Kamalian, M., Gatmiri, B., Sohrabi-Bidar, A., and Khalaj, A. (2007) Amplification pattern of 2D semi-sine shaped valleys subjected to vertically
propagating incident waves. Commun. Numer. Methods Eng., 23(10), 871-887.
Friedman, M.B. and Shaw, R. (1962) Diffraction of pulses by cylindrical obstacles of arbitrary cross section. J. Appl. Mech., 29(1), 40-46.
Cole, D.N., Kosloff, D.D., and Minster, J.B. (1978) A numerical boundary integral equation method for elastodynamics. Bulletin of the Seismological Society of America , 68(5), 1331-1357.
Niwa, Y., Fukui, T., Kato, S., and Fujiki, K. (1980) An application of the integral equation method to two-dimensional elastodynamics. Theor. Appl.
Mech., 28, 281-290.
Manolis, G.D. and Beskos, D.E. (1981) Dynamic stress concentration studies by boundary integrals and Laplace transforms. Int. J. Numer. Methods
Eng., 17(4), 573-599.
Manolis, G.D. (1983) A comparative study on three boundary element method approaches to problems in elastodynamics. Int. J. Numer. Methods Eng.,
(1), 73-91.
Mansur, W.J. (1983) A Time-Stepping Technique to Solve Wave Propagation Problems Using the Boundary Element Method. Ph.D. Dissertation,
University of Southampton.
Antes, H. (1985) A boundary elements procedure for transient wave propagation in two-dimensional isotropic elastic media. Finite Elem. Anal. Des.,
(4), 313-322.
Spyrakos, C.C. and Antes, H. (1986) Time domain boundary element method approaches in elastodynamics: a comparative study. Comput. Struct., 24(4), 529-535.
Israil, A.S.M. and Banerjee, P.K. (1990b) Advanced time-domain formulation of BEM for two-dimensional transient elastodynamics. Int. J. Numer. Methods Eng., 29(7), 1421-1440.
Kamalian, M., Gatmiri, B., and Sohrabi-Bidar, A. (2003) On time-domain two dimensional site response analysis of topographic structures by BEM. J. Seism. Earthq. Eng., 5(2), 35-45.
Greengard, L.F. and Rokhlin, V. (1987) A fast algorithm for particle simulations. J. Comput. Phys., 73, 325-348.
Darve, E. (2000) The fast multipole method: Numerical Implementation. J. of computational Physics, 160, 195-240.
Greenbaum, A., Greengard, L., and McFadden, GB. (1993) Laplace's equation and Dirichlet-Neumann map in multiply connected domains. J. Comput. Phys., 105, 267-278.
Greengard, L. (1988) The Rapid Evaluation of Potential Fields in Particle Systems. MIT Press, Cambridge, MA.
Greengard L. and Helsing J. (1988) On the numerical evaluation of elastostatic fields in locally isotropic two-dimensional composits. J. Mech. Phys., 46, 1441-1462.
Greengard, L. and Kropinski, M.C. (1996) Integral equation methods for stokes flow and isotropic elasticity in the plane. J. Comput. Phys.,
, 403-414.
Ergin A. Michielssen E. Shanker B. (1999) Fast transient analysis of acoustic wave scattering from rigid bodies using a two-level plane wave
time domain algorithm. J. Acoust. Soc. Am., 106, 2405-2416.
Warren, M.S. and Salmon, J.K. (1992) Astrophysical N-body simulations using hierarchical tree data structures. Supercomputing, 92, 570-
Board, J.A., Causey, J.W., Leathrum, J.F., Windemuth, A., and Schulten, K. (1992) Accelerated molecular dynamics simulation with the parallel fast multipole method. Chem. Phys. Lett., 198, 89-94.
Salmon, J.K., Warren, M.S., and Winckelmans, G.S. (1994) Fast parallel tree codes for gravitational and fluid dynamical N-body problems.
Int. J. Supercomput. Appl., 8, 124-142.
Takahashi, T., Nishimura, N., and Kobayashi, S. (2001) Fast Boundary Integral Equation method for Elastodynamic Problems in 2D in Time
Domain. Trans. JSME (A), 661(67), 1409-1416.
Otani, Y., Takahashi, T., and Nishimura, N. (2003) A fast boundary integral equation method for elastodynamics in time domain and its parallelisation. J. American Society of Mechanical Engineers, 55(4), 161-185.
Nishimura, N. (2002) Fast multipole accelerated boundary integral equation methods. J. American Society of Mechanical Engineers, 55(4), 299-324.
Shen, L. and Liu Y.J. (2007) An adaptive fast multipole boundary element method for threedimensional potential problems. Comput. Mech.,
, 681-691.
Liu, Y.L. and Nishimura N. (2006) The fast multipole boundary element method for potential problems: A tutorial. Eng. Anal. Boundary Elements, 30, 371-381.