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In this paper, the surface fault displacement hazard at the Choman dam is evaluated
by a new approach of probability fault displacement hazard analysis (PFDHA).
For this, fault map and fault characteristics of area are determined based on the
aerial photographs, satellite image, and field studies. In this study, Piranshahr
fault is divided into two segments of Piranshahr-Sardasht and Sardasht-Penjwen
from across point of Armardeh fault. The empirical relationships proposed for
strike-slip fault is applied to estimation of probability fault displacement hazard
curve of Choman dam. The return periods of 10000 and 35000 years are selected
for estimation of fault displacement for different earthquake design levels. Finally,
fault displacement for Design Basic Earthquake (DBE), Maximum Design
Earthquake (MDE) and Safety Evaluation Earthquake (SEE), 20, 30 and 65 cm

dam; Piranshhar Fault
are proposed.

1. Introduction

Surface faulting was responsible for damaging
of some dams and their accessory structures during
recent earthquakes [1-5]. Allen and Cluff [6] stated
that the lack of appropriate criteria for recognition
of active faults and evaluation of fault displacement
were the main reasons for dam vulnerability in the
past. The primary safety consideration for dam
site selection is avoiding of active and potentially
active faults [7]. However, in a seismic active
tectonic area, such as Zagros zone in west of Iran,
due to the current compressive stress, the majority
of the gorges created by faults, all faults are
suspected to be active; and therefore, some dam
sites are inevitably were placed near the active
faults. Hence, accurate evaluation of fault dis-
placement is necessary for safety design of dam and
its related structures [8-11].

The current state-of-practice (e.g., [12]) tends

to estimate the fault displacement deterministically
from empirical surface rupture vs. magnitude
relationships, which commonly gives a conservative
estimate of fault displacement especially for
projects far from the main fault. The probabilistic
fault displacement hazard assessment was firstly
applied for a nuclear power plant in Nevada, USA
[13]. The approach was followed, and its basic
theory and empirical relationships were developed
by other researchers [14-17]. In this study, the
method proposed by Petersen et al. [14] for strike-
slip faults were used to evaluate the probability
fault displacement of Choman dam site in West of
Iran (Figure 1).

2. Surface Faulting

Parameters of earthquake magnitude, depth of
seismogenic layers, characteristics of material around
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Figure 2. Different types of surface faulting [22].
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Figure 1. Location map of dam site under study.

the fault and geometry of the fault are effective
parameters in surface faulting [18]. Although the
faulting pattern is complex, it can be mainly divided
into three parts: primary, secondary and induced or
sympathetic form (Figure 2). The primary faulting
occurred along the main fault and usually includes
of the highest displacement. Secondary faulting is
related to the minor faults that may exist several
tens of meters away from the main fault [19].
Finally, sympathetic fault is an individual fault
around the earthquake fault, which can be active
simultaneously or a short time after the main shock.
In a particular case, the sum of secondary fault
displacements might be greater than the main
fault displacement (Figure 3). The fault zone width
increases from strike-slip to normal, reverse and
thrust fault types [20]. Faulting pattern in soft
material and minor displacement are complex and
distributed, but it changes to the linear mode by
increasing the strength of earth material and fault
displacement [21]. Besides, the fault zone is usually
wide spreaded in the fault bends.
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Figure 3. Faulting zone in the Wadi Arab normal fault, the
displacement in the main fault was about 80 cm, but the total
displacement reached up to 3.2 meters, and the width of fault
zone in hanging wall block was greater than footwall [23].

