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ABSTRACT

Available online at: http://www.iiees.ac.ir/jsee

In this paper, three-dimensional scattering of plane harmonic SH, SV, P, and Rayleigh
waves by surface topographies is investigated by using a boundary element method
in frequency domain. It is shown that for exact evaluation of surface ground motions
in topographies all efficient parameters such as geometry of the region, mechanical
properties of the surrounding geological materials (density, Poisson's ratio, and
shear modulus), wave type, azimuth and angle of incidence, as well as stimulation
frequency must be taken into account altogether. Furthermore, the results
emphasize the need for three-dimensional modeling of irregularities. Most of the
topographies in the nature are composed from the simple shape. Based on this
fact, four problems are considered in order to study the effects of the shape of the
topography on the surface ground motion amplification. In order to assess the
accuracy and efficiency of the proposed formulations for the computation of the
surface displacement field amplification, several problems are considered. The
investigated problems are hemispherical canyons, elliptical-shaped canyons,
hemispherical hills and rectangular cube canyons.
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1. Introduction

It has long been found that the effects of topogra-
phy can significantly affect the nature of strong
ground motion during earthquakes [1-2]. In some
situations, ground motion amplification can adequately
be inferred using simple one-dimensional models.
However, due to lateral variations, the problem must
be dealt with as a spatial phenomenon. Local condi-
tions can generate large amplifications and important
spatial variations of seismic ground motion. Certainly,
in the recent past, there have been numerous cases
of recorded motions and observed earthquake
damage pointing towards topographic amplification
as an important effect. Indeed, it has been often
reported, after destructive earthquakes in mountain
areas, that buildings located at the top of cliffs or hills
suffer much more intensive damage than those
located at the base. For example, the 1968 Tokachi-
oki earthquake in Japan produced considerable

damage to buildings close to the edge of a cliff;
whereas buildings located relatively far from the edge
did not present any damage. High accelerations were
recorded at the Pacoima Dam (1.25g) during the San
Fernando, California earthquake of February 9, 1971
[3-4]. For the aftershocks of the same earthquake,
Davis and West [5] in a series of observations have
found significant local amplifications due to topo-
graphical relief. In particular, local irregularities can
be relevant in calculating the seismic response of
long structures like dams, bridges or life-line systems
[6]. The site amplification effects have been the
subject of numerous experimental and theoretical
studies. Since 1973, when Trifunac [7] initiated
theoretical work on the two-dimensional response of
a semicircular canyon subjected to harmonic SH-
wave excitation, a great deal of work has been done
to study the site effects on strong ground motions
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[8-23]. Still, there are very few theoretical investiga-
tions for three-dimensional problems of this type. Most
of the papers that have appeared in the literature are
limited to simple geometries and axisymmetric cases.
Lee [24] investigated diffraction of elastic plane P,
SV, and SH waves by a hemispherical canyon using
the method of series expansion. Sanchez-Sesma [25]
considered diffraction of a vertical incident P wave
by several types of irregularities including canyon and
alluvial basins using the c-complete family of wave
functions. Both studies were limited to axisymmetric
cases. Sneider [26] used the Born approximation to
study the effect of topography on three-dimensional
surface wave scattering. Such an approximation is
valid only for long period waves and topographies
with shallow slopes. Mossessian and Dravinski [27]
have applied an indirect boundary integral equation
method to study the amplification of elastic waves by
three-dimensional canyons of arbitrary shape. Reinoso
et al [28] have presented a direct boundary element
method for calculating the three-dimensional scatter-
ing of seismic waves from irregular topographies and
buried valleys due to incident P-, S- and Rayleigh
waves. Omidvar et al [29] have studied three-dimen-
sional scattering of plane harmonic SH, SV, and P
waves in multilayered alluvial valleys. Gatmiri and
Arson [30-31] have studied seismic site effects by
an optimized 2D BE/FE method.

