Tectonic Setting and Seismicity of the Badakhshan Region, Afghanistan

Document Type : Research Article

Authors

1 Department of Geomorphology hazards, Geography faculty, University of Tehran, Tehran, Iran

2 Department of Natural Geography, Geomorphology Hazards, Faculty of Geography, University of Tehran

3 Professor, Seismological Research Center, International Institute of Seismology and Earthquake Engineering (IIEES), Tehran, Iran

Abstract

The plate tectonics of Northeast Afghanistan are complex with diffuse and sparse seismicity in the broad plate deformation zones embedded by a number of micro-plates in the Badakhshan. Geothermal techniques in this area provide an important tool for investigating plate tectonic kinematics and identifying the approximate plate tectonic geometries. In this paper, we have processed Seismic centers data (1909–2022) collected by EMME and USGS catalogs and Geothermal data by Landsat 8 satellite images. Modeling of tectonic lines by geothermal energy and seismicity trends are studied. We find that the deformation in Northeast Asia can be well described by several blocks, independent of the Eurasian plate motion. Landsat images showed the important geothermal lines with medium and low importance. Tectonic micro-zones were defined by placing lines of high importance and medium importance together. According to the trend of seismicity centers concentrated from east to west of the Badakhshan region, the e result shows the continuation of east-west fractures. This east-west trend in the center of Badakhshan is located exactly in the fracture and the edge of the micro-zone plate with medium importance. The transformation of medium-importance fractures into high-importance fractures in the geographical center of Badakhshan can cause more important earthquakes in the region.

