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In the specific barrier model (SBM) as an earthquake source model, fault is assumed
as a rectangle whose surface is covered by an aggregate of circular cracks of
equal diameter (primary version) on which a local stress drop takes place to
simulate high-frequency movements. Seismic moment in the SBM is computed in
a deterministic manner on the fault plane, on the basis of moment and area
constraints. In the SBM, rupture on cracks causes a stress drop that moves within
circular cracks, and rupture tip sweeps the fault plane. In this paper, new time
functions for inclined faults have been developed. The mentioned time functions
have been obtained by using probability density functions (PDFs) of arrival
time based on site positions, fault geometry and fault rotation angle. Finally, to
calculate source spectra, PDFs of sub-events' size are assumed to be fractal. Various
parameter studies are then conducted to show different features of the proposed
PDFs on the results of the SBM.
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ABSTRACT

1. Introduction

Earthquakes are one of the most dramatic
hazards that are likely to cause heavy human losses
and to destroy an entire city on scale of minutes.
The more recent damaging events in Kobe (1995
Japan) in Chi Chi (1999 Taiwan) or Bam (2003 Iran)
recall that little is known about earthquake physics
so far that could prevent people from their deadly
effects. To reduce casualties, decades of research
involving numerous laboratories worldwide aim at
investigating this large-scale phenomenon and
trying to understand how it triggers, initiates,
propagates, and stops. A trusty physical modeling
of strong ground motion requires to examine three
crucial parameters of seismic source specifications,
wave propagation path, and seismic site effects.
Among various seismic source specifications, a more
physically realistic source model is the specific
barrier model (SBM) proposed and implemented by

Papageorgiou and Aki [1-2] based on ω-square
model, which developed by Aki [3] and modified
by Brune [4]. The SBM is specifically more suitable
for regions with poor seismological data bank
and/or ground motions from large earthquakes with
large recurrence intervals.

In order to simulate seismic ground motions from
a specific earthquake source model in an efficient
way, the stochastic modeling method has been
widely used (see [5]). An essential part of the
seismological model used in this method is the
quantitative description of the far-field spectrum
of seismic waves emitted from the seismic source.
Since shear (S) wave is primarily the main factor of
earthquake damages, the application of stochastic
approach of the SBM has almost been focused on
the far-field S wave spectrum, in which two corner
frequencies of observed earthquake are represented.
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The 'two-corner-frequency' shows two considerable
length-scales of an earthquake source: a length-
scale that quantifies the overall size of the fault
that ruptures (e.g., the length L of a strike-slip fault)
and another length-scale that measures the size of
the subevents. Associated with these length-scales
are two corresponding time scales: (1) the overall
duration of rupture, and (2) the rise time. The SBM
has a few main source parameters calibrated to
earthquakes of different tectonic regions (see for
example, Halldorsson and Papageorgiou [6],
Zafarani et al. [7], Soghrat et al. [8] and Mousavi
et al. [9] among others).

The SBM may be considered as a general
idealization of the faulting process of an earthquake
[10]. For example, a uniform probability density
function (PDF) of 'arrival times'  is assumed in the
SBM. In this paper, the effects of fault rotation on
PDFs of arrival times as well as on the far-field
source spectrum of the SBM are studied. For this
purpose, direct simulations of ground motion
records for an earthquake source, which have
fractally-distributed subevent sizes, is  used [11-14].
In this research, a new non-uniform more realistic
PDF of arrival times for seismic waves corres-
ponding to the fault's geometry and rotation is
derived to rich desirable time functions. Afterwards,
by using the proposed time functions, the effect
of site position to the fault on source spectra, as
well as the effect of rotation angle of the fault on
time functions, are investigated.

