Investigation of Seismic Stress Changes in the Makran Subduction Zone

Document Type : Research Article

Authors

1 Assistant Professor, Seismological Research Center, Department of Geology, International Institute of Seismology and Earthquake Engineering (IIEES), Tehran, Iran

2 Seismological Research Center, International Institute of Seismology and Earthquake Engineering (IIEES), Tehran, Iran

Abstract

The study of seismic stress structure in subduction zones is done from two viewpoints: vector quantity study (purpose of the present study) and numerical quantity, which are important topics in seismology. The structural zone of Makran with the main structure Accretionary Wedge is a kind of incremental wedge that is located in the hangingwall of a shallow subduction zone. In this study, earthquakes from the Harvard University Seismic Catalog (CMT) were used with magnitudes equal to or greater than 5. The simultaneous inverse solving algorithm several earthquakes were used and the stress field for different zones was calculated by inversion method. Results of stress field analysis in Makran zone and Makran-Zagros transition zone, Show heterogeneous stress fields throughout the regions. Makran zone was divided into 9 separate units based on structural morphology and seismic clusters.Stress field for each zone calculated by the inversion method presented by Michel in Zmap software.The seismic activity of Makran zone and the border between Makran and Zagros zones show higher concentration in several areas, which is probably due to the complex behavior of faults and the interaction between fault systems in this area. Large volume of seismic activity On both sides of Makran and The place of conversion of the compressive mechanism of the faults (in the fold and thrust sections) to strike slip is concentrated.Another group of earthquakes occurred at the intersection of fault systems in the center of Makran and between Jazmourian and Mashkel depressions, which shows the structural complexity at the junction of Sistan suture with Makran thrust systems.