Several studies including site response analysis
of half-plane, horizontally layered sites, canyons,
alluvial valleys and ridge sections subjected to
incident P and SV waves were done in time domain
[32-33]. An extensive numerical parametric study
on seismic behavior of two-dimensional semi-
sine-shaped valleys subjected to vertically propagat-
ing incident in-plane waves has been investigated
by Kamalian et al [34]. They have shown that
wavelength, site geometry and in a less order of
importance, wave type and material parameters,
are the independent key parameters governing the
valley’s amplification pattern. Also, they demonstrated
that in incidence of waves with wavelengths longer
than the width of the hill, the amplification curve
usually finds its maximum at the crest and decreases
towards the base of the hill. Some de-amplification
zones would occur along the hill as well [35-36].

The boundary element algorithm that uses the
presented time-convoluted traction kernels is applied
to site response analyses of topographic structures

by Sohrabi-Bidar et al [37]. They concluded that
seismic response analyses of three-dimensional
Gaussian-shaped ridges show that the three-dimen-
sional axisymmetric ridge has a more amplification
potential compared with three-dimensional non-
axisymmetric elongated and two-dimensional ridges,
if the ridge is impinged by incident waves with
wavelength of about the ridge’s width.

Recently, Lee et al [38] have demonstrated the
effects of topography on seismic-wave propagation
by developing a new spectral-element mesh imple-
mentation to accommodate realistic topography.
As it said, because of the complexity of such
problems, closed form of analytical solutions are not
available for complex topography. However, recent
advances in computational techniques have made
numerical approaches more feasible for practical
problems. Boundary element method (BEM) is one
of such approaches. This technique formulates the
problem in terms of boundary values. The main
advantage of BEM, especially in comparison with
finite element and finite difference methods, is that
the discretization is only applied to the boundary,
thus reducing the volume of modeling and the
number of unknown variables. Moreover, the radia-
tion condition at infinity is completely satisfied in
this method which is very prominent for wave
propagation problems. The aim of this work is to
study the problem of calculating the 3D effects of
topographical and geological irregularities on ground
motion using BEM in frequency domain. Three-
dimensional scattering of plane harmonic SH, SV, P,
and Rayleigh waves by surface topographies is
investigated in a parametric study. The investigated
problems in the paper are all analyzed using bound-
ary-element software which is improved by the
authors.

2. Propagation of Plane Harmonic Waves in a
Half-Space

Consider Ω as a homogeneous and linearly
elastic three-dimensional half-space under the
boundary Γ at y = 0. The propagation of plane
harmonic waves in domain Ω is described by the
Navier-Cauchy equation. For time-harmonic prob-
lems, with the dependence on time as exp (iωt), the
Navier-Cauchy  equation is as follows:

0).()( 22
2

2
1

22
2 =ω+∇∇−+∇ uuu ccc                      (1)



Spring and Summer 2010, Vol. 12, No. 1 & 2 27

3D Topography Effects on Amplification of Plane Harmonic Body and Surface Waves

where

2/1
2;

2/1
1 )()

2
(

ρ
µ

=
ρ

µ+λ
= cc                              (2)

are the longitudinal and transversal wave velocities,
respectively. ω is the circular frequency of the
incident wave and u is the displacement vector. The
solution of the Navier-Cauchy equation has to
satisfy the traction-free boundary condition at the
boundary Γ.

One method of solving Eq. (1) is to use potential
functions. According to Helmholtz theorem, the
displacement field u can be expressed as the sum of
the gradient of a scalar field ϕ, plus the curl of a
vector field ,ψ  i.e.

ψ×∇+ϕ∇=u                                                  (3)

ψ  must be such that the relation 0. =∇ ψ  is satis-
fied. The displacement field in the form of Eq. (3)
satisfies the Navier-Cauchy equation if the potential
functions satisfy the following equations:
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with 11 / ck ω=  and 22 / ck ω= the longitudinal and
transversal wave numbers, respectively. Eqs. (4)
are called the Helmholtz equations or the wave
equations in the frequency domain (reduced wave
equations).