3. Study Area

The earth fill dam of Choman, with a height of
100 meters, will be constructed on the Choman
River, 30 km west of Baneh city, west of Iran
(Figure 1). The dam site is located in the seismically
active belt of folded Zagros and close to the Main
Recent Zagros Fault (MRF) [24-25]. The MREF,
with total length of 1350 km, is one of the great
active faults in west of Iran, which the evidences
of its recent activities and right-lateral motion are
well-documented [26-27]. The new GPS network
data indicates that the rate of displacement in
MREF is about ~2-3 mm/y [28-29], while the past
research proposed a higher rate of 10-17 mm/y [30].
The MRF has been divided into a few segments
and the site under study is situated at the distance
of 1.2 km from the Piranshahr segment on the
northwest side of the MRF [31-32]. As with another
part of MRF, Piranshahr fault has a NW-SE trend
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and is mainly located on the border of Iran-Iraq,
which received little attention in respect of other
segments, due to security problems in the past
decades. Mohajjel and Rasoli [33] stated that the
Piranshahr fault in the south of Piranshahr city
comprises of two right-lateral strike slip fault
systems close to each other's, but with different
normal and reverse components (Figure 4).

The recent earthquakes of 25/10/1970 Ms 5.3,
07/23/1981 Ms 5.6, 15/01/1995 Ms 4.9, 1/09/2000 Mw
4.4, 19/12/2002 Mw 4.8 and 06/06/2006 Mw 4.8
(Figure 1), with a normal right lateral strike-slip
motion, has been attributed to the activity of this
fault [33-34]. Berberian [35] and Talebian and
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Figure 6. About 3 km right-lateral displacement of Baneh Batholith mass along the Piranshahr fault.

‘."f S g y
v Kani Ebrahim

wir
PR

Dam Sita

Figure 8. The location of dam site with respect to Piranshahr and other minor faults.

topography (Figure 7).

The Piranshahr fault near the Choman dam site
is bended to the northwest, and some minor faults
on the inner side of the bend cut the valley and pass
from the dam site (F1, F2, Kaniebrahim, and L1 in
Figure 8). Kaniebrahim fault, the biggest and most
important minor faults, is a thrust fault with a length
of 7.5 km, dip to the Northwest, without any sign of
recent activity. The L1 lineament originates from
the main fault in the south of Kaniebrahim village,
passes from about 600 meters south of the site, and
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continue to the east up to Nirvan village. No outcrop
or recent activity of this lineament was observed
in field studies. Armardeh and Tajan are another
active faults in a radius of 20 km of the site

(Figure 9).

4. Probability Fault Displacement Hazard
Analysis (PFDHA) Methodology:

Fault displacement assessment is classified into
two groups of direct and earthquake evaluation
approaches [13, 36].
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Figure 9. Active faults around the Choman dam site.

4.1. Direct Approach

In this method, the probability of slip can be
estimated based on the rate of fault displacement
and slip distribution function. The frequency of
displacement exceedance 0 (d) is given as:

d(d)=x,.P(D>d|Slip) (1)

where d=displacement, X, , = rate of displacement
events on the fault, P(D >d| Slip) = conditional
probability that displacement D, for a given event,
exceeds d, given that slip on the feature occurs.

The rate of displacement on the fault is assessed
by slip dating of all events, and the conditional
probability of exceedance slip (P(D >d | Slip)) can
also be obtained by measuring the amount of slip
for many events at the site [13]. The necessary data
for this approach comes from paleoseismology
studies (e.g., [37-38]), which is time-consuming,
costly and only applicable in specific geology
situations. Therefore, it is impossible to apply for
the majority of engineering projects.

4.2. Earthquake Approach

Earthquake approach is similar as the probability
seismic hazard evaluation (Figure 10). The fault
displacement is maximum over the fault and decrease
by distance r from the fault. The annual probability
displacement exceedance v(d) in distance r of the
fault can be written as:
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Figure 10. Steps of probability fault displacement hazard
study [13].

v(d)=A,xP xP,xP, (2)

where: A, =Rate of fault activity; P, =Probability
of surface faulting; P, =Probability of surface
faulting continuing up to distance r from the main
fault, P,= Probability of fault displacement exceed-
ing d at distance r.