Keywords

Main Subjects


  1. Kopp, C., Fruehn, J., Flueh, E. R., Reichert, C., Kukowski, N., Bialas J, Klaeschen, D. (2000) Structure of the Makran subduction zone from wide-angle and reflection seismic data. Tectonophysics 329, 171–191.
  2. 2. Grando, G.andMcClay, K. (2007) Morphotectonics domains and structural styles in the Makran accretionary prism, offshore Iran. Sediment. Geol. 196, 157–179.
  3. Vernant, Ph. Nilforoushan, F, Hatzfeld, D. Abbasi, M.R. Vigny, C. Masson, F.Nankali, H.Martinod, J.Ashtiani, A.Bayer, R.Tavakoli, F.and Chery, J.(2004) Present-Day Crustal Deformation and Plate Kinematics in the Middle East Constrained by GPS Measurements in Iran and Northern Oman. Geophys. J. Int., 157: 381-398.
  4. Normand, R..Simpson, G. Bahroudi, A. (2019) Extension at the coast of the Makran subduction zone (Iran), Terra Nova. 31:503–510.
  5. Vigny, C. Huchon, P. Ruegg, J. Khanbari,K. and M.Asfaw,L. (2006) Confirmation of Arabia plate slowmotion by new GPS data in Yemen, J. Geophys.Res.,111, B02402, doi:10.1029/2004JB003229.
  6. Penney, C. Tavakoli, F. Saadat, A. R. Nankali, H. R. Sedighi, M.  Khorrami, F. Sobouti, F . Ra. Z., Cople,  A.  Jackson, J.  Priestley, K.  (2017) Megathrust and accretionary wedge properties and behavior in the Makran subduction zone. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W4.
  7. Stoneley, R. (1974) Evolution of the continental margins bounding a former Tethys. In: Burk, C.A., Drake, C.L. (Eds.). The Geology of Continental Margins. Springer, New York, NY, pp. 889–903.
  8. Farhoudi, G.Karig, D. E. (1977) The Makran of Iran and Pakistan as an Active Arc System. Geology 5 (11), 664–668.
  9. Platt, J.P., Leggett, J.K. & Alam, H.R.S. (1985) Large-scale sediment underplating in the Makran accretionary prism, southwest Pakistan. Geology, 13, 507–511.
  10. DeJong, K.A. (1982) Tectonics of Persian Gulf, Gulf of Oman and southern Pakistan region. In: Nairn, A.E.M. andStehli, F.G. (eds) The Indian Ocean.Plenum, New York, 315–351.
  11. Kidd, R.G.W. and McCall, G.J.H. (1985) Plate tectonics and the evolution of Makran. In: McCall, G.J.H. (ed.) East Iran Project, Area No. 1. Geological Survey of Iran, Report, 1, 564–618.
  12. White, R. S. (1982) Deformation of the Makran accretionary sediment prism in the Gulf of Oman (northwest Indian Ocean), in Trench-Fore arc Geology: Sedimentation and Tectonics on Modern and Ancient Active Plate Margins, edited by J. K. Leggett, Geol. Soc. Spec. Publ., 10, 69 – 84.
  13. Schluter, H. U. Prexl, A. Gaedicke, C. Roeser, H. Reichert, C. Meyer, H. and von Daniels, C. (2002) The Makran accretionary wedge: sediment thicknesses and ages and the origin of mud volcanoes. Marine Geology185, 219.
  14. Mokhtari, M. Abdoulahi Fard, I. and Hessami, K. (2008) Structural elements of the Makran region, Oman Sea, and their potential relevance to tsunamigenesis, Natural Hazards, 47, 185–199.
  15. Kearey, P. Vine, F.J. (1996) Global Tectonics, second ed. BlackwellScience Ltd., MA, USA.
  16. Dolati, A. and Burg, J.‐P. (2013) Preliminary fault analysis and paleostress evolution in the Makran Fold‐and‐Thrust Belt in Iran. In Al Hosani, K. Roure, F. Ellison, R. andLokier, S. (Eds.), Lithosphere dynamics and sedimentary basins: The Arabian Plate and analogues (pp.261–277). Heidelberg, Germany: Springer. https ://doi.org/10.1007/978‐3‐642‐30609‐9_13Normand, et al., 2019
  17. Byrne, D. E. Sykes, L. R. Davis, D. M. (1992) Great thrust earthquakes and aseismic slip along the plate boundary of the Makran Subduction Zone. J. Geophys. Res. 97 (B1), 449–478.
  18. Kukowski, N. Schillhorn, T. Flueh, E. R. Huhn, K. (2000) Newly identified strike-slip plate boundary in the northeastern Arabian Sea. Geology 28 (4), 355–358.
  19. Okal, E.A. Synolakis, C.E. (2008) Far-field tsunami hazard from mega-thrust earthquakes in the Indian Ocean. Geophysical Journal International 172 (3), 995-1015.
  20. Burg, J.P. (2018) Geology of the onshore Makran accretionary wedge: Synthesis and tectonic interpretation. Earth-Science Reviews. h https://doi.org/10.1016/j.earthscirev.2018.09.011.
  21. Mokhtari, M et al. (2019) A review of the seismotectonics of the Makran Subduction Zone as a baseline for Tsunami Hazard Assessments. Geoscience Letters. 6(13). DOI:10.1186/s40562-019-0143-1(in Persian).
  22. Ellouz-Zimmermann, N et al. (2007) Offshore frontal part of the Makran Accretionary Prism (Pakistan): the Chamak survey. In: Lacombe O, Lavé J, Roure F, Vergès J (eds) Thrust belts and foreland basins: from fold kinematics to hydrocarbon systems. Springer, Berlin, pp 349–364.
  23. Harms, J.C., Cappel, H.N. and Francis, D.C. (1984) The Makran coast of Pakistan: its stratigraphy and hydrocarbon potential. In: Marine Geology and Oceanography of Arabian Sea and Coastal Pakistan (B.U. Haq and J.D. Milliman, eds), pp. 3–27. Van Nostrand Reinhold Co., New York.
  24. Leggett, J.K., Platt, J., (1984) Structural features of the Makranfore-arc on Landsat imagery. In: Haq, B.U., Milliman, J.D. (Eds.), Marine Geology and Oceanography of Arabian Sea and Coastal Pakistan. Van Nostrand Reinhold, New York,pp. 33-43.

