A Comprehensive Probabilistic Seismic Hazard Analysis of Karaj, Iran Using Classical and Monte Carlo Simulation Approaches

Document Type : Research Article

Authors

1 M.Sc. Graduate, International Institute of Earthquake Engineering and Seismology (IIEES), Tehran, Iran

2 M.Sc. Graduate; Institute of Geophysics, University of Tehran, Tehran, Iran

3 Assistant Professor, Structural Engineering Research Center, International Institute of Earthquake Engineering and Seismology (IIEES), Tehran, Iran

Abstract

This study provides a comprehensive probabilistic seismic hazard assessment for Karaj, the capital of Alborz province. In the present study, two probabilistic approaches including the classical and Monte Carlo methods are applied. In this regard, the most recent earthquake catalog of the region, as well as, the most appropriate GMPEs based on the statistical tests of the likelihood and the log-likelihood are used. The results indicated that there are differences between the results of two approaches, which is intensified in the longer return periods. This disparity mainly stemmed from the different concept of two methods for incorporating the aleatory uncertainty. In classical PSHA, the aleatory uncertainty takes into account using the integration which is truncated at a fixed number of the logarithmic standard deviation. While, in the Monte Carlo simulation approach, the aleatory uncertainty is considered in calculation using random sampling of GMPEs variability. In addition, the ground motion shaking map of the region for the dominant seismic scenarios including the rupture of the North-Tehran and Eshterhard faults are developed. These seismic scenarios have the potential of producing the greatest acceleration; consequently, the most vulnerability. The outcomes of this study can be used for providing urban plan or estimating the probable economic and casualty losses of Karaj.