Moreover, the exceedance rate for fault dis-
placement V, (d) for site k, at distance r from the
main fault, and n earthquake events, is defined as
[13]:

Vi(d)=Ya,(m,) [ £,(m)x

_Tfkn(r|m)‘Pkn*(D >d|m,r).dr .dm (3)
0

where: o, (m, ) = the rate of all earthquakes on source
n above a minimum magnitude of engineering
significance, m_;f, (m)= the probability density of
earthquake size between my and a m" (maximum
earthquake that source n can produce); f,, (r|m) =
the conditional probability density function for dis-
tance r from site k to an earthquake of magnitude m
occurring on source n; P,"(D >d |m,r) = the near
surface displacement attenuation function that is

defined with Equation (4):

P (D >d|m,r)=
P,,(Slip|m,r).P,, (D >d|m,r,Slip) @
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P, (Slip|m,r) is a conditional displacement in the
site k, given that an earthquake of m, at a distance r
occurs; and P,,(D >d|m,r,Slip) is the probability
of D exceeding d, given that an earthquake m, at
distance r, with surface faulting occurrance.

4.3. Definition of Probability Functions:

The probability of surface faulting (P, (Slipim,
r=10)): This features can be estimated by statistical
approaches or empirical relationships. Surface
faulting can be observed if the width of fault rupture
is greater than seismogenic depth. Length and width
of fault can be predicted by empirical relationships
for a given magnitude. It adopts that the ratio of
length to width for normal and reverse faults to be 1,
and for strike-slip to be 2. Therefore, it is possible to
estimate the probability of surface faulting using a
seismogenic depth and width of faulting. The
surface faulting probability can also be estimated
by empirical relationships that are proposed for all
kind of faults [39-41]. Figure (11) shows the surface
faulting probability-magnitude curves proposed
by Wells and Coppersmith [39], based on the world-
wide data (Equation 5).

c
-12.51+2.053 (5)

-12.51+2.053M
P(slip| m,r =0) =
l+e

Conditional Probability of Displacement
P, (D>d |m,r): The conditional probability of
displacement, represents the probability that dis-
placement (D) in point k for a given magnitude
m and distance r exceeds d. In fact, this function
is like an attenuation relationship in Probablistic
Seismic Hazarad Analysis (PSHA) method. The
past earthquakes demonstrate that the maximum
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Figure 11. Probability of faulting respect of Magnitude for all kind
of fault based on Equation (5) [42].
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fault displacement are usually happen in the middle
of the fault and decrease to the ends. In an elliptical
model, it is supposed that the displacement reached
to zero at the end of fault (Figure 12). It has also
been found that the ultimate displacement depends
on fault type and increases from reverse to the
normal and strike-slip faults.

A few conditional probability displacement
relationships is available for estimation of fault
displacement values [13, 14, 43]. Table (1) and
Figure (13) represent different models proposed by
Peterson et al. [14] for strike-slip faults, based on
the model and parameters defined in Figure (14).

In a case of distributed fault displacement
model, it is possible to have a movement at distance
'r' of the fault. The probability of such displacement
became higher with increasing the site dimensions
(Z). Peterson et al. [14] introduced the experimental
probability functions for estimation of fault dis-
placement probability at distance r for different
dimensions of Z (Table 2).

Probability of Magnitude (f (m) dm): Such

A
D/”f Dmax
A 4

L2

L. >

P
<

Figure 12. Elliptical model's of displacement distribution [13].
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Figure 13. Different slip distribution models of Bilinear,
Quadratic, and Elliptic for a magnitude 7, Normalization can be

done as displacement divided by maximum or average values
[14].
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Table 1. Experimental relationship of displacement along the fault [14].

