Evaluation of Earthquake Hazard Parameters by Bayesian Method for Different Source Regions in Zagros Seismotectonic Province

Document Type : Research Article


1 Ph.D. Candidate, Department of Earth Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Assistant Professor, Seismology Research Center, International Institute of Earthquake Engineering and Seismology (IIEES), Tehran, Iran

3 Assistant Professor, Department of Earth Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran


In this study, we used the program for seismic hazard Bayesian estimate elaborated by Alexey Lyubushin. However, earthquake hazard parameters of maximum magnitude (Mmax), β value, and seismic activity rate or intensity (λ) and their uncertainties for the 30 different source regions in Zagros seismotectonic province have been evaluated with the help of a complete and homogeneous earthquake catalog during the period 1900-2019 with Mw ≥ 4.0. The estimated Mmax values vary between 5.05 and 7.41. The lowest value is observed in the MZ3 source whereas the highest value is observed in the MZ2 source. Also, it is observed that there is a strong relationship between the estimated maximum earthquake magnitudes estimated by the Bayesian method and maximum observed magnitudes. Moreover, quantiles of functions of distributions of true and apparent magnitude for future time intervals of 10, 20, 50, 100, 475 years are calculated with confidence limits for probability levels of 50, 60, 70, 80, 90, 95, and 98% in 30 different source regions. MZ2 source shows earthquake magnitude greater than 7.0 in next 100-years with 90% probability level as compared to other regions, which declares that these regions are more susceptible to the occurrence of a large earthquake. The outcomes obtained in the study may have useful implications in probabilistic seismic hazard studies of Zagros seismotectonic province.


Main Subjects

1.Kijko, A. and Sellevoll, M.A. (1992) Estimation of earthquake hazard parameters from incomplete data files. Part II. Incorporation of magnitude heterogeneity. Bull Seismol. Soc. Am., 82, 120-134.
2. Joshi G.C. and Sharma M.L. (2008) Uncertainties in the estimation of Mmax. J. Earth Syst. Sci., 117, 671-682.
3. Kijko A. and Sellevoll M.A. (1989) Estimation of Seismic hazard parameters from incomplete data files. Part I: Utilization of extreme and complete catalogues with different threshold magnitudes. Bull Seismol Soc Am., 79, 645-654.
4. Pisarenko V F., Lyubushin AA., Lysenko VB., and Golubeva TV. (1996) Statistical estimation of seismic hazard parameters: maximum possible magnitude and related parameters. Bull. Sesmol. Soc. Am., 86(3), 691-700.
5. Field, E.H., Jackson, D.D., and Dolan, J.F. (1999) A mutually consistent seismic hazard source model for southern California. Bull Seismol. Soc. Am., 89(3), 559-578.
6. Kijko, A. (2004). Estimation of the maximum earthquake magnitude Mmax. Pure and Applied Geophysics, 161, 1655-1681.
7. Mueller, C.S. (2010) The influence of maxi-mum magnitude on seismic-hazard estimates in the central and eastern United States. Bull. Seismol. Soc. Am., 100(2), 699-711.
8. Kijko, A. and Singh, M. (2011). Statistical tool for maximum possible earthquake magnitude estimation. Acta Geophys, 59, 674-700.
9. Mortgat, C.P. and Shah, H.C. (1979) A Bayesian model for seismic hazard mapping. Bull. Seismol. Soc. Am., 69, 1237-1251.
10. Campbell, K.W. (1982) Bayesian analysis of extreme earthquake occurrences, Part I. Probabilistic hazard model. Bull. Seismol. Soc. Am., 72, 1689-1705.
11. Campbell, K.W. (1983). Bayesian analysis of extreme earthquake occurrences, Part II. Application to the San Jacinto fault zone of southern California. Bull. Seismol. Soc. Am., 73, 1099-1115.
12. Galanis, O.C., Tapanos, T.M., Papadopoulos, G.A., and Kiratzi, A.A. (2002) Bayesian extreme values distribution for seismicity parameters assessment in South America. J. Balkan Geophys. Soc., 5, 77-86.
13. Nowroozi, A.A. and Ahmadi, G. (1986) Analysis of earthquake risk I Iran based on seismotectonic provinces. Tectonophysics, 122, 89-114.
14. Yazdani, A. and Kowsari, M. (2012) Bayesian estimation of seismic hazards in Iran. Scientia Iranica A (2013), 20 (3), 422-430.
15. Karimiparidari, S., Zaré, M., Memarian, H. et al. (2013) Iranian earthquakes, a uniform catalog with moment magnitudes. J. Seismol., 17, 897-911. https://doi.org/10.1007/s10950-013-9360-9.
16. Zafarani, H., Luzi, L., Lanzano, G., and Soghrat, M.R. (2015) Empirical equation for the prediction of PGA and pseudo spectral accelerations using Iranian strong-motion data. J. Seismol., 22, 263-285.
17. Shahvar, MP., Zare, M., and Castellaro, S. (2013) A Unified Seismic Catalog for the Iranian Plateau (1900-2011). Seismological Research Letters, 84(2), 233-249.
18. Gardner, J.K. and Knopoff, L. (1974) Is the sequence of earthquake in Southern California, with aftershocks removed, Poissonian? Bull. Seismol. Soc. Am., 64(5), 1363-1367.
19. Berberian, M. (1995). Master ‘Blind’ thrust faults hidden under the Zagros folds: active basement tectonics and surface morpho-
tectonics, Tectonophysics, 241, 193-224.
20. Bayrak, Y. and Türker, T. (2015) The deter-mination of earthquake hazard parameters deduced from Bayesian approach for different seismic source regions of western Anatolia. Pure Appl. Geophys., 173(1), 205-220.
21. Lyubushin, A.A., Tsapanos, T.M., Pisarenko V.F., and Koravos, G.C. (2002) Seismic hazard for selected sites in Greece: a Bayesian estimate of seismic peak ground acceleration. Nat Hazards, 25(1), 83-98.
22. Lyubushin, A.A. and Parvez, A.I. (2010) Map of seismic hazard of India using Bayesian approach. Nat Hazard, 55, 543-556.
23. Pisarenko, V.F. and Lyubushin, A.A. (1999) Bayesian approach to seismic hazard estimation: maximum values of magnitudes and peak ground accelerations. Earthquake Research in China (English Edition), 13, 45-57.
24. Tsapanos, T.M., Lyubushin, A.A., and Pisarenko, V.F. (2001) Application of a Bayesian approach for estimation of seismic hazard parameters in some regions of the Circum-Pacific Belt. Pure and Applied Geophysics, 158(5-6), p. 859.
25. Tsapanos, T.M., Galanis, O.C., Papadopoulos G.A., and Kiratzi, A.A. (2002) Bayesian extreme values distribution for seismicity parameters assessment in South America. Journal of the Balkan Geophysical Society, 5(3), 77-86.
26. Rao, C.R. (1965) ON discrete distributions arising out of methods of ascertainment. Sankhya; The Ind. J. Statist, Series A, 27, 311-324.