Keywords

Main Subjects


Abrahamson, N.A., Silva, W.J., Kamai, R. (2014) Summary of the ASK14 Ground Motion Relation for active Crustal Regions. Earthquake Spectra30(3), 1025-1055.
Ansari, A., Firuzi, E., & Etemadsaeed, L. (2015). Delineation of Seismic Sources in Probabilistic Seismic-Hazard Analysis Using Fuzzy Cluster Analysis and Monte Carlo Simulation. Bulletin of the Seismological Society of America105(4), 2174-2191.
Ashtari, M., Hatzfeld, D., & Kamalian, N. (2005). Microseismicity in the region of Tehran. Tectonophysics395(3-4), 193-208.
Bazzurro, P., & Allin Cornell, C. (1999). Disaggregation of seismic hazard. Bulletin of the Seismological Society of America89(2), 501-520.
Beauval, C., Tasan, H., Laurendeau, A., Delavaud, E., Cotton, F., Gueguen, P., Kuehn, N. (2012) On the Testing of Ground Motion Prediction Equations against Small Magnitude Data. Bulletin of the Seismological Society of America102(5), 1994-2007.
Berberian, M. & Yeats, R. (2001). Contribution of archaeological data to studies of earthquake history in the Iranian Plateau. Journal of Structural Geology, 23(2), 563-584.
Berberian, M., & Yeats, R. S. (1999). Patterns of historical earthquake rupture in the Iranian Plateau. Bulletin of the Seismological Society of America89(1), 120-139.
Bindi, D., Massa, M., Luzi, L., Ameri, G., Pacor, F., Puglia, R., Augliera, P. (2014). Pan-European Ground-Motion Prediction Equations for the Average Horizontal Component of PGA, PGV, and 5%-damped PSA at Spectral Periods up to 3.0 s Using the RESORCE Dataset. Bulletin of Earthquake Engineering12(1), 391-430.
Bommer, J. J., Douglas, J., Scherbaum, F., Cotton, F., Bungum, H., & Fäh, D. (2010). On the selection of ground-motion prediction equations for seismic hazard analysis. Seismological Research Letters81(5), 783-793.
Bommer, J. J., Scherbaum, F., Bungum, H., Cotton, F., Sabetta, F., & Abrahamson, N. A. (2005). On the use of logic trees for ground-motion prediction equations in seismic-hazard analysis. Bulletin of the Seismological Society of America95(2), 377-389.
Boore, D.M., Stewart, J.P., Seyhan, E., Atkinson, G.M. (2014) NGA-West2 Equations for Predicting PGA, PGV, and 5% Damped PSA for Shallow Crustal Earthquakes. Earthquake Spectra30(3), 1057-1085.
Campbell, K.W., Bozorgnia, Y. (2014). NGA-West2 Ground Motion Model for the Average Horizontal Components of PGA, PGV, and 5% Damped Linear Acceleration Response Spectra. Earthquake Spectra30(3), 1087-1115.
Chiou, B.S.J., Youngs, R.R. (2014). Update of the Chiou and Youngs NGA Model for the Average Horizontal Component of Peak Ground Motion and Response Spectra. Earthquake Spectra30(3), 1117-1153.
Cornell, C. A. (1968). Engineering seismic risk analysis. Bulletin of the Seismological Society of America58(5), 1583-1606.
Cotton, F., Scherbaum, F., Bommer, J.J., Bungum, H. (2006) Criteria for Selecting and Adjusting Ground-Motion Models for Specific Target Regions: Application to Central Europe and Rock Sites. Journal of Seismology10(2), 137-156.
Crowley, H. (2014). Earthquake risk assessment: present shortcomings and future directions. In Perspectives on European earthquake engineering and seismology (pp. 515-532). Springer, Cham.
Crowley, H., Bommer, J.J. (2006). Modelling seismic hazard in earthquake loss models with spatially distributed exposure. Bulletin of Earthquake Engineering, 4(3), 249-273.
Danciu, L., Kale, Ö., & Akkar, S. (2018). The 2014 Earthquake Model of the Middle East: ground motion model and uncertainties. Bulletin of Earthquake Engineering16(8), 3497-3533.
Ebel, J. E., & Kafka, A. L. (1999). A Monte Carlo approach to seismic hazard analysis. Bulletin of the Seismological Society of America89(4), 854-866.
Fallah Tafti, M., Amini Hosseini, K., Firouzi, E., Mansouri, B., & Ansari, A. (2017). Ranking of GMPEs for seismic hazard analysis in Iran using LH, LLH and EDR approaches. Journal of Seismology and Earthquake Engineering19(2), 139-161.
Farajpour, Z., Pezeshk, S., & Zare, M. (2019). A new empirical ground‐motion model for Iran. Bulletin of the Seismological Society of America109(2), 732-744.
Firuzi, E., Ansari, A., Amini Hosseini, K., & Karkooti, E. (2020). Developing a customized system for generating near real time ground motion ShakeMap of Iran’s earthquakes. Journal of Earthquake Engineering, 1-23.
Firuzi, E., Ansari, A., Hosseini, K.A., Rashidabadi, M. (2019) Probabilistic Earthquake Loss Model for Residential Buildings in Tehran, Iran to Quantify Annualized Earthquake Loss. Bulletin of Earthquake Engineering, 17(5), 2383–2406.
Gardner, J. K., & Knopoff, L. (1974). Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian. Bulletin of the Seismological Society of America64(5), 1363-1367.
Ghasemi, H., Zare, M., Fukushima, Y., Sinaeian, F. (2009). Applying Empirical Methods in Site Classification, Using Response Spectral Aatio (H/V): A Case Study on Iranian Strong Motion Network (ISMN). Soil Dynamics and Earthquake Engineering29(1), 121-132.
Han, S.W., Choi, Y.S. (2008). Seismic hazard analysis in low and moderate seismic region-Korean peninsula. Structural Safety, 30(6), 543-558.