Type of Rapture Condition Model Relationship
1 1
In(D) = 1.7969M,, + 8.5206 (—) —10.2855 0y, = 1.2906 — < 0.3
Bilinear L . L
In(D) = 1.7658My, +7.8962 o, = 0.9624 = 0.3
_ ! I\?
Multi Variate Quadarantic In(D) = 1.7895M,, + 14.4696 (Z) —20.1723 (Z) —10.54512 q,
= 1.1346
. 1 l 2
Dispalcement Elliptic In(D) = 33041 [1--—= [(Z) - 0.5] +1.7927M,, — 11.2192 ay,
Along the Main '
Fault =1.1348
(D) D l I
ln( /b ) =8.2525 (—) —23010 oy, = 1.2962 — < 0.3008
o avg L L
Bilinear I
D — - -
ln( /Davg) = 018160}, = 1.0013 - > 0.3008
Normal . D l 1\?
Quadarantic ln( /p ) = 14.2824 (—) —19.8833 (—) —2.6279 oy, = 1.1419
avg L L
Elliptic In (D/ ) = 32699 [1-— [(i) -0 5]2 -3.2749 o, = 1.1419
Dayg ' 0s52[\/ ™ ' m ==
Miulti Vari P =1 -0. -6 =1
Distributed iulti Variate ower In(d) = 1.4016M,, — 0.1671In(r) — 6.7991 o0;,, = 1.1193
Faulting Assume
ng) Normal Power In (d/Davg) =—-0.18261In(r) — 1.5471 o, = 1.1388
Table 2. Different fault displacement probability functions at
Fault distance r and Dimension Z [14].
S
l/L=0 Site Dimension Fault Displacement Probability Functions
25%25 In(P) = —1.1470 In(r) + 2.1046 &, = 1.2508
L2 | 50%50 In(P) = —0.9000 In(r) + 0.9866 o, = 1.1470
Site (x. y) 100¥100  In(P) = —1.01141In(r) + 2.5572 0, = 1.0917
s - T "! 150%150 In(P) = —1.09341In(r) + 3.5526 0, = 1.0188
' 200%200 In(P) = —1.15381In(r) + 4.2342 o, = 1.0177
Rupture
L/2 .
5. Displacement Hazard Curve of Choman Dam
Site
1/L=0 )
Table (3) shows the characteristics of active
faults around the Choman dam site [44]. The

Figure 14. Variables used by Peterson et al. [14].

as in the PSHA, the following function can be
used:

—b (m-m,)
fm(m):[bln(IO)IO j

1 _10717 (m"-m,) (6)

where b is the slope of Gutenberg-Richter function,
mo is a minimum magnitude of interest in earth-
quake engineering, assumed as 4.0 in this study, and
m" is the maximum magnitude expected or
experienced. The m" is estimated based on the
experimental relationship or the historical seismicity
of the fault.

JSEE /Wl. 21, No. 1, 2019

maximum magnitude of the fault reported in
Table (3) is estimated from the empirical relation-
ship of Wells and Cooperesmith [45] for strike-slip
fault. The regional earthquake parameters (f and
A m=4.0) of the fault are estimated using Kijko
and Sellevall [46] for a radius of 150 km from the
site. The regional value of B given to all faults and
A m_ of each fault is calculated by normalization of
regional Am_ using Equation (11):

by (Fi) =2 (0, (area) ™

Figures (15) and (16) have shown the magnitude-
probability of surface rupture and magnitude-
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Table 3. Charachterstics of active fault around the site of Choman [44].

Maximum
Length . Minimum Distance from
Fault Name Magnitude B a0 .
(km) (Mw) the Dam Site (km)
. 1.2
Main Fault 150 7.3 06
Piranshahr 2.72 0.2716 ] '2
Panjvein-Sardasht f. 71 6.9 076
Armordeh 71 6.9 2.72 0.038 6.8
Tazan 21 6.3 2.72 0.052 44
1 : [ : : : : Piranshahr Armardeh Panjvein-Sardasht Tajan
o : " : ; ; 1 0.001
R — A [ L I P <f— ] L
=1 I 1 1 I 1 1
x i i i i ‘ i 3
[0} ' | | 1 | | c .
® R e e e e e e R [9)
8 0.6 | | | | ‘ | 3
a : ; ' : ; : 3] 0.00014
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Figure 15. The probability of surface rupture-magnitude curve. 0.000001 2
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Figure 16. Magnitude-Displacement curve [47].

