Polyakov, S. (1960) On the interaction between masonry filler walls and enclosing frame when loaded in the plane of the wall. Translations in Earthquake Engineering, 36-42.
Holmes, M. (1961) Steel frames with brickwork and concrete infilling. ICE Proceedings, 473-478.
Smith B.S. and Carter, C. (1969) A method of analysis for infilled frames. ICE Proceedings, 31-48.
Mainstone, R.J. (1971) On the stiffness and strengths of infilled frames. ICE Proc. Thomas Telford, 49(2), 230.
Federal Emergency Management Agency (2000) Prestandard and Commentary for the Seismic Rehabilitation of Buildings. Report no. FEMA 356, FEMA, Washington, DC.
ASCE 41-06 (2006) Seismic rehabilitation of existing buildings. American Society of Civil Engineers, Virginia: Reston.
Dawe J. and Seah, C. (1989) Behaviour of masonry infilled steel frames. Canadian Journal of Civil Engineering, 16, 865-876.
Flanagan R.D. and Bennett R.M. (1999) In-plane behavior of structural clay tile infilled frames. Journal of Structural Engineering, 125, 590-599.
Motovali Emami, S.M. and Mohammadi, M. (2017) Effect of frame connection rigidity on the behaviour of infilled steel frames. Journal of Constructional Steel Research (under review).
Murthy, C. and Hendry, A. (1996) Model experiments in load bearing brickwork. Building Science, 1, 289-298.
Mosalam, K.M., White, R.N., and Gergely, P. (1997) Static response of infilled frames using quasi-static experimentation. Journal of Structural Engineering, 123, 1462-4169.
Al-Chaar, G., Issa, M., and Sweeney, S. (2002) Behavior of masonry-infilled non-ductile reinforced concrete frames. Journal of Structural Engineering, 128, 1055-1063.
Motovali Emami, S.M. (2017) Effect of Vertical Load, Number of Bays and Connection Rigidity of the Frame on the Seismic Behavior of Infilled Steel Frames. Ph.D. Thesis, International Institute of Earthquake Engineering and Seismology (in Persian).
Habbit Karlsson & Sorensen Inc. (2014) ABAQUS Theory Manual Version 6.14.
Motovali Emami, S.M. and Mohammadi, M. (2016) Influence of vertical load on in-plane behavior of masonry infilled steel frames. Earthquakes and Structures, 11, 609-627.
Lubliner, J., Oliver, J., Oiler, S., and Onate, E. (1989) A plastic-damage model for concrete. International Journal of Solids and Structures, 25, 299-329.
Lee, J. and Fenves, G.L. (1998) Plastic-damage model for cyclic loading of concrete struc-tures. ASCE Journal of Engineering Mechanics, 124, 892-900.
Dugdale, D.S. (1960) Yielding of steel sheets containing slits. Journal of the Mechanics and Physics of Solids, 8, 100-104.
Needleman, A. (1987) A continuum model forvoid nucleation by inclusion debonding. Journal of Applied Mechanics, 54, 525-531.
Bolhassani, M., Hamid, A.A., Lau, A.C., and Moon, F. (2015) Simplified micro modeling of partially grouted masonry assemblages. Construction and Building Materials, 83, 159-173.
Standard No. 2800 (2005) Iranian Code of Practice for Seismic Resistant Design of Buildings. Third Revision, Building and Housing Research Center, Iran (in Persian).
ASCE 41-13 (2012) Seismic Rehabilitation of Existing Buildings. American Society of Civil Engineers; Virginia: Reston.
Kaltakci, M., Koken, A., and Korkmaz, H. (2006) Analytical solutions using the equivalent strut tie method of infilled steel frames and experimental verification. Canadian Journal of Civil Engineering, 33, 632-638.
CSI, SAP2000 V. 14.1 (2010) Integrated Finite Element Analysis and Design of Structures Basic Analysis Reference Manual. Computers and Structures, Inc., Berkeley, California, USA.