Assume that the plane waves travel in the yx ′−′

plane, so it is yielded 0=
′∂

∂
z

. By using the Helmholtz

decomposition, the in-plane displacements u′  and v′
are given as:
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while the out-of-plane displacement ω′  is as follows:
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                                                (6)

Consider the reference coordinate system x, y
and z. In the general case that normal to the wave
front, i.e. the wave propagation direction, lies in the

)( yyyx =′′−′  plane, see Figure (1), where the  plane

forms a horizontal incidence angle with respect to
the general plane, the displacements in the general
system are obtained by using the following transfor-
mation matrix as follows:
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Also, we have the following relations:

yy

zxx hh

=′
θ+θ=′ sincos

                                        (8)

3. Scattering by Three-Dimensional Topogra-
phies

Consider the half-space hΩ , see Figure (2). The
displacement field related to the half-space is .hu
The traction-free boundary condition applies on the
free surface:

0=ht    on   Γ                                                  (9)

In ,hΩ  the total displacement hu  and the total
traction ht  are obtained by applying the principle of
superposition as the sum of the free field plus the
scattered field:

Figure 1. Position of the propagation wave plane )( yyyx =′′−′
relative to the reference coordinate system  x - y - z.

Figure 2. The half-space hΩ  under the free surface Γ.
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Figure 3. Hemispherical canyon with the radius a.
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where the traction ot  produced by the incident wave
can be obtained from:

4. Comparison with Available Solutions in the
Literature

In order to appraise the accuracy and efficiency
of the represented formulations for computing the
surface displacement amplification, a number of
examples are considered. The employed method is
based on the BEM in the frequency domain. The
BEM formulations for time-harmonic elastodynamic
problems have been presented by Dominguez [39]
in full details.

4.1. Hemispherical Canyons

The first results for a hemispherical canyon were
published by Sanchez-Sesma [25] for vertical inci-
dence of P waves. Afterwards, Eshraghi and
Dravinski [21] solved this problem using multipolar
expansions of wave functions. Also, Reinoso [40]
employed the BEM to study this problem.

The shape of this canyon is shown in Figure
(3). Material properties of the canyon are ,11 =ρ=c

,3/1=µ  ,577.02 =c  and ,25.0=ν  in which ρ  is
the density, µ is the shear modulus, and ν is the
Poisson’s ratio. The results obtained by the present
method are compared with those of Sanchez-
Sesma [25], Eshraghi and Darvinski [21], Reinoso
[40] and Sohrabi et al [37] for normalized frequency

5.,25.=η p  in Figure (4a) and Reinoso [40] for
normalized frequencies 5.1,75.=η p  in Figure
(4b). The dimensionless frequency pη  is introduced
as the ratio of the diameter of the canyon and the
wavelength of the incident longitudinal wave

),//2( 1πω=λ=η caap  where ω is the actual
frequency of the incident P wave and a is the
radius of the canyon. Our results are drawn with a
continuous line, while Reinoso results in Figure (4b)
are depicted with filled circles. All of the distances
are normalized with respect to the radius of the
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where in  is the components of the unit outward
normal to the boundary, and the displacements u, v,
and ω are the components of the free field motion

ou (u ,v ,ω), given by the expressions (10), (13),
(16), and (23) for a harmonic wave propagating in
a three-dimensional half-space. As the total traction
is zero on the boundary Γ, the traction due to the
scattered wave can be written as:

os tt −=     on    Γ.                                           (12)

The displacements and tractions for the half-space
due to the scattered wave can be obtained from the
following matrix system by using the BEM:

0=− shsh tGuH                                             (13)

in which hG  and hH  are the influence matrices
obtained from the integration of displacement and
traction kernels over the boundary of the half-space,
respectively. By applying the traction free boundary
condition on Γ, the above equation is written as:

ohsh tGuH −=                                               (14)

where su  is unknown. The total displacements and
tractions for the half-space are given by Eq. (10)
applying the principle of superposition.

Substituting the scattered values in terms of the
total values into Eq. (14), a system of equations with
unknowns of total displacements and tractions is
obtained:

ohohhh tGuHuH −=                                      (15)
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Figure 4a. Amplitude of components of the surface displace-
ment field for a hemispherical canyon due to the
vertical incidence of P waves with normalized
frequencies pη =.25, .5.

