on the total energy of
the seismogram. However, this is not a true measure
of the seismogram energy. This method is also appli-
cable for 2D covariance matrix. As shown in Table
(1), the mean value and standard deviation of the
automatic S-phase onset deviation from manual ones
are -8 and 18 samples, respectively, for second esti-
mation of S-phase onset picking using 3-component
analysis. The automatic S-phase onset times deter-
mined by the proposed method are compared with
those obtained by means of AR-AIC algorithm on
3-component and 2-component seismograms. The
overall comparison shows that the proposed method
produces more accurate picks which looks like the
manual picking. We have investigated the deviations
in results, and found that, in some cases, the devia-
tion is due to the high-pass filter attribute. Therefore,
if filtering is done based on epicentral distance range,
then results may show least deviations.

JSEE / Wol. 14, No. 3, 2012

It should be noted that the deviation from manual
picks do not always imply the automatic false picks.
Due to the complexity of the S-phase waveform, even
manual reading may not always be reliable and
robust. In some cases, they are picked at the early
beginning point of S-phase waveform while for some
cases they are picked more lately. These points
indicate unsustainable approach of manual S-phase
picking. However, the automatic method works
robustly and constantly on the same kind of seismo-
grams.
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