2. The Specific Barrier Model

The SBM provides a quantitative description of
heterogeneous rupture. As the main assumption of
the SBM, the seismic source is illustrated by a
rectangular fault of length L and width W filled
by circular subevents of equal diameter, 2ρo, as
shown in Figure (1). The SBM represents a physical
source model that, in a self-consistent way,
describes the earthquake processes with high-
frequency seismic ground motion [10], which have
two corner-frequencies [15-16]. In the SBM, the
earthquake is assumed as a sum of circular
ruptures as subevents taking place independently.
Furthermore, the rupture front sweeps the fault
plane with constant rupture velocity, V, while a
stress drop of Δ Lσ  occurs in the circular cracks to

Figure 1. Schematic view of the SBM, which considers an
earthquake as random occurrence of some circular cracks.
The fault is a plane including some circular cracks, in which
local stress drops occur. The equal-size subevents are
arranged in a non-overlapping pattern on the fault plane.

present each subevent ruptures. The cracks start
from the center of the circle and radially spread
with a constant spreading velocity, v, until their
stopping at the barriers. Halldorsson [6], added
high-frequency source complexity factor, ζ, to
the previous experssion of source acceleration
spectrum of the SBM to modify the model.
Consequently, the SBM acceleration spectrum
may be given by:
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where N denotes the number of subevents, 0T  is
the duration of pulsetrain (emitted by the subevents
as they rupture) that is received at the station,
± ( ) oiM f&  indicates the source displacement spectrum
of a single sub-event, and ζ scales with magnitude
of earthquake as:

( )210   ,      m w crs M Mηζ = η = −                         (2)

in which ms = -0.12, and crM = 6.35. In the SBM,
the source spectra is computed for ζ= 1. As the
earthquake events are considered as a composition
of subevents, the source spectrum is an aggregate
spectrum of all sub-events as:
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where Tj implies the time that seismic energy
radiated by subevent j arrives (0 < Tj < T0), and Sj
is the sub-event spectrum expressed by:
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in which oiM  is the seismic moment of sub-event i,
and 2f  denotes the corner frequency. In addition,
the seismic moment is given by:

316 Δ
7oi LM R= σ                                                 (5)

where Δ Lσ  is local stress drop, and R indicates the
random radius of circular cracks. Besides, corner
frequency is given by:

2 2
scf
R
β

=
π

                                                        (6)

where β is the S wave velocity, sc  indicates an
increasing function of v

β .  According to the
results of Papageorgiou [10], 1.72 sc≤ ≤ 1.85 for

0.7 v≤ ≤β  0.9.

The expected value of source spectrum may be
given by:
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In addition, the expected value of the squared
modulus of the aggregate spectrum of radiated
seismic energy from the composite earthquake
source is illustrated by the following expression;
[13]:
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in which ( )*·  indicates the complex conjugate. If
one assumes that the variables are independent,
Equation (8) may be rewritten as:
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in which jT  denotes the arrival time of seismic
energy, and ( )

iT jf t  is the PDF of arrival time. If
one assumes that the PDFs of arrival time are the
same for all cracks, and also all jR  follow the
same probability distribution, Equation (9) may be
rewritten as follows:
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function of the source spectrum. Obviously, the
square root of Equation (9) provides the Fourier
amplitude of the source spectrum. In order to
compute ( ) 2

ω
 

   E S 
   of Equation (11), (r)Rf  and

(t)Tf  are required. For (r)Rf ,  the PDF with
fractal distribution [13] is used in this paper (see
the next section). However, (t)Tf  is derived based
on a new approach in this research, as discussed in
the following sections.

3. The PDFS of Subevent Sizes

The PDFs of subevent sizes used in this research
are exact PDFs, which have been developed by
Halldorsson [13]. The main purpose of this section
is therefore a brief review of their presented
PDFs for size of circular cracks. By introducing
parameters α1 and α2, they relaxed the equal-size
limitation regarding subevents of the SBM. In
other words, they allowed the circles' radius to vary
between Ra and Rb as given by

1  b cR R= α                                                       (12)

2 1 2   a b cR R R= α = α α                                        (13)

where cR  denotes the radius of circular fault which
has the same area as the main fault.

