Ranking of GMPEs for Seismic Hazard Analysis in Iran Using LH, LLH and EDR Approaches

Document Type : Risk Management


1 International Institute of Earthquake Engineering and Seismology (IIEES)

2 International Institute of Earthquake Engineering and Seismology (IIEES), Tehran, Iran

3 Earthquake Risk Management Research Center, International Institute of Earthquake Engineering and Seismology (IIEES), Tehran, Iran


One of the most critical steps of seismic hazard and risk analysis is selecting the appropriate GMPEs to address strong ground motion based on earthquakeparameters. In fact, appropriate modeling of this epistemic source of uncertainty in analysis is a non-trivial approach that is an active area of research. From statistical point of view, this issue can be resolved by measuring the good-of-fit, which describes how well a model fits a set of observations. In this study, the suitability of a set of local, regional and global GMPEs based on the three approaches of LH, LLH and EDR for two distinct seismotectonic regions of Iran have been assessed. Analyses show general compatibility between the order of ranking in both approaches of LH and LLH while the order of ranking in EDR approach shows significant differences. This contradiction come from their conceptual differences, in which the approaches like LH and LLH the overall performance of a model is assessed in an index and the individual effect of other parameters are not examined.


  1. Cornell, C.A. (1968) Engineering seismic risk analysis. Bull. Seismol. Soc. Am., 58(5), 1503-1606.
  2. McGuire, R. (1976) FORTRAN Computer Program for Seismic Risk Analysis. Tech. rep. U.S. Geol. Surv., Open-File Report, 76, 67-90.
  3. Bommer, J.J., Scherbaum, F., Bungum, H., Cotton, F., Sabetta, F., and Abrahamson, N.A. (2005) On the use of logic trees for groundmotion prediction equations in seismic hazard analysis. Bull. Seismol. Soc. Am., 95(2), 377-389.
  4. Scherbaum, F., Cotton, F., and Smit, P. (2004) On the use of response spectral-reference data for the selection of ground-motion models for
  5. seismic hazard analysis: the case of rock motion. Bull. Seismol. Soc. Am., 94, 341-348.
  6. Scherbaum, F., Delavaud, E., and Riggelsen, C. (2009) Model selection in seismic hazard analysis: an information theoretic perspective. Bull. Seismol. Soc. Am., 99, 3234-3247.
  7. Hintersberger, E., Scherbaum, F., and Hainzl, S. (2007) Update of likelihood-based ground-motion model selection for seismic hazard analysis in
  8. western central Europe. Bull. Earthq. Eng., 5, 1-16.
  9. Ghasemi, H., Zare, M., and Fukushima, Y. (2008) Ranking of several ground-motion models for seismic hazard analysis in Iran. Geophysics and Engineering, 5(3), 301-310.
  10. Delavaud, E., Scherbaum, F., Kuehn, N., and Riggelsen, C. (2009) Information-theoretic selection of ground-motion prediction equations for seismic hazard analysis: An applicability study using Californian data. Bulletin of the Seismological Society of America , 99, 3248-3263.
  11. Mousavi, M., Ansari, A., Zafarani, H., and Azarbakht, A. (2012) Selection of ground motion prediction models for seismic hazard analysis in the Zagros region, Iran. J. Earthq. Eng., 16, 1184-1207.
  12. Zafarani, H. and Mousavi, M. (2014) Applicability of different ground-motion prediction models for northern Iran. Nat. Hazards, 73, 1199-1228.
  13. Kale, O. and Akkar, S. (2013) A new procedure for selecting and ranking ground-motion prediction equations (GMPEs): the Euclidean-distance based ranking (EDR) method. Bull. Seismol. Soc. Am., 103, 1069-1084.
  14. Pavel, F., Vacareanu, R., Arion, C., and Neagu, C. (2014) On the variability of strong ground motions recorded from Vrancea earthquakes. Earthquakes and Structures, 6(1), 1-18.
  15. Mirzaei, N., Gao, M., and Chen, Y.T. (1998) Seismic source regionalization for seismic zoning of Iran: major seismotectonic Provinces. J. Earthq. Predict Res., 7, 465-495.
  16. Berberian, M. (1976) Contribution to the Seismotectonics of Iran (Part 2). Geological Survey of Iran. Report, 39, 518p.
  17. Nowroozi, A. (1976) Seismotectonic provinces of Iran. Bull. Seismol. Soc. Am., 66, 1249-1276.
  18. Stafford, P.J., Strasser, F.O., and Bommer, J.J. (2008) An evaluation of the applicability of the NGA models to ground-motion prediction in the euro-mediterranean region. Bull. Earthq. Eng., 6, 149-177.
  19. Beauval, C., Tasan, H., Laurendeau, A., Delavaud, E., Cotton, F., Gueguen, Ph., and Kuehn, N. (2012). On the testing of ground-motion prediction equations against small magnitude data. Bull. Seismol. Soc. Am., 102, 1994-2007.
  20. Zafarani, H. and Soghrat, M.R. (2017) A selected dataset of the Iranian strong motion records. Nat. Hazards, 86, 1307-1332.
  21. Frohlich, C. and Apperson, K.D. (1992) Earthquake focal mechanisms, moment tensors, and the consistency of seismic activity near plate boundaries. Tectonics, 11(2), 279-296.
  22. Ansari, A., Noorzad, A., Zafarani, H., and Vahidifard, H. (2010) Correction of highly noisy strong motion records using a modified wavelet de-noising method. Soil Dyn. Earthq. Eng., 30, 1168-1181.