Figure 4b. Amplitude of components of the surface displace-
ment field for a hemispherical canyon due to the
vertical incidence of P waves with normalized
frequencies  pη =.75, 1.5.

canyon. For convenience, all numerical results for
the surface displacement field are displayed in
terms of the Cartesian components u, v, and ω. As
can be seen, the comparison is satisfactory even
for high frequencies. As expected, for vertical
incidence of P waves, the largest amplification
occurs in the vertical component of motion. Also it
can be seen that at low frequencies the motion is
more even, and by increase of the stimulation
frequency it shows  more oscillations.

This canyon is also subjected to SH and SV
waves with incidence angles of 0o, 30o, 60o relative
to the vertical axis and azimuth of 0o. The following
material properties are assumed:  ,2,1 12 ==ρ==µ c c

.3/1=ν  The comparison of these results with
those of Reinoso is presented in Figure (5) for
normalized frequency )./(75. 2πω=η=η cass   As
expected, in the incidence of SH wave only the
out-of-plane component of displacement is present
in the incident wave plane, while in the case of the
incident SV wave only the in-plane components of
motion are existent. Also, it is observed that for
incident SV wave the horizontal component u is
amplified more than the vertical component of
motion (i.e. v). This is expected because SV waves
cause particle to vibrate in the direction perpendicu-
lar to the wave propagation path.

4.2. Elliptical-Shaped Canyons

In order to test the accuracy of the present
technique for non-axisymmetric geometries, ellipti-
cal-shaped canyons are considered which is shown
in Figure (6). The results of the present study are
compared with those of Eshraghi and Dravinski
[21] and Sanchez-Sesma et al [41]. The equation of
the semi-ellipsoid is defined by ++ 2

2
22

1
2 // ayax

0,1/ 2
3

2 <= yaz  where ,, 21 a  a  and 3a  are the
principal axes of the ellipsoid along the Cartesian
coordinates x, y, and z, respectively. In reality, 1a  and

3a  are half of the diameters of the ellipsoid along
the x- and z-directions, respectively, and 2a  is the
depth of the canyon. Results are presented for
elliptical-shaped canyons with .321 aaa =≠  All
distances are normalized relative to the half-width of
the canyon along the z-axis (i.e. 3a ). In addition to
the actual frequency ω, a dimensionless frequency

sη  is defined as the ratio of the diameter of the
canyon in the incident wave plane to the wavelength
of the incident shear wave. Properties are =ρ=2c

,1=µ  and v = 1/3.
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Figure 6. Elliptical-shaped canyon.

Figure 5. Amplitude of components of the surface displacement field for a hemispherical canyon due to the incident SH and SV
waves with incidence angles of 0o, 30o, 60o, horizontal incidence angle 0o, and normalized frequency sη =.75.
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Firstly, the canyon is subjected to an incident P
wave in the y-z plane (horizontal incidence angle
90o). The dimensions of the axes of this ellipse are
3 and 1, corresponding to the x-and z-components,
respectively; the depth of the canyon is equal to

).1,3(1 321 === aaa  Namely, the shape of the
canyon is very elongated. Surface displacement
components at stations along the z-axis for a normal-
ized frequency sη = .5 (relative to )3a  and incidence
angles of 0o, 30o, 60o with respect to the y-axis are
depicted in Figure (7). Because the edges of the
canyon in the in-plane direction (propagation wave
plane) are much closer to each other than the out-
of-plane direction, its response should be close to a
two-dimensional approximation of the problem. As
expected, these results are very similar to those of
the two-dimensional model of the problem, i.e.
semicircular canyon with unit radius, shown with
filled circles.

Now, an elliptical canyon with 1,2 321 === aaa
is studied. Results are presented for incident SH
and P waves with three incidence angles, 0o, 30o,
60o, and Rayleigh waves for two azimuth of inci-
dence  0o, 90o. Although the actual frequency of the
incident wave is the same for all these incidences,
the dimensionless frequency is one (relative to )1a
for an azimuth of incidence 0o, while it reduces to
one-half (relative to  )3a  for an azimuth of incidence
90o. In all these cases the displacement field is
presented for stations along two perpendicular
sections of the canyon; in real, the principal axes of
the ellipse. In the following figures, the graphs on the
left-hand side correspond to the displacement field
for stations along the x-axis, and the ones on the right-
hand side correspond to stations along the z-axis.