By assuming that total seismic moment of
subevents that compose the composite source are
equal to the seismic moment 0

cM  of the main event,
one may write:
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in which ( )Rn r  denotes a frequency-size 'density'
function, and ( )  Rn r dr  determines the number of
subevents with radii  r R r dr< < +  [12]. They
assumed a composite source including subevents,
the size distribution of which may be given by:

( )
ln

DRdN r pr
d r

−=                                                 (15)

in which D denotes the fractal dimension (D = 2 or
3, according to Frankel, [11]), ( )Rn r  indicates the
number of subevents with radius larger than a
given value r, and p is a constant of proportionality,
which is determined by the moment constraint.
Integrating Equation (15) results in the following
expression:
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− −= −                                      (16)

in which ( )RN r  denotes the number of subevents
with radius larger than r. In addition, ( )RN r  may be
considered as a frequency-size 'complementary
distribution' function, which is related to the function

( )Rn r  as:
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Besides, it may be shown that:
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By assuming D, one may have the PDF of
subevent sizes. Such a model has been implemented
for ground motion simulations by Zeng [12], where
the PDF of sub-event sizes is:
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By using the obtained PDF, one may compute
the following parameters of the source spectrum of
a composite source [13]. For D = 2,
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In this study, the subevents have the PDFs for
which the fractal dimension (D) is equal to 2 and
3. Results of this section is combined with the
proposed new time function of the next section, to
provide earthquake source spectra of the SBM (for
more details, refer to the main reference [13]).

4. The PDF of Arrival Time

In primary version of the SBM, the PDF of
arrival time was assumed to be uniform. In other
words, all points on the fault have the same chance
to reach to receiver positions, in the specific period
of 0 to 0T . Based on this assumption, the PDF of
arrival time of seismic waves may be given by:

[ ]0
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1( )   ,     0,Tf t t  T
T

= ε                                     (27)

The squared amplitude of the Fourier transform
of ( )Tf t  is written as:

( )( )
2 2
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2 2
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                   (28)

However, in real situation, for the points closer
to the receiver position, the seismic energy has a
better chance to get to the receiver position, faster.
Accordingly, Halldorsson and Papageorgiou [14]
extracted the PDF of arrival time by expanding
circular rupture tip originating at the supposed
hypocenter. In their method, a specific point should
be assumed to be the hypocenter from which the
whole rupture begins. By choosing different
hypocenters, various PDFs are then obtained.

The purpose of the present study is to develop a
more general approach that considers the geometry
of fault and site positions as well as the position of
hypocenter to consider the effect of both factors,
the arrival time of seismic waves divided to two
parts. The first part regarding to geometry of fault
and site position, and the second part regarding to

the rupture direction (position of hypocenter). In
this method, the appropriate PDF of arrival time is
simply computed by making various zones on the
fault, based on their distance from a given receiver
on the ground surface and from the hypocenter.

To find the first part of the arrival time of
seismic waves, regardless of the position of
hypocenter, fault must divide to portions with the
different distance from receiver. In fact, seismic
waves are most likely to be sooner received by a
specific receiver, from the points of fault with
less distance, compared to the farther points.
Consequently, the probability of arrival of seismic
waves (regardless of position of hypocenter) in
certain time window may be easily obtained. To this
end, a large number of points on the ground surface
are chosen as receiver positions for which the
PDFs of arrival time are obtained.

Figure (2) shows the position of the considered
typical fault, as well as the location of assumed
receivers on the ground. In order to calculate the
PDF of arrival time for any receiver position, it is
necessary to specify the areas with the same
distance from the receiver on the fault. For this
purpose, several spheres of various radius are
drawn, whose centers are located on the given
receivers. Figure (3) illustrates the intersection of
the fault and a typical sphere. Therefore, a group
of different curves are produced by the intersection
of different spheres and the fault plane (see
Figure 4). All points in the region between the
semi-parallel adjacent curves are considered to
have the same distance from the receiver (the
center of various spheres). This means that all
points surrounded by two adjacent curves have
equal chance to get to the receiver position.
Consequently, for creating the PDF of arrival
time of seismic waves, the chance of arriving

Figure 2. Position fault underground, new coordinate system
and selected stations.
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Figure 3. To divide the fault surface according to the distance
from the station position, a typical sphere is drawn, whose
intersection with the fault plane is appeared in a typical curve,
which represents the points with the identical distance from
the station.

