A Novel Numerical Iterative Procedure for Ground Motion Simulation

Document Type : Research Article


M.Sc. Graduate of Structural Engineering, Civil Engineering Department, School of Engineering, University of Kharazmi, Tehran, Iran


Time history analysis of structures require some carefully selected earthquake records to be employed as the input for dynamic analysis. Despite the increase in number of recorded earthquake ground motions, the need for generation of artificial accelerograms are highly demanded in some areas for some reasons. As a result, many efforts have been made to develop mathematical methods for simulating ground motions by various researchers. Since most of the methods for generation of spectrum compatible signals use relatively complex mathematical approaches, it requires engineers to make more effort and spend time to deal with these complicated methods. In order to meet engineers’ demand for generation of the above-mentioned signals while maintaining an applicable tool that is easy to utilize, a simple, numerically iterative novel procedure has been proposed which is based on linear combination of intrinsic mode functions (IMF) of recorded seismic signals evaluated by empirical mode decomposition (EMD). The proposed method requires only basics of structural dynamics and definitely all engineers are familiar with them and simply can apply the method, while it leads to results as accurate and efficient as benchmark methods such as random vibration theory and time-frequency analysis techniques. The results of this study prove the applicability of the developed approach.


Main Subjects

Amiri, G. G., Abdolahi Rad, A., Aghajari, S., & Khanmohamadi Hazaveh, N. (2012). Generation of Near-Field Artificial Ground Motions Compatible with Median-Predicted Spectra Using PSO-Based Neural Network and Wavelet Analysis. Computing in Civil and Infrastructure Engineering, 27(9), 711-730. doi:10.1111/j.1467-8667.2012.00783.x.
Amiri, G. G., Bagheri, A., & Seyed Razaghi, S. A. (2009). Generation of multiple earthquake accelerograms compatible with spectrum via the wavelet packet transform and stochastic neural networks. Journal of Earthquake Engineering, 13(7), 899-915. doi:10.1080/13632460802687728.
Amiri, G. G., Rad, A. A., & Hazaveh, N. K. (2014). Wavelet-Based Method for Generating Nonstationary Artificial Pulse-Like Near-Fault Ground Motions. Computing in Civil and Infrastructure Engineering, 29(10), 758-770. doi:10.1111/mice.12110.
Bani-Hani, K. A., & Malkawi, A. I. (2017). A Multi-step approach to generate response-spectrum-compatible artificial earthquake accelerograms. Soil Dynamics and Earthquake Engineering, 97, 117-132. doi:10.1016/j.soildyn.2017.03.012.
Batou, A., & Soize, C. (2014). Generation of accelerograms compatible with design specifications using information theory. Bulletin of Earthquake Engineering, 12(2), 769-794. doi:10.1007/s10518-013-9547-z.
Bazrafshan, A., & Khaji, N. (2020). Generation of synthetic accelerograms using a probabilistic critical excitation method based on energy constraint. Earthquakes and Structures, 18(1), 45-56. doi:10.12989/eas.2020.18.1.045.
Brewick, P. T., Hernandez-Garcia, M., Masri, S. F., & Smyth, A. W. (2018). A Data-based Probabilistic Approach for the Generation of Spectra-Compatible Time-History Records. Journal of Earthquake Engineering, 22(8), 1365-1391. doi:10.1080/13632469.2017.1286618.
Cacciola, P., & Zentner, I. (2012). Generation of response-spectrum-compatible artificial earthquake accelerograms with random joint time-frequency distributions. Probabilistic Engineering Mechanics, 28, 52-58. doi:10.1016/j.probengmech.2011.08.004.