For incident SH waves, the results for horizontal

Figure 7. Amplitude of components of the surface displacement field for an elliptical-shaped canyon )1,3( 321 === aaa due to the
incident P wave with incidence angles of 0o, 30o, 60o, horizontal incidence angle 90o, and normalized frequency sη =.5.

incidence angles 0o, 90o are presented in Figures (8)
and (9), respectively. Similar to the two-dimensional
approximation (antiplane strain model), surface
displacement field for stations along the x-axis, see
Figure (8), and the z-axis, see Figure (9), only has
one component in the z- and x-directions, respectively.
In other words, the motion in the plane of the incident
SH wave only occurs in the out-of-plane direction
which constitutes the out-of-plane motion. However,
for stations along the direction perpendicular to the
plane of the incident SH wave (z in Figure (8) and
x in Figure (9)), all three components of the dis-
placement field are present except for the vertical
incidence which has only two in-plane components
of motion. As can be seen, for vertical and oblique
incidence of SH wave the largest displacement is
in the out-of-plane component (w-component in
Figure (8) and u-component in Figure (9)). Appar-
ently, the other two displacement components,
non-existent in the two-dimensional approximation,
can have substantial amplitudes. Now, the displace-
ment field for stations along the x-axis of Figure (8)
is compared with the displacement field along the
z-axis of Figure (9) and vice versa. By comparing
the results of Figures (8) and (9), that no drastic
change is seen in the pattern and amplitude of the
main component of displacement, which is in the
out-of-plane direction and is specified in Figures (8)
and (9) by the w- and u-components, respectively,
occurs. However, the results for the narrower
canyon in the out-of-plane direction (azimuth of
incidence 0o) show much larger amplitudes for the
two non-principal components of displacement
than for the wider canyon (azimuth of incidence 90o).
This is expected, because as the edges of the canyon
get further apart in the out-of-plane direction, the
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Figure 9. Amplitude of components of the surface displacement field for an elliptical-shaped canyon )1,2( 321 === aaa due to
the incident SH wave with incidence angles of 0o, 30o, 60o, horizontal incidence angle 90o, and normalized
frequency sη =.5.

Figure 8. Amplitude of components of the surface displacement field for an elliptical-shaped canyon )1,2( 321 === aaa due to
the incident SH wave with incidence angles of 0o, 30o, 60o, horizontal incidence angle 0o, and normalized frequency

sη =1.
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model approaches further and further to a cylindrical
geometry, where the two non-principal components
of displacement are non-existent.

Figures (10) and (11) correspond to incident P
waves with horizontal incidence angles 0o and
90o, respectively. Similarly to the two-dimensional

Figure 10. Amplitude of components of the surface displacement field for an elliptical-shaped canyon )1,2( 321 === aaa due to
the incident P wave with incidence angles of 0o, 30o, 60o, horizontal incidence angle 0o, and normalized
frequency sη =1.

Figure 11. Amplitude of components of the surface displacement field for an elliptical-shaped canyon )1,2( 321 === aaa due to
the incident P wave with incidence angles of 0o, 30o, 60o, horizontal incidence angle 90o, and normalized
frequency sη =.5.
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Figure 13. Amplitude of components of the surface displacement field for an elliptical-shaped canyon )1,2( 321 === aaa due to
the incident Rayleigh wave with horizontal incidence angle 90o, and normalized frequency sη = .5.

Figure 12. Amplitude of components of the surface displacement field for an elliptical-shaped canyon )1,2( 321 === aaa due to
the incident Rayleigh wave with horizontal incidence angle 0o, and normalized frequency sη = 1.

approximation, for stations along the in-plane direc-
tion the displacement field consists only of two
components which constitute the in-plane motion.
However, for stations along the out-of-plane direc-
tion an additional component of displacement field
appears for oblique incidences, which are due to the
3D scattering. It is observed that the two in-plane
components of displacement (u and v in Figure (10)
display characteristics similar to those of their
counterparts (w and v in Figure (11)). As expected,
for vertical incidence of P waves the results are
independent of the azimuth of incidence, so for all
horizontal angles the same results are obtained.