25.King, G. C. P. Bilham, R. G. Campbell, J. W. Mckenzie,  D. P. and Niazi , M.(1975) Detection of elastic strain field caused by fault creep events in Iran. Nature volume 253, pages420–423.

  1. Agha Nabati, A. (2004) Geology of Iran, 586 pages (in Persian).
  2. Zarifi, Z. (2006) Unusual subduction zones: case studies in Colombia and Iran, Unpublished Ph.D Thesis, University of Bergen, Norway.
  3. Song, T.R.A. and Simons, M. (2003) Large trench-parallel gravity variations predict seismogenic behavior in subduction zones: Science, v. 301, p. 630–633, DOI: 10.1126/science.1085557.
  4. Wells, R. E. Blakely, R. J. Sugiyama, Y. Scholl, D. W. and Dinterman, P. A.(2003) Basin-centered asperities in great subduction zone earthquakes: A link between slip, subsidence, and subduction erosion?, J. Geophys. Res., 108 (B10), 2507, doi:10.1029/2002JB002072.
  5. Hackney, R.I.Echtler, H.P.Franz, G.Götze, H.J.Lucassen, F.Marchenko, D.Melnick, D.Meyer, U.Schmidt, S.Tasárová, Z.Tassara, A.Wiedecke, S. (2006) The segmented overriding plate and coupling at the South-Central Chilean margin (36–42°S). In: Oncken, O.Chong, G.Franz, G.Giese, P.Götze, H.J.Ramos, V.A.Strecker, M.R.Wigger, P. (eds) The Andes – active subduction orogeny. Springer, Berlin, pp 355–374.
  6. Pacheco. J.F.Sykes, L.R.Scholz, C.H. (1993) Nature of seismic coupling along simple plate boundaries of the subduction type. J Geophys Res 98:14133–14159.
  7. Jacob, K. H. Quittmeyer, R. L. (1979) The Makran region of Pakistan and Iran: Trench-arc system with active plate subduction. In: Farah, A., de Jong, K A (Eds ), Geodynamics of Pakistan, pp. 305-317.
  8. Seyitoğlu, G. Aktuğ, B. Karadenizli, L. Kaypak, B. Şen, Ş. Kazancı, N. Işık, V. Esat, K. Parlak, O. Varol, B. Saraç, G. İleri, İ. (2009) A Late Pliocene – Quaternary pinched crustal wedge in NW Central Anatolia, Turkey: A Neotectonic structure accommodating the internal deformation of the Anatolian plate. Geological Bulletin of Turkey, 52, 121-154.
  9. Burchfiel, B.C. Royden, L.H. (1985) Northsouth extension within the convergent Himalaya region. Geology, 13, 679-682.
  10. Frohling E.andSzeliga, W.  (2016)  GPS constraints on interplate locking within the Makran subduction zone. Geophys. J. Int., 205(1):67-76.
  11. Hoffmann, G. Grutzner, C. Reicherter, K.and Preusser, F. (2015) Geo-archaeological evidence for a Holocene extreme flooding event within the Arabian Sea (Ras al Hadd, Oman). Quat. Sci. Rev., 113:123-133.
  12. Lin, N. Y. Jolivet, R. Simons, M.  Agram, P.  S. Martens, H.  R. Li. Z.  and Lodi, S.  H. (2015)  High interseismic coupling in the Eastern Makran (Pakistan) subduction zone. EPSL, 420:116-126.
  13. Pourbeyranvand, S.and Shomali, z.h., (2012) Determination of stress tensor based on Inversion of earthquake focal mechanisms and implementation in Makran region. Iranian geophysical journal (Persian), volume 6, no.2. P.1-19.
  14. Rostam, G.G., Pakzad. M., Noorbakhsh Mirzaei, N., and Sakhaei. S.R., (2018) Analysis of the stress field and strain rate in Zagros-Makran transition zone. J Seismol, 22:287–301.