Figure 4. These curves are results of intersecting the fault
plane and spheres with different radiuses, and divide the fault
points based on their distance from the receiver location.

seismic wave in specific time window should be
determined, based on the above-mentioned simple
assumption. By changing distance parameter to
time parameter, the PDF of arrival time of seismic
waves may be easily obtained.

In order to find mentioned areas on the fault, a
rectangular fault with dimensions of L×W located
in H depth, is considered. Mentioned fault can
rotate around y' axis. Assuming x' y' z' coordinates
system as shown in Figure (2), the fault plane may
be given by the following equation:

0 ,     ,     
2 2
L Lz x H y H W= − < < < ′ <′ +′    (29)

The equation of the sphere shown in Figure (4)
may be written as:

( ) ( ) ( )2 2 2 2
ix a y b z c r− + − + − =                     (30)

If (i, j, k) is unite vector in main coordinate
system and (i ' , j ' ,  k' ) is unite vector in new
coordinate system, position of each point in main
coordinate system can be recognized in new one by
multiplying rotate matrix (R) in main system

( ) ( )( )x y z xyzp Rp′ ′ ′ =  in which ( )xyzp  is coordinate of a
point in main system, ( )x y zp ′ ′ ′  is coordinate of the
same point in new system. As mentioned before, R
is the rotate matrix defined as:
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If rotation is assumed to be around y and the
amount of rotation considered to be θ, the rotate
matrix would be:

cos 0 sin
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sin 0 cos

   

    

R
θ θ 

 =  
 − θ θ 

                                       (32)

Therefore, the coordinate of points in new
system would be:

cos 0 sin
0 1 0 .

sin 0 cos
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b b
c c

θ θ     
     =     
     − θ θ     

′
′
′

                             (33)

Thus, one can rewrite Equation (30) as:

( ) ( ) ( )2 2 2 2
ix a y b z c r− + − + −′ ′ ′ =′ ′ ′                   (34)

where ( , , )a  b  c′ ′ ′  denotes the coordinates of the
receiver in new coordinate system, and ir  is the
radius of (i)th typical sphere. The intersection
curves of the fault plane and the (i)th typical
spheres, as schematically depicted in Figure (4),
may be derived as:

( ) ( )2 2 2 2
ix a y b r c′ ′ ′ ′− = − ′− +                              (35)

Equation (35) shows that the intersection
between fault plane and assumed sphere is a circle
the center of which may be written as:

      and    c cx a y b′ ′ ′ = ′=                                       (36)

If and ,
2 2c c
L L x  H y H W′ ′− < < < < +  it means

that the center of the circle is in fault area and main
part of the circle lies on fault range, otherwise there
is only small part of the circle lies on fault.
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Depends on the position of intersection circle's
center, there are two main approach to calculate
the area between intersection curves.
1. If intersection circle's center is in fault range

(   and ).
2 2

 c c
L Lx H y H W− < < < < +′ ′

I. In the first case, there are two intersections
between the circle and each rectangle's edge.

( ) 2

1

sin
*

2

J
j j

i i
j

A R
=

 α − α
 = π −
 
 

∑                            (37)

where iA is the area of intersection between
fault plane and hypothetical sphere, J is number
of circle's parts lie out of fault and iR is the radius
of intersection circle. iR  and jα  may be written
as:

2 2
i i iR r D= −                                                  (38)

where iD  is the shortest distance between the
center of sphere (position of site) and fault plane,
whose equation is 1 1 1 0.a x b y c z d+ + +′ =′ ′