displacement curves based on the Equation (5) and
Wells and Cooperesmith [39] relationship. Besides,
Figure (17) has shown the displacement hazard curve
for all active faults around the site. It is evident that
the higher displacement is related to the Piranshahr
and Panjvein-Sardasht faults. Figure (18) has
demonstrated the annual probability of exceedance
of displacement in the dam site for Z=150 x 150.
The Piranshahr hazard curve in Figure (18) is a
combination of two curves of Piranshhar and
Panjvein-Sardasht segments for two cases of
1200 and 600 meters distance from the dam. The
average, upper and lower limits of final displacement
hazard curve are demonstrated in Figure (19).

5. Discussion

International Committee of Large Dam (ICOLD)
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Displacement (cm)

Figure 17. Displacement hazard curve along the fault in the
nearest location to the site.
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Figure 18. Displacement hazard curve in the site location.

has proposed the different seismic design levels of
(i) Maximum Credible Earthquake (MCE), (ii)
Safety Evaluation Earthquake (SEE), (iii) Maximum
Design Earthquake (MDE), (iv) Design Basis
Earthquake (DBE), (v) Operating Basis Earthquake
(OBE), and (vi) Construction Earthquake (CE) to
seismic design of Large Dams. In Probabilistic
Seismic Hazard Evaluation method (PSHA) by
assuming a lifetime of 100 years, return periods of
10000, 1000, 475, 145, and 50 years are usually

JSEE /VWl. 21, No. 1, 2019
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Figure 20. Horizontal Acceleration hazard curve for Choman
dam [44].

assigned for estimations of ground shaking param-
eters in different levels of SEE, MDE, DBE, OBE,
and CE, respectively [12]. Figure (20) has shown
the horizontal acceleration hazard curve of Choman
dam produced by PSHA approach [44]. Comparison
of Figures (19) and (20) indicate that the return
period of fault displacement is much longer than
for acceleration because the fault displacement
can only occur in special conditions during the large
earthquakes. Therefore, it is believed that the return
period for estimation of fault displacement must be
much longer than acceleration. Active fault is usually
defined as a fault having ruptured within the last
10000-35000 years [48, 50]. In this study, return
periods of 10000 and 35000 years are proposed for
evaluation of fault displacement in DBE and MDE
levels based on the avarage curve and return
period of 35000 years; however, upper limit curve
is assinged for MCE or SEE design level. Table (4)
demonstrated the maximum fault displacement
for different return periods based on Figure (19).
Therefore, the fault displacement of 20, 30, and

JSEE /Wl. 21, No. 1, 2019

Table 4. Avevrage and maximum fault displacement based on
Figure (19).

Design Return Period Displacement
Level (Years) (cm)
DBE 10000 20
30 (Average Fault
MDE 35000 Displacement Curve)
SEE/MCE 35000 65 (Maximum Fault

Displacement Curve )

65 cm can be assigned for the seismic design level
of DBE, MDE and SEE or MCE, respectively.

6. Conclusion

In this study, the new approach of PFDHA is
applied to evaluation of fault displacement at
Choman dam site in the west of Iran using the
Perterson et al. [14] approach. One of the crucial
issues in PFDHA approach is the selection of the
return period values of fault displacement. Recent
studies emphasized that the criteria of PSHA are
unsuitable for PFDHA, and return period for fault
displacement must be much longer than PSHA, but
no clear criteria has been provided up to now. In this
study, based on the definition of an active fault,
return periods of 10000 and 35000 years are selected
to evaluate the fault displacement for different
seismic design. By this, the fault displacement of
the site under study for DBE, MDE, and SEE or
MCE levels are 20 and 30 and 65 cm, respectively.
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