  23. Allen, T.I. and Wald, D.J. (2009) On the use of high-resolution topographic data as a proxy for seismic site conditions (VS30). Bull. Seism. Soc.
  24. Am., 99(2A), 935-943.
  25. Ghasemi, H., Zare, M., Fukushima, Y., and Sinaeian, F. (2009) Applying empirical methods in site classification, using response spectral ratio (H/V): a case study on Iranian strong motion network (ISMN). Soil Dyn. Earthq. Eng., 29, 121-132.
  26. Boore, D.M., Watson-Lamprey, J., and Abrahamson, N.A. (2006) Orientation-independent measures of ground motion. Bull. Seismol. Soc. Am., 96, 1502-1511.
  27. Boore, D.M. (2010) Orientation-independent, nongeometric-mean measures of seismic intensity from two horizontal components of motion. Bull. Seismol. Soc. Am., 100, 1830-1835.
  28. Zafarani, H., Luzi, H., Lanzano, G., and Soghrat, M. (2017) Empirical equations for the prediction of PGA, and pseudo spectral accelerations using
  29. Iranian strong-motion data. J. Seismol.
  30. Cotton, F., Scherbaum, F., Bommer, J.J., and Bungum, H. (2006) Criteria for selecting and adjusting ground-motion models for specific target applications: applications to Central Europe and rock sites. J. Seismol., 10, 137-156.
  31. Bommer, J.J., Douglas, J., Scherbaum, F., Cotton, F., Bungum, H., and Fah, D. (2010) On the selection of ground-motion prediction equations for seismic hazard analysis. Seism. Res. Lett., 81, 783-793.
  32. Kale, O., Akkar, S., Ansari, A., and Hamzehloo, H. (2015) A ground-motion predictive model for Iran and Turkey for horizontal PGA, PGV, and
  33. % damped response spectrum: investigation of possible regional effects. Bull. Seismol. Soc. Am., 105(2A), 963-980.
  34. Ghasemi, H., Zare, M., Fukushima, Y., and Koketsu, K. (2009) An empirical spectral ground-motion model for Iran. J. Seismol., 13, 499-515.
  35. Akkar, S. and Bommer, J.J. (2010) Empirical equations for the prediction of PGA, PGV and spectral accelerations in Europe. The Mediterranean Region and the Middle East. Seism Res Lett., 81, 195-206.
  36. Akkar, S. and Cagnan, Z. (2010) A local groundmotion predictive model for Turkey, and its comparison with other regional and global ground-motion models. Bull. Seismol. Soc. Am., 100(6), 2978-2995.
  37. Abrahamson, N.A., Silva, W.J., and Kamai, R. (2014) Summary of the ASK14 ground motion relation for active crustal regions. Earthquake Spectra , 30, 1025-1055.
  38. Campbell, K.W. and Bozorgnia, Y. (2014) NGA-West2 ground motion model for the average horizontal components of PGA, PGV, and 5% damped linear acceleration response spectra. Earthquake Spectra , 30, 1087-1115.
  39. Boore, D.M., Stewart, J.P., Seyhan, E., and Atkinson, G.A., (2014) NGA-West2 equations for predicting PGA, PGV, and 5% damped PSA for shallow crustal earthquakes. Earthquake Spectra , 30, 1057-1085.
  40. Chiou, B.S.J. and Youngs, R.R. (2014) Update of the Chiou and Youngs NGA model for the average horizontal component of peak ground motion and response spectra. Ear thquake Spectra , 30, 1117-1153.
  41. Idriss, I.M. (2014) An NGA-West2 empirical model for estimating the horizontal spectral values generated by shallow crustal earthquakes. Earthquake Spectra , 30, 1155-1177.
  42. Zhao, J.X., Zhang, J., Asano, A., Ohno, Y., Oouchi, T., Takahashi, T., Ogawa, H., Irikura, K., Thio, H.K., Somerville, P.G., et al. (2006). Attenuation relations of strong ground motion in Japan using site classifications based on predominant period, Bull. Seismol. Soc. Am., 96(3), 898-913.
  43. Kanno, T., Narita, A., Morikawa, N., Fujiwara, H., and Fukushima, Y. (2006). A new attenuation relation for strong ground motion in Japan based
  44. on recorded data. Bull. Seismol. Soc. Am., 96,(3), 879-897.
  45. Zafarani, H. and Soghrat, M. (2012) Simulation of ground motion in the Zagros region. Iran using the specific barrier model and stochastic method. Bull. Seism. Soc. Am., 102, 2031-2045.
  46. Soghrat, M.R., Khaji, N., and Zafarani, H. (2012) Simulation of strong ground motion in northern Iran using the specific barrier model. Geophys.
  47. J. Int., 188, 645-679.
  48. Gregor, N., Abrahamson, N.A., Atkinson, G.M., Boore, D.M., Bozorgnia, Y., Campbell, K.W., Chiou, B.S.J., Idriss, I.M., Kamai, R., Seyhan, E., Silva, W., Stewart, J.P., and Youngs, R. (2014) Comparison of NGA-West2 GMPEs. Earthq. Spectra , 30(3), 1179-1197.
  49. Kaklamanos, J., Baise, L.G., and Boore, D.M. (2011) Estimating unknown input parameters when implementing the NGA ground-motion prediction equations in engineering practice. Earthq. Spectra , 27, 1219-1235.
  50. Jahanandish, M., Zafarani, H., and Shafiee, H.A. (2016) Implementation of the square-root impedance method to estimate site amplification in Iran using random profile generation. Bull. Seismol. Soc. Am., 107.
  51. Zafarani, H. and Farhadi, A. (2017) Testing ground-motion prediction equations against small-to-moderate magnitude data in Iran. Bull. Seismol. Soc. Am., 107.
  52. Scasserra, G., Stewart, J.P., Bazzurro, P., Lanzo, G., and Mollaioli, F. (2009) A comparison of NGA ground-motion prediction equations to
  53. Italian data. Bull. Seismol. Soc. Am., 99, 2961-2978.