1 1 1

2 2 2
1 1 1

  

i

a a b b c c d
D

a b c

′ ′ ′+ + +
=

+ +                                 (39)

And finally,

1cos
2j

i

k
R

−α = π −                                             (40)

where based on the position of outside parts of
circle, (up, side or down edge) k could be:

( )22 2
12*k r c H b′ − − ′= −   for up edge        (41)

2
2 2

12*
2

 

Lk r c a′ ′ = − − ± − 
 

  for side edge  (42)

( )22 2
12*k r c H W b− − +′ − ′= for down edge (43)

II. In the second case, there is one intersection
between the circle and each rectangle's edge
(for example, there are two intersections on top
and right edge of rectangle).

( ) 2sin *
2

i
i

R
A Q

α − α
= −                                    (44)

which α and Q come from Equations (45) and
(46).

2
2 2

1

2*
2

cos
2

i

i

Lr c a

R
−

 − − + 
 

′
α = −

′
π              (45)

(49)

( )( ) ( )

( ) ( )

( ) ( )

2

2 2 1

2

3 3

22 8

21
2

1
2

  

   

    

i

LQ H b a a L

L a
r c tan

H b sgn H b

−

′ ′ ′

′

= − + + + ×
 + 

− +     
 − + −  

′


′

′


Γ

Γ

Γ Γ

         (46)

2. If intersection circle's center is not in fault range

(  ,   ,   or  ).
2 2c c c c
L L x  x H y   y H W′ ′ ′ ′− ≥ ≥ ≥ ≥ +

The area between the first top curve and the top
boundary of the rectangular fault plane may be
easily calculated by integral in Equation (47).

     

Rl Tl

i
Ll Bl

A d y d x= ∫ ∫                                              (47)

in which Ll, Rl, Bl, and Tl denote the left, right,
bottom, and top limits of the integral. Based on
integral limits, iA  would be:
I. In the first case: , , ,  

2 2
 

L LLl   Rl   Dl H= − = =

( )22 2
1 ,Ul r c x a b= − − ′− +′ ′ ′  and ,

( ) ( )

( ) ( )
( )

( )

2 2
1

1 21
12

1 2

2

1 12
8 2

2

2

1 2
8

i iA b L HL L a  r c  

L a  
tan

L a

L a

−

= − + − + − ×

  − +
   + κ π +

  − −

′ ′ ′

′

′

′

  

+

Γ

Γ Γ

Γ Γ

Γ

(48)

where 1 0κ =  for ( )2

1 2

2
1

L a−
<

′

Γ Γ
, and otherwise

1 1.κ =
II. In the second case:

     ( )22 2
1,  ,  

2
 

LLl Rl r c H b a Dl′= − = − − ′− ′+ =

( )22 2
1,  ,H Ul r c x a b= − ′ ′ ′ + ′− −  and,

( )

( ) ( )

( )

( ) ( ) ( )
( ) ( ) ( )
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2 2 1
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where 2 0κ =  for ( ) ( )
( )

3

2

2
1

  L a sgn H b
H b

+ −
<

−
Γ

Γ
, and

otherwise 2 1.κ =
III. In the third case:

( )

( )

22 2
1

22 2
1

 ,  

,  ,  
2

,

l r c H b a
LR l Dl H

Ul r c x a b

= − − − − +

= =

=

′ ′ ′

− ′− ′ +′ ′−
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i
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r c tan
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
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
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where 3 0κ =  for ( ) ( )
( )1

3 2
1

  L a sgn H b
H b
′ ′+ −

<
′−

Γ
Γ

, and
otherwise 3 1.κ =

2 2 2 2
1 4 4 4 4 iL La a c r′ ′ ′= − + − − +Γ                 (51)

2 2 2 2
2 4 4 4 4 iL La a c r′ ′ ′= − − − − +Γ                (52)

2 2 2 2
3 2 iH Hb b c r= − + − ′− +′ ′Γ                       (53)

when there are intersections between the curve and
lower boundary, for which the integral should be
divided into different parts with different limits.