Figures (12) and (13) show the responses for
incident Rayleigh waves with azimuth of incidence
0o and 90o, respectively. Analogously to the two-
dimensional approximation, in the in-plane direction
only the two in-plane components of motion can be

produced, while in the out-of-plane direction the
scattering of the canyon produces displacements in
all directions.

These results demonstrate that a change in the
azimuth of incidence may greatly affect the surface
displacement field. This observation emphasizes the
need for three-dimensional modeling of actual
surface irregularities since two-dimensional approxi-
mations may result in a poor assessment of the real
displacement field.

5. Study of a Surface Topography

5.1. Hemispherical Hills

In this problem, a hemispherical hill of radius a
is considered which is shown in Figure (14). The
material properties of the hill are assumed to be
equal to those of the hemispherical canyon in
order to make reasonable comparisons.
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Figure 14. Hemispherical hill with the radious a.

Figure 15. Amplitude of components of the surface displacement field for a hemispherical fill due to the vertical incident P
waves with normalized frequencies pη = .25, .5, .75, 1.5.

Figure 16. Rectangular cube canyon with the depth of H.

The response of this topography due to the
vertical incidence of P waves is shown in Figure
(15) for normalized frequencies sη = .25, .5, .75, 1.5.
As observed again, by increase of the stimulation
frequency the motion shows more oscillations. It
can be seen that the amplifications are generally
larger than those made by the hemispherical can-
yon. Also, the site amplification results of the hemi-
spherical hills have the same pattern with the results
of reference [37] for gaussian hills subjected to
incidence of P waves.

5.2. Rectangular Cube Canyons

In order to study the effect of shape and depth of
the canyon in amplification of the earthquake waves,
rectangular cubic canyons are considered as shown
in Figure (16). The dimension of these canyons in
the horizontal surface are 2 x 2 and the depth of
them are H = 0.5, 1, 1.5, 2. The material properties
of the canyons are assumed to be equal to those of
the hemispherical canyon and hemispherical hill.
The surface displacement of these canyons for
vertical incidence of P wave in normalized frequency
of pη  = .25  is shown in Figure (17).
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6. Conclusions

The behavior of irregularities such as hemispheri-
cal canyons, elliptical shaped canyons, hemispherical
hills and rectangular cube canyons subjected to
various waves with different incident angles are all
investigated in the paper. The results of the hemi-
spherical and elliptical shaped canyons are compared
with the available studies with different approaches.
The effect of the different canyon depths and
different frequency of incident waves are also
investigated in the parametric study of the two last
examples. The influence of the other effective
factors such as surface topography type, frequency
of incident waves, azimuth and angle of incidence
are all investigate quantitavely so as to gain insight to
the problem. Such an integrated study of topographic
effects using BEM is not available in the other
works. The comparative study showed the validity
and limitation of the corresponding two-dimensional
approximations (antiplane models). Results apparently
indicate that, in general, the dimensions of the site
under consideration suggest the suitable approach.
As a case in point, when the edges of the canyon
in the out-of-plane direction (with respect to the
incident wave plane) are close to each other, the

Figure 17. Amplitude of components of the surface displacement field for a rectangular cube canyon with depth of H = 0.5, 1,
1.5, 2 for the vertical incidence of P wave in normalized frequency pη = 2.5.

three-dimensional nature of the problem becomes
more prominent, and it cannot be modeled by
two-dimensional approximations. It can be realized
that in incidence where the propagation wave path
is perpendicular or almost  perpendicular to the
inclination wall, the motion tends to be more ampli-
fied than the case where incidence takes place
parallel to the slope. Also, graphs are representative
of amplification factor as a function of the topogra-
phy coordinates. From the numerical aspects of
the solution, it is concluded that in order to provide
acceptable convergence, as the frequency of the
incident wave or its incidence angle relative to the
vertical axis increases, the length of the discretization
over the free surface of the half space must increase
as well.

Finally, the main conclusion of the paper based
on the comparative and parametric studies of the
investigated problems is that a realistic and complete
study of site effects on surface ground motion
amplification in the above mentioned situations
requires three-dimensional modeling of irregularities.
In addition, surface topography, incident wave type,
related frequency, and azimuth and angle of incidence
must be considered in site effect studies.
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