Keywords

Main Subjects


  1. Bufe, C. G., Nishenko, S. P., & Varnes, D. J. (1994). Seismicity trends and potential for large earthquakes in the Alaska-Aleutian region. Pure and Applied Geophysics, 142(1), 83-99.
  2. Travel times for global earthquake location and phase identification
  3. BLN Kennett, E.R. Engdahl - Geophysical Journal International, 1991 - academic.oup.com
  4. Howell Jr, B. F., & Kisslinger, C. (2000). That “Dahm” layer comments on renaming the D”. Eos, Transactions American Geophysical Union, 81(19), 210-210.
  5. Ambraseys, N., & Bilham, R. (2014). The tectonic setting of Bamiyan and seismicity in and near Afghanistan for the past twelve centuries. In After the destruction of Giant Buddha statues in Bamiyan (Afghanistan) in 2001 (pp. 101-152). Springer, Berlin, Heidelberg.
  6. Moeck, I., Kwiatek, G., & Zimmermann, G. (2009). Slip tendency analysis, fault reactivation potential, and induced seismicity in a deep geothermal reservoir. Journal of Structural Geology, 31(10), 1174-1182.
  7. Gao, J., Sacchi, M. D., & Chen, X. (2013). A fast reduced-rank interpolation method for preattack seismic volumes that depend on four spatial dimensions. Geophysics, 78(1), V21-V30.
  8. Yilmaz, H. M. (2007). The effect of interpolation methods in surface definition: an experimental study. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 32(9), 1346-1361.
  9. Tang, C. (1997). Numerical simulation of progressive rock failure and associated seismicity. International Journal of Rock Mechanics and Mining Sciences, 34(2), 249-261.
  10. Rhoades, D. A., Van Dissen, R. J., Langridge, R. M., Little, T. A., Ninis, D., Smith, E. G. C., & Robinson, R. (2011). Re-evaluation of the conditional probability of rupture of the Wellington-Hutt Valley segment of the Wellington Fault. Bulletin of the New Zealand Society for Earthquake Engineering, 44(2), 77-86.
  11. Chiaraluce, L., Barchi, M., Collettini, C., Mirabella, F., & Pucci, S. (2005). Connecting seismically active normal faults with Quaternary geological structures in a complex extensional environment: The Colfiorito 1997 case history (northern Apennines, Italy). Tectonics, 24(1).
  12. Seismic hazard assessment of Afghanistan M Waseem, Lateef, AhmadSkehanW Ahmed- Journal of Seismology, 2019 - Springer
  13. Metzger, S., Ischuk, A., Deng, Z., Ratschbacher, L., Perry, M., Kufner, S. K., ... & Moreno, M. (2020). Dense GNSS profiles across the northwestern tip of the India‐Asia collision zone: Triggered slip and westward flow of the Peter the First Range, Pamir, into the Tajik Depression. Tectonics, 39(2), e2019TC005797.
  14. Zhang, J., Gurung, D. R., Liu, R., Murthy, M. S. R., & Su, F. (2015). Abe Barek landslide and landslide susceptibility assessment in Badakhshan Province, Afghanistan. Landslides, 12(3), 597-609.
  15. Sladen, A., & Trevisan, J. (2018). Shallow megathrust earthquake ruptures betrayed by their outer-trench aftershocks signature. Earth and Planetary Science Letters, 483, 105-113.
  16. Kazmin, V. G., Lebowski, L. I., & Tikhonova, N. F. (2009, March). Hindu Kush earthquakes: Relict seismicity in the zone of a closed Cretaceous-Paleogene basin. In Doklady Earth Sciences (Vol. 425, No. 1, p. 314). Springer Nature BV.
  17. Bonner, J. L., Blackwell, D. D., & Herrin, E. T. (2003). Thermal constraints on earthquake depths in California. Bulletin of the Seismological Society of America, 93(6), 2333-2354.
  18. Khan, M. J., & Ali, M. (2020). Seismicity depth distribution analysis in southern Pakistan. Arabian Journal of Geosciences, 13(22), 1-13.
  19. ADVIES, H. (2012). EARTHQUAKE RETROFITTING.
  20. Victor, S., & Olga, K. IN TAJIKISTAN.
  21. Abetov, A. V., Atabayev, K. A., Babadzhanov, T. L., Dolgopolov, F. G., Zuyev, Y. N., Matasova, L. M., ... & Yachmennikov, Y. M. (1992). Deep structure of Central Asia. International Geology Review, 34(3), 279-297.
  22. Carranza et al.Spatial association of mineral occurrences and curvilinear geological features Math. Geol. (2002)
  23. Carranza et al. Where are porphyry copper deposits spatially localized? A case study in Benguet Province, Philippines Nat. Resour. Res. (2002)
  24. Wibowo, A. C., Misra, M., Park, H. M., Drzal, L. T., Schalek, R., & Mohanty, A. K. (2006). Biodegradable nanocomposites from cellulose acetate: Mechanical, morphological, and thermal properties. Composites Part A: Applied Science and Manufacturing, 37(9), 1428-1433.
  25. Preti, G., Martinasso, G., Peirone, B., Navone, R., Manzella, C., Muzio, G., ... & Schierano, G. (2007). Cytokines and growth factors involved in the osseointegration of oral titanium implants positioned using piezoelectric bone surgery versus a drilling technique: a pilot study in minipigs. Journal of Periodontology, 78(4), 716-722.
  26. Reinicke, A., Rybacki, E., Stanchits, S., Huenges, E., & Dresen, G. (2010). Hydraulic fracturing stimulation techniques and formation damage mechanisms—Implications from laboratory testing of tight sandstone–proppant systems. Geochemistry, 70, 107-117.
  27. Moghaddam, M. K., Noorollahi, Y., Samadzadegan, F., Sharifi, M. A., & Itoi, R. (2013). Spatial data analysis for exploration of regional scale geothermal resources. Journal of Volcanology and Geothermal Research, 266, 69-83.
  28. Ranalli, G., & Rybach, L. (2005). Heat flow, heat transfer, and lithosphere rheology in geothermal areas: features and examples. Journal of volcanology and geothermal research, 148(1-2), 3-19.
  29. Jin, S., Park, P. H., & Zhu, W. (2007). Micro-plate tectonics and kinematics in Northeast Asia inferred from a dense set of GPS observations. Earth and Planetary Science Letters, 257(3-4), 486-496.
  30. Mohanty, A., Hussain, M., Mishra, M., Kattel, D. B., & Pal, I. (2019). Exploring community resilience and early warning solution for flash floods, debris flow, and landslides in conflict-prone villages of Badakhshan, Afghanistan. International journal of disaster risk reduction, 33, 5-15.
  31. Li, S., Suo, Y., Li, X., Liu, B., Dai, L., Wang, G., ... & Zhang, G. (2018). Microplate tectonics: New insights from micro-blocks in the global oceans, continental margins, and deep mantle. Earth-Science Reviews, 185, 1029-1064.