The area between other curves may come from
the following relation:

1

1

2, 3, 4,;
i j

i

s i s
j

   A A i  A   
−

=

= − = …∑                           (54)

while for 
1 11, si  A A= =

The above conditions are computed, whose final
results are summarized as given in the following
ones:

As already mentioned, 
isA  denotes the area of

zone between two adjacent (i)th and (i + 1)th curves
on the fault, and the arrival time of seismic waves
came from this part would be

( )1
i is s min

S

t  R R
V

= −                                             (55)

(50)

where 
isR  indicates the radius of (i)th sphere, minR

denotes the shortest distance between the receiver
and the fault (see Figure 4), and SV  is the velocity of
S wave.

To calculate the second part of arrival time of
seismic waves, regarding of position of hypocenter,
areas between two adjacent curves must themselves
divide to portions with different distance from
hypocenter. In order to specify the areas with the
same distance from the hypocenter on each ,

isA
several circles of various radius are drawn whose
centers are located on the given hypocenter. All
points in the region between the parallel curves are
considered to have the same distance from the
hypocenter which means that all points surrounded
by two adjacent (j)th and (j + 1)th curves would
rupture together. The arrival time of the rupture for
this part would be:

( )1
j jh h

r

t  R
V

=                                                     (56)

where 
jhR  indicates distance between the hypo-

center and (j)th part of the fault and rV  is the
velocity of the rupture. The probability of that
S waves get to the receiver, in ,

ijsht  may be given
by:

( ),
ijsh

A i j

A
P a

A
=                                                  (57)

where ijshA  is the area of portion surrounded by
adjacent (j)th, (j +  1)th, (i)th, (i  +  1)th curves (see
Figure 5) also A is the whole area of the fault. In
addition,

ij i jsh s ht t t= +                                                      (58)

Figure 5. 
ijshA is area of portion surrounded by adjacent

(j)th and (j +  1) th curves, which are related to position of
hypocenter and (i)th and (i + 1)th curves, which are related
to site position.
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Figure (6) shows division of fault plane based on
the distance from the receiver location and also the
position of hypocenter in the middle of fault. Besides,
Figure (7) shows the procedure of preparing PDF of
arrival time. Figure (8) to Figure (10) illustrate the
time functions obtained from the mentioned PDF

Figure 6. Fault plane divided based on the distance from the
receiver position by curves produced by intersecting the
fault plane with the spheres whose centers are located on
the receiver positions No. 1 indicated in Figure (2) and con-
sidering a hypocenter in the center of fault plane.

Figure 7. The PDF of arrival times for the considered hypo-
center and site position.

Figure 8. Expected values of time functions for source spectra derived by the new PDFs of arrival time, produced by intersecting
the fault plane with the spheres whose centers are located on the receiver positions of (a) No. 1, 2 and 5, (b) No. 3 and 6, (c) No.
4 and 7. Mentioned stations on each diagram have the same position related to the fault but on different side of it. The mentioned
numbers are indicated in Figure (2). α for all diagrams is 20.

for each receiver position with the same distances
from the fault but in different directions, respectively.

5. Results and Discussion

In this study, a rectangular fault with dimensions
of 20 x 10 km2 located in 15 km depth and three
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Figure 9. Expected values of time functions for source spectra derived by the new PDFs of arrival time, produced by intersecting
the fault plane with the spheres whose centers are located on the receiver positions of (a) No. 1, 2 and 5, (b) No. 3 and 6, (c) No.
4 and 7. Mentioned stations on each diagram have the same position related to the fault but on different side of it. The mentioned
numbers are indicated in Figure (2). α  for all diagrams is 40.