  15. Mehr, H., Asayesh A. M, and Mokhtari, M. (2018) Splay Faults in the Makran Subduction Zone and Changes of their Transferred Coulomb Stress. Journal of the Earth and Space Physics, Vol. 43, No. 4, P. 1-10.
  16. Dziewonski, A. M., Chou, T. A. and Woodhouse, J. H. (1981) Determination of earthquake source parameters from waveform data for studies of global and regional seismicity, J. Geophys. Res., 86, 2825-2852, 1981. doi:10.1029/JB086iB04p02825.
  17. Maury, J., Cornet, F.H. & Dorbath, L. (2013) A review of methods for determining stress fields from earthquake focal mechanisms: application to the Sierentz 1980 seismic crisis (Upper Rhine graben), Bull. Soc. Geol. France, 184(4–5), 319–334.
  18. Michael A. J. (1984) Determination of stress from slip data: faults and folds. J Geophys Res89:11517–11526.
  19. Gephart, J.W. & Forsyth, D.W. (1984) An improved method for determining the regional stress tensor using earthquake focal mechanism data: application to the San Fernando earthquake sequence, J. geophys. Res., 89, 9305–9320.
  20. Angelier, J. (2002) Inversion of earthquake focal mechanisms to obtain the seismotectonic stress IV—a newmethod free of choice among nodal lines, Geophys. J. Int., 150, 588–609.
  21. Lund, B. & Slunga, R. (1999) Stress tensor inversion using detailed microearthquake information and stability constraints: application to Olfus in southwest Iceland, J. geophys. Res., 104, 14 947–14 964.
  22. Hardebeck, J.L. Michael, A. J. (2006) Damped regional-scale stress inversions:methodology and exam-ples for southern California and the Coalinga aftershock sequence. J Geophys Res 111:B11310.
  23. Arnold, R. &Townend, J. (2007) A Bayesian approach to estimating tectonic stress from seismological data, Geophys. J. Int., 170, 1336–1356.
  24. Wallace, R.E. (1951) Geometry of shearing stress and relation to faulting. J Geol 59:118–130.
  25. Bott, M.H.P. (1959) The mechanics of oblique slip faulting. Geol Mag 96:109–117.
  26. Lay, T. & Wallace, T.C. (1995) Modern Global Seismology, Academic Press.
  27. Michael, A.J. (1987) Use of focal mechanisms to determine stress: a control study, J. geophys. Res., 92(B1), 357–368.
  28. Regard, V.Hatzfeld, D. Molinaro, M.Aubourg, C. Bayer, R. Bellier, O.Yamini-Fard, F. Peyret, M. and Abbassi, M. (2010) The transition between Makransubduction and the Zagros collision: recent advances in its structure and active deformation.Geological Society, London, Special Publications, 330, 43-64, 1 January 2010, https://doi.org/10.1144/SP330.4
  29. Jentzer, M. Fournier, P. Agard, J. Omrani, M. Khatib, M. and Whitechurch, H. (2017) Neogene to present paleostress field in Eastern Iran (Sistan belt) and implications for regional geodynamics, Tectonics 36, 321–339.
  30. Nissen, E. Yamini-Fard, F. Tatar, M. Gholamzadeh, A. Bergman, E.Elliott, J. Jackson, J. and Parsons, B. (2010) The vertical separation of mainshock rupture and microseismicity at Qeshm island in the Zagros fold-and-thrust belt, Iran, Earth planet. Sci. Lett.,296 (3–4), 181–194.
  31. Christopher H. Scholz. (2015) On the stress dependence of the earthquake b value. Geophys. Res. Lett., 42, doi:10.1002/2014GL062863.