Harmsen, S., Perkins, D., & Frankel, A. (1999). Deaggregation of probabilistic ground motions in the central and eastern United States. Bulletin of the Seismological Society of America89(1), 1-13.
Idriss, I.M. (2014). An NGA-West2 Empirical Model for Estimating the Horizontal Spectral Values Generated by Shallow Crustal Earthquakes. Earthquake Spectra30(3), 1155-1177.
IIEES (International Institute of Earthquake Engineering and Seismology) (2013). The Micro-zonation study of Karaj (in Persian)
Jackson, J., Priestley, K., Allen, M., Berberian, M. (2000). Active tectonics of the south Caspian basin. Geophys. J. Int., 148, 214–245.
Jalalalhosseini, S. M., Zafarani, H., & Zare, M. (2018). Time-dependent seismic hazard analysis for the Greater Tehran and surrounding areas. Journal of Seismology22(1), 187-215.
Jarahi, H. (2016). Probabilistic seismic hazard deaggregation for Karaj City (Iran). Am. J. Eng. Applied Sci., 9, 520-529.
Kale, O., Akkar, S., Ansari, A., Hamzehloo, H. (2015). A Ground Motion Predictive Model for Iran and Turkey for Horizontal PGA, PGV, and 5% Damped Response Spectrum: Investigation of Possible Regional Effects. Bulletin of the Seismological Society of America105(2A), 963-980.
Khodaverdian, A., Zafarani, H., Rahimian, M., & Dehnamaki, V. (2016). Seismicity parameters and spatially smoothed seismicity model for Iran. Bulletin of the Seismological Society of America106(3), 1133-1150.
Kijko, A., & Sellevoll, M. A. (1992). Estimation of earthquake hazard parameters from incomplete data files. Part II. Incorporation of magnitude heterogeneity. Bulletin of the Seismological Society of America82(1), 120-134.
Kotha, S.R., Bindi, D., Cotton, F. (2016). Partially Non-Ergodic Region Specific GMPE for Europe and Middle-East. Bulletin of Earthquake Engineering14(4), 1245-1263.
Mirzaei, N., Mengtan, G., & Yuntai, C. (1998). Seismic source regionalization for seismic zoning of Iran: major seismotectonic provinces. Journal of Earthquake Prediction Research7, 465-495.
Montilla, J. A. P., Casado, C. L., & Romero, J. H. (2002). Deaggregation in magnitude, distance, and azimuth in the south and west of the Iberian Peninsula. Bulletin of the Seismological Society of America92(6), 2177-2185.
Mousavi, M., Ansari, A., Zafarani, H., Azarbakht, A. (2012). Selection of Ground Motion Prediction Models for Seismic Hazard Analysis in the Zagros Region, Iran. Journal of Earthquake Engineering16(8), 1184-1207.
Mousavi-Bafrouei, S. H., & Mahani, A. B. (2020). A comprehensive earthquake catalogue for the Iranian Plateau (400 BC to December 31, 2018). Journal of Seismology24, 709-724.
Musson, R. M. (2000). The Use of Monte Carlo Simulations for Seismic Hazard Assessment in the UK.
Pagani, M., Monelli, D., Weatherill, G., Danciu, L., Crowley, H., Silva, V., ... & Vigano, D. (2014). OpenQuake engine: An open hazard (and risk) software for the global earthquake model. Seismological Research Letters85(3), 692-702.
Reasenberg, P. (1985). Second-order moment of central California seismicity, 1969–1982. Journal of Geophysical Research: Solid Earth90(B7), 5479-5495.
Ritz, J. F., Nazari, H., Balescu, S., Lamothe, M., Salamati, R., Ghassemi, A., ... & Saidi, A. (2012). Paleoearthquakes of the past 30,000 years along the North Tehran Fault (Iran). Journal of Geophysical Research: Solid Earth117(B6).
Scherbaum, F., Cotton, F., Smith, P. (2004). On the Use of Response Spectral-Reference Data for the Selection and Ranking of Ground-Motion Models for Seismic-Hazard Analysis in Regions of Moderate Seismicity: The Case of Rock Motion. Bulletin of the seismological society of America94(6), 2164-2185.
Scherbaum, F., Delavaud, E., Riggelsen, C. (2009). Model Selection in Seismic Hazard Analysis: An Information-Theoretic Perspective. Bulletin of the Seismological Society of America99(6), 3234-3247.
Silva, V. (2017). Critical issues on probabilistic earthquake loss assessment. Journal of Earthquake Engineering, 22(9), 1683-1709.
Statistical Centre of Iran (SCI), 1956–2015, Statistical Centre of Iran, Vice-Presidency for Strategic Planning and Supervision, Tehran, National Census of Population and Housing Technical Reports, Sarshomāri 2016 (1395), 2011 (1390), 2006 (1385), 1996 (1375), 1986 (1365), and 1976 (1355): Tehran, SCI, formerly, the Plan & Budget Organization of the Imperial Government of Iran, Statistical Centre, http://www.amar.org.ir/Default.aspx?tabid=116 (accessed 2018).
Wald, D.J., Allen, T.I. (2007). Topographic Slope as a Proxy for Seismic Site Conditions and Amplification. Bulletin of the Seismological Society of America97(5), 1379-1395.
Wiemer, S. (2001). A software package to analyze seismicity: ZMAP. Seismological Research Letters, 72, 374–383.
Wu, J., Gao, M., Chen, K., & Huang, B. (2011). Discussion on the influence of truncation of ground motion residual distribution on probabilistic seismic hazard assessment. Earthquake Engineering and Engineering Vibration10(3), 379-392.
Zafarani, H., Ghafoori, S. M. M., & Adlaparvar, M. R. (2021). Spatial correlation of peak ground motions and pseudo spectral acceleration based on the Iranian multievent datasets. Journal of Earthquake Engineering, 1-21.