Figure 8. Continue.
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different rotate angles, is considered (α = 20, 40
and 60o). The receiver positions are assumed in
60 km distances and seven different directions
from the fault. Figure (2) illustrates the position
of selected sites and the geometry of fault. As
mentioned before, to specify the first part of total
time, fault surface divided to different areas with
specific distance from the receiver. To do so, differ-
ent spheres have been drawn that their center lie

Figure 10. Expected values of time functions for source spectra derived by the new PDFs of arrival time, produced by intersecting
the fault plane with the spheres whose centers are located on the receiver positions of (a) No. 1, 2 and 5, (b) No. 3 and 6, (c) No.
4 and 7. Mentioned stations on each diagram have the same position related to the fault but on different side of it. The mentioned
numbers are indicated in Figure (2). α  for all diagrams is 60.

on position of stations. Figure (4) shows curves
and sections on the fault caused by intersecting
spheres and the fault plane (see Equations (29
to 54) for more details). To calculate the second
part, each section should be divided to its own
subsections based on the distance from the hypo-
center, as shown in Figure (5) (see Equations 55
and 56). By this approach, all points of the fault
are categorized based on their distance from
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hypocenter as well as site position (namely, total
time of arrival may be calculated). By dividing the
area of each subsection by total area, the probability
of arriving seismic waves caused by subsection in
defined time window, is obtained (see Figure 7).

To illustrate the effect of inclined fault on time
functions of stations with the same distance from
the fault but on different side of the fault, Figure (8)
shows time functions belong to stations on both
sides of the fault for α = 20. Besides, Figures (9) and
(10) show the same functions for α = 40 and 60
respectively. As already mentioned, to calculate
these time functions, non-uniform PDFs of arrival
waves described in previous section, is used in
Equation (10). As may be observed from Figures (8)
to (10), decreasing effects of time functions on the
source spectra in stations on left side of the fault
(stations 2, 3 and 4) is less than those on right side
of the fault (stations 5, 6 and 7). Besides, from
Figures (8) to (10), it is observable that the differ-
ence between time functions belong to stations on

both sides of the fault, increases by increasing amount
of α. In other word, the difference between time
functions of left and righthand stations when α = 20
is less than when α = 60.

Figure (11) shows time functions for the same
station but different rotation of fault plane. As it
shows in Figure (11), in stations on left hand side of
the fault, by increasing rotation (increasing amount
of α) decreasing effects of time functions are
reduced. It means that the time function of each
station when α = 60 has higher level than when
α = 20. However, on right hand side of the fault
results are opposite of left hand side. From
Figure (11), it is observable that on right hand side
of the fault (stations 5, 6 and 7), by increasing
rotation (increasing amount of α) decreasing effects
of time functions increase.

Using new time functions for inclined fault
introduced in this study, Figure (12) represents
earthquake source acceleration spectra of the
SBM for inclined fault with rotation angle of 20

Figure 11. Expected values of time functions for source spectra with three different rotation angle of fault plane (α =20,40 and
60) for receiver positions of (a) No. 2, (b) No. 3, (c) No. 4, (d) No.5, (e) No. 6 and (f) No.7. Mentioned stations on each diagram
have the same position related to the fault but on different side of it. The mentioned numbers are indicated in Figure (2).
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Figure 11. Continue.
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Figure 12. Earthquake source acceleration spectra for the
SBM with fractal distributions of subevent sizes, for which D
is assumed (a) 2, (b) 3. The mentioned numbers are indicated
in Figure (2). α for all diagrams is 20.

Figure 14. Earthquake source acceleration spectra for the SBM with fractal distributions of subevent sizes, for which D is assumed
(a) 2, (b) 3. The mentioned numbers are indicated in Figure (2). α for all diagrams is 60.

Figure 13. Earthquake source acceleration spectra for the
SBM with fractal distributions of subevent sizes, for which D
is assumed (a) 2, (b) 3. The mentioned numbers are indicated
in Figure (2). α for all diagrams is 40.