Carli, F., & Carino, C. (2016). Evolutionary model for synthetic spectrum-compatible accelerograms. In: Springer Proceedings in Mathematics and Statistics, 181, 131-141. doi:10.1007/978-3-319-42402-6_12.
Cecini, D., & Palmeri, A. (2015). Spectrum-compatible accelerograms with harmonic wavelets. Computers & Structures, 147, 26-35. doi:10.1016/j.compstruc.2014.10.013.
Das, S., & Gupta, V. K. (2008). Wavelet-based simulation of spectrum-compatible aftershock accelerograms. Earthquake Engineering & Structural Dynamics, 37(11), 1333-1348. doi:10.1002/eqe.820.
Fan, J., Yong, Y., & Zhang, Y. (2010). Time-Frequency Analysis and Artificial Adjustment of Earthquake Ground Motions via S-Transform. Earth and Space, 3101-3110. doi:10.1061/41096(366)295.
Gascot, R. L., & Montejo, L. A. (2016). Spectrum-Compatible Earthquake Records and Their Influence on the Seismic Response of Reinforced Concrete Structures. Earthquake Spectra, 32(1), 101-123. doi:10.1193/011714EQS010M.
Gholizad, A., & Pursadrollah, A. (2017). Quantitative Evaluation of Near-Fault Records Generated via Wavelet Transform. Journal of Structural Engineering and Earthquake Engineering, 19(1), 1-11.
Giaralis, A., & Spanos, P. D. (2009). Wavelet-based response spectrum compatible synthesis of accelerograms-Eurocode application (EC8). Soil Dynamics and Earthquake Engineering, 29(1), 219-235. doi:10.1016/j.soildyn.2007.12.002.
Giaralis, A., & Spanos, P. D. (2012). Derivation of response spectrum compatible non-stationary stochastic processes relying on Monte Carlo-based peak factor estimation. Earthquakes and Structures, 3(3), 581-609. doi:https://doi.org/10.12989/eas.2012.3.3.581.
Gomes, R. C., Santos, J., & Oliveir, C. S. (2006). Design spectrum-compatible time histories for numerical analysis: Generation, correction, and selection. Journal of Earthquake Engineering, 10(6), 843-865. doi:10.1080/13632460609350620.
Huang, D., & Wang, G. (2017). Energy-compatible and spectrum-compatible (ECSC) ground motion simulation using wavelet packets. Earthquake Engineering & Structural Dynamics, 46(11), 1855-1873. doi:10.1002/eqe.2887.
Li, Z., Kotronis, P., & Wu, H. (2017). Simplified approaches for Arias Intensity correction of synthetic accelerograms. Bulletin of Earthquake Engineering, 15(10), 4067-4087. doi:10.1007/s10518-017-0126-6.
Liu, Z., Du, C., Yuan, J., & Jiang, S. (2009). Numerical Simulation of Nonstationary Earthquake Field Compatible with Prescribed Response Spectrum. TCLEE 2009, 357, 1-11. doi:10.1061/41050(357)102.
Mitropoulou, C. C., Lagaros, N. D., & Papadrakakis, M. (2015). Generation of artificial accelerograms for efficient life-cycle cost analysis of structures. Engineering Structures, 88, 138-153. doi:10.1016/j.engstruct.2015.01.029.
Mukhopadhyay, S., Das, S., & Gupta, V. K. (2019). Wavelet-based generation of accelerogram-consistent, spectrum-compatible motions: New algorithms and short-period overestimation. Soil Dynamics and Earthquake Engineering, 121, 327-340. doi:10.1016/j.soildyn.2019.02.001.
Parajuli, H. R., & Shrestha, R. K. (2018). Generation of Synthetic Ground Motion. Journal of Geological Resources Engineering, 6, 105-111. doi:https://doi.org/10.17265/2328-2193/2018.03.002.
Rajabi, E., & Ghodrati Amiri, G. (2020). Generation of critical aftershocks using stochastic neural networks and wavelet packet transform. Journal of Vibration Control, 26(5-6), 331-351. doi:10.1177/1077546319879536.
Rajasekaran, S., Latha, V., & Lee, S. C. (2006). Generation of artificial earthquake motion records using wavelets and principal component analysis. Journal of Earthquake Engineering, 10(5), 665-669. doi:10.1080/13632460609350614.
Road, Housing & Urban Development Research Center (2017). Iranian Code of Practice for Seismic Resistant Design of Buildings, 4th edition,