(α = 20) and with fractal distributions of subevent
sizes, for which fractal dimensions are 2 and 3,
respectively. This figure obviously shows the effect
of site position (relative to the fault) on source
spectra of earthquake. As already mentioned, shorter
duration of receiving energy causes increasing
spectra level in intermediate frequencies. Figure (12)
shows that the stations across the fault with shorter
duration of receiving energy have higher spectra

level at intermediate frequencies. Besides, it is
observable that stations on left hand side have
higher spectra level at intermediate frequencies for
the same reason. Thus, station no. 4 has highest
spectra level at intermediate frequencies among
others. Figures (13) and (14) show the same earth-
quake source acceleration spectra of the SBM for
inclined fault but for different rotation angles (α =
40 and 60 respectively) as well as the same fractal
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Figure 15. Earthquake source acceleration spectra for the SBM with fractal distributions of subevent sizes, for which D is assumed
2, using new time function derived by the new PDFs of arrival time for three different rotation angles of fault plane (α = 20, 40 and
60) for receiver positions of (a) No. 2, (b) No. 3, (c) No. 4, (d) No.5, (e) No. 6 and (f) No.7. Mentioned stations on each diagram
have the same position related to the fault but on different side of it. The mentioned numbers are indicated in Figure (2).

distributions of subevent sizes.
To demonstrate the effect of fault rotation on

source spectra, Figures (15) and (16) showing
earthquake source acceleration spectra of the
SBM for each station with three different rotation
angles (α = 20, 40 and 60) with fractal distributions
of subevent sizes, for which fractal dimensions are
2 and 3, respectively. As expected in station across
the fault, difference between source spectra
(especially in intermediate frequencies) is much
more than stations along the fault. In the station on
left hand side, amount of source spectra, increases
by increasing rotation of fault plane (increasing

amount of α) but on the other side (right hand
side), the results are inverse.

6. Conclusions

The SBM, as a simple and realistic composite
source model, simulates seismic ground motions
using the stochastic modeling approach. The far-field
spectrum obtained by the mentioned earthquake
source model may be affected by statistical
characteristics of the subevents and arrival time of
seismic waves. Characteristics of the subevents
(i.e., the number and size of subevents) may cause
differences in high-frequency zone of the spectra;
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Figure 16. Earthquake source acceleration spectra for the SBM with fractal distributions of subevent sizes, for which D is assumed
3, using new time function derived by the new PDFs of arrival time for three different rotation angle of fault plane (α = 20, 40 and
60) for receiver positions of (a) No. 2, (b) No. 3, (c) No. 4, (d) No. 5, (e) No. 6 and (f) No. 7. Mentioned stations on each diagram
have the same position related to the fault but on different side of it. The mentioned numbers are indicated in Figure (2).

however, middle-frequency zone of the spectra
may be influenced by the shape of time functions.
To examine the effect of fault geometry, receiver's
position and also the rotation of fault plane on the
source spectra, modified time functions based on
new PDF of arrival times has been proposed in
this study. By choosing receiver positions in four
different directions on both sides of the fault (seven
different site positions) and three rotation angles
for fault plane, the effects of site position, fault
geometry and rotation of fault plane on obtained
time functions as well as the source spectra have

been illustrated. Based on the obtained results,
decreasing effects of time functions on the source
spectra in points across the fault is less than those
along the fault. Therefore, general stations along
the fault have lower spectral levels at intermediate
frequencies, compared to those across the fault.
Moreover, decreasing effects of time functions on
the source spectra in stations on left side of the
fault (stations 2, 3 and 4) is less than those on right
side of the fault (stations 5, 6 and 7). In other words,
because of its position on left hand side and across
the fault, station 4 has highest spectral levels at
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intermediate frequencies among other stations.
Besides, it is obvious that the difference between
time functions belong to stations on the same position
related to the fault but on different side of the fault,
increases by increasing amount of rotation. This
fact is attributed to the shape of PDF as well as the
duration of arriving seismic energy.
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