Rofooei, F. R., Mobarake, A., & Ahmadi, G. (2001). Generation of artificial earthquake records with a nonstationary Kanai-Tajimi model. Engineering Structures, 23(7), 827-837. doi:10.1016/S0141-0296(00)00093-6.
Sarkar, K., Gupta, V. K., & George, R. C. (2016). Wavelet-based generation of spatially correlated accelerograms. Soil Dynamics and Earthquake Engineering, 87, 116-124. doi:10.1016/j.soildyn.2016.05.005.
Shama, A. (2012). Spectrum Compatible Earthquake Ground Motions by Morlet Wavelet. In: 20th Analysis and Computation Specialty Conference, 163-172. doi:10.1061/9780784412374.015.
Shields, M. D. (2015). Simulation of Spatially Correlated Nonstationary Response Spectrum–Compatible Ground Motion Time Histories. Journal of Engineering Mechanics, 141(6), 04014161. doi:10.1061/(ASCE)EM.1943-7889.0000884.
Spanos, P. D., Giaralis, A., & Jie, L. (2009). Synthesis of accelerograms compatible with the Chinese GB 50011-2001 design spectrum via harmonic wavelets: Artificial and historic records. Earthquake Engineering and Engineering Vibration, 8(2), 189-206. doi:10.1007/s11803-009-9017-4.
Suárez, L. E., & Montejo, L. A. (2005). Generation of artificial earthquakes via the wavelet transform. International Journal of Solids and Structures, 42, 5905-5919. doi:10.1016/j.ijsolstr.2005.03.025.
Tehrani, M. H., & Harvey, P. S. (2019). Generation of synthetic accelerograms for telecommunications equipment: fragility assessment of a rolling isolation system. Bulletin of Earthquake Engineering, 17(3), 1715-1737. doi:10.1007/s10518-018-0505-7.
Tenth Regulation of National Building Code - Design and Construction of Steel Structures. (2022). 5th edition. Office of National Regulations and Building Control of the Ministry of Roads and Urban Development.
Trovato, S., D’Amore, E., Yue, Q., & Spanos, P. D. (2017). An approach for synthesizing tri-component ground motions compatible with hazard-consistent target spectrum - Italian aseismic code application. Soil Dynamics and Earthquake Engineering, 93, 121-134. doi:10.1016/j.soildyn.2016.12.003.
Tsioulou, A., Taflanidis, A. A., & Galasso, C. (2018). Modification of stochastic ground motion models for matching target intensity measures. Earthquake Engineering & Structural Dynamics, 47(1), 3-24. doi:10.1002/eqe.2933.
Vetter, C. R., Taflanidis, A. A., & Mavroeidis, G. P. (2016). Tuning of stochastic ground motion models for compatibility with ground motion prediction equations. Earthquake Engineering & Structural Dynamics, 45(6), 893-912. doi:10.1002/eqe.2690.
Vrochidou, E., Alvanitopoulos, P., Andreadis, I., & Elenas, A. (2018). Artificial accelerograms composition based on the CEEMD. Transactions of the Institute of Measurement and Control, 40(1), 239-250. doi:10.1177/0142331216654533.
Vrochidou, E., Alvanitopoulos, P., Andreadis, I., Elenas, A., & Mallousi, K. (2014). HHT-based artificial seismic accelerograms generation. IFIP Advances in Information and Communication Technology, 436, 476-486. doi:10.1007/978-3-662-44654-6_47.
Wang, S., Yu, R., De Risi, R., & Li, X. (2021). A new energy-compatible nonstationary stochastic ground-motion simulation method. Earthquake Engineering & Structural Dynamics. doi:10.1002/eqe.3428.
Wang, S., Yu, R., Li, X., & Lv, H. (2019). Simulation method of ground motion matching for multiple targets and effects of fitting parameter variation on the distribution of PGD. Earthquakes and Structures, 16(5), 563-573. doi:https://doi.org/10.12989/eas.2019.16.5.563.
Zhang, C. R., Chen, H. Q., & Li, M. (2007). Earthquake accelerogram simulation with statistical law of evolutionary power spectrum. Acta Seismologica Sinica (English Edition), 20(4), 435-446. doi:10.1007/s